JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 74A, No. 5, September-October 1970

Specific Heats, C_v, of Compressed Liquid and Gaseous Fluorine*

Rolf Prydz** and Robert D. Goodwin**

Institute for Basic Standards, National Bureau of Standards, Boulder, Colo. 80302

(May 11, 1970)

Experimental specific heats at constant volume for compressed gaseous and liquid fluorine are reported from 80 K to 300 K at pressures to about 23 MN/m².

Key words: Compressed gas; compressed liquid; fluorine; heat capacities; specific heats.

List of Symbols

- $C_b(T)$ heat capacity of empty bomb
- $C_v^{\circ}(T)$ ideal gas specific heat
- $C_v(\rho, \mathbf{T})$ specific heat at constant volume $\stackrel{\circ}{C_x}_N$ work done to expand calorimeter bomb total g moles of fluid in closed system N_c g moles of fluid in capillary tube Ppressure, 1 MN/m² = 9.86923 atm
 - calorimeter heat input
- Q density

temperature, K, on the IPTS (1968)

- $\begin{array}{c} \rho \\ T \\ T_1, T_2 \end{array}$ temperature at start and end of heating interval
 - average temperature in ΔT
- $T_a \\ \Delta T \equiv$ $T_2 - \overline{T_1}$, calorimetric temperature increment
- $v \equiv$ $1/\rho$, molal volume V_h
 - volume of calorimeter bomb.

1. Introduction

These specific heat measurements and the reported specific heat data along the vapor-liquid coexistence boundary [1]¹ are part of a program in this laboratory to determine the thermodynamic properties of compressed gaseous and liquid fluorine. Since no singlephase specific heat data of either liquid or gaseous fluorine have been published previously, it is the purpose of this paper to report new such measurements at constant volume, C_v , from just below the normal boiling point (85 K) to 300 K at pressures to 23 MN/m² (1 MN/m²=9.86923 atm). These data supplement recent PVT measurements of fluorine in

this laboratory for the computation of the thermodynamic properties of this fluid.

2. **Experimental Apparatus**

The calorimeter and the cryostat used for these experiments are the same as the ones used for oxygen [2, 3], though the values in the system were modified for compatibility with high-pressure fluorine [4]. Briefly, the calorimeter is a thin, spherical stainless steel shell, 5 cm in diameter, surrounded by adiabatic shields automatically controlled at the temperature of the calorimeter. This temperature is measured using a platinum resistance thermometer calibrated by NBS on the IPTS 1968 temperature scale. Fluorine filling pressures are measured by referencing to oil pressure derived from an oil dead-weight gage through an intermediate nitrogen system (the nitrogen system is a safety precaution to reduce the possibility of direct contact between the fluorine and the dead-weight gage oil, a catastrophic situation).

A separate fluorine filling and recovery system was constructed consisting of a 10-liter stainless steel storage cylinder, a thermal pressure booster assembly, and a hydrogen fluoride (HF) absorber. The fluorine is kept in the storage cylinder at a pressure of about 1.5 MN/m². Calorimeter filling pressures are generated by the thermal booster, which is surrounded by a liquid nitrogen bath. Sodium fluoride pellets in the HF absorber serve to remove any traces of hydrogen fluoride in the fluorine before it is condensed in the booster.

A cabinet surrounding the cryostat and the supply system is maintained at a slightly reduced pressure, relative to ambient pressure, by an exhaust fan located outside the laboratory. This reduces the probability of venting the extremely toxic fluorine fumes into the laboratory if a leak should develop in the system. In

^{*}This work was carried out at the National Bureau of Standards under the sponsorship of the United States Air Force (MIPR No. FO4611-70-X-0001). **Cryogenics Division, National Bureau of Standards, Boulder, Colo. 80302.

¹ Figures in brackets indicate the literature references at the end of this paper.

the case of a system failure, however, provisions have been made for emergency venting of the fluorine through charcoal reactors outside the laboratory. Detailed description of materials that may be used for construction of fluorine handling systems and apparatuses is given by reference [5].

3. Procedures

The specific heat, C_v , of a substance is determined from the energy input, Q, to raise the temperature of a unit mass by ΔT . Experimental specific heats are obtained in the following way. The energy input to the calorimeter, Q, is obtained from simultaneous readings of potential and current as the heating time interval is measured by an electronic counter. The electric power input is obtained by averaging three pairs of potential and current readings. Five temperatures are measured immediately preceding a heating interval and are then extrapolated linearly to obtain the temperature, T_1 , of the calorimeter at the mid-time of the heating period as if no heat had been added. At the end of the heating interval the temperature of the calorimeter may increase for about 20 min before a very slow cooling begins (imperfect adiabatic shielding). Five new temperatures are then measured and again linearly extrapolated to the mid-time of the heating interval to obtain T_2 . Assigned to that particular specific heat observation is the average temperature $T_a = (T_1 + T_2)/2$. The temperature increase of the calorimeter is $\Delta T = T_2 - T_1$.

Calorimeter filling pressures are measured by the dead-weight gage and are corrected for the hydrostatic head of fluorine in the capillary tube leading down to the calorimeter bomb. From this pressure and the filling temperature, a one-phase density is calculated with an uncertainty of about 0.1 percent from an equation of state of the type previously applied to deuterium [6]. The fluorine mass in the calorimeter is then calculated from the known volume, V_b , of the calorimeter (uncertainty of about 0.1 percent) [2]. The number of moles of sample in the capillary volume $(0.0002 \cdot V_b)$ is computed from an estimated temperature distribution [2] and the equation of state. Thus, the total mass of sample in the closed system is known to an uncertainty of about 0.2 percent.

To obtain the density, ρ , at each specific heat observation, corrections must be made for the expansion of the calorimeter bomb and the amount of fluorine in the capillary tube by calculating the pressures at T_1 and T_2 . The application of a double iteration method to adjust for the relative change of the mass of sample in the capillary tube, N_c , and the combined effect of temperature and pressure expansion of the stainless steel calorimeter, has been discussed by Goodwin and Weber [3]. Thus, the expression for density is

$$\rho = [N - N_c(P, T)] / V_b(P, T)$$
(1)

where N is the total number of g moles in the closed system. The densities ρ_1 , ρ_2 obtained in this manner at T_1 , T_2 may be used to compute the adjustment in the heat capacity, C_x , due to the work done to expand the calorimeter bomb as

 $\Delta v = 1/\rho_2 - 1/\rho_1$

and

(

$$C_x = \left[T_2(\partial P/\partial T)_2 - \Delta P/2 \right] \cdot \Delta v / \Delta T.$$
⁽²⁾

Using this expression, the experimental specific heats are calculated from

$$C_v = \left[\frac{Q}{\Delta T} - C_b \right] / \left[N - N_c \right] - C_x \tag{3}$$

where Q is the total energy input and C_b is the heat capacity of the empty calorimeter bomb from [1]. The heat capacity adjustment, C_x , is largest for the highest densities, being of the order of 1.2 percent of the total heat capacity, $Q/\Delta T$, for run No. 8.

The purity of the fluorine sample used for these measurements was 99.99 percent as determined from residual gas analysis after reaction of the fluorine with mercury.

4. Experimental Results

The location of all experimental C_v data on the *PVT* surface is given in figure 1. Also indicated in this

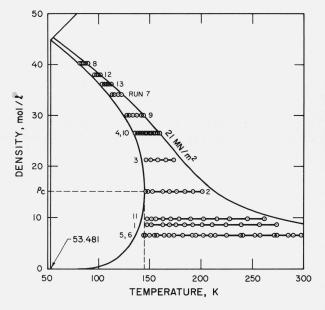


FIGURE 1. Locus of C_v data on $\rho - T$ surface.

figure is the critical point ($\rho_c = 15.10$ mole/l; $T_c = 144.31$ K), which helps to give the relative location of each experimental run. Upper limits of 300 K in temperature and 21 MN/m² in pressure bound the range of the data together with the vapor-liquid coexistence boundary. Table 1 gives the filling conditions of the calorimeter bomb for each run as determined by the temperature-pressure conditions of the first two columns of this table. Next is the calculated volume of the calorimeter and the density calculated from the equation of state. N is the total number of g moles

TABLE 1. Loading conditions for the samples

Run	T	Р	V _b	D	N
	K	MN/m^2	cm^3	mol/l	mol
1	174.825	8.4244	73.014	8.709	0.6360
2	166.789	10.4272	73.008	15.184	1.1087
3	175.609	18.6026	73.114	21.245	1.5535
4	155.918	17.4279	73.040	26.238	1.9167
5	193.408	8.3099	73.071	6.551	0.4787
6	195.075	8.6601	73.079	6.770	0.4948
7	116.282	8.8620	72.850	34.098	2.4843
8	84.845	8.6315	72.774	40.123	2.9202
9	133.421	9.4309	72.901	29.905	2.1803
10	147.833	12.6624	72.972	26.611	1.9420
11	188.588	10.8379	73.080	9.807	0.7168
12	98.066	10.6331	72.819	37.922	2.7617
13	108.200	12.6513	72.860	36.220	2.6392

as obtained from the density and the calorimeter and capillary volumes.

The experimental results are given in table 2. Identification in the first column is the run number followed by two digits for the data point of that run. Next are the observed temperature, the estimated pressure, the calorimeter bomb volume, V_b , and the calculated density at these conditions. Further, the ΔT column is the temperature increment of the heating period. The following columns have the total heat capacity $Q/\Delta T$, the heat capacity of the empty calorimeter, and the adjusted specific heat of the fluorine sample as calculated from eq (3). These specific heat values also include curvature adjustments as discussed by Goodwin and Weber [2]. However, the adjustments changed only the two first points (points No. 215, 216) of run No. 2 which is closest to the critical density. The estimated maximum

TABLE 2.Specific heats of fluorine

ID	T_a	P	V_b	D	ΔT	$Q/\Delta T$	Tare	C_v	Error in C_v
	K	MN/m^2	cm^3	mol/l	K	J/K	J/K	J/mol K	%
115	147.552	5.380	72.905	8.723	3.394	85.994	65.724	31.77	1.37
116	152.783	5.985	72.926	8.720	7.150	85.764	66.936	29.50	1.11
117	162.897	7.122	72.966	8.715	7.083	86.406	69.066	27.16	1.21
118	169.884	7.888	72.994	8.712	7.023	87.170	70.396	26.26	1.26
119	176.795	8.636	73.022	8.708	6.951	88.028	71.613	25.69	1.30
120	184.349	9.443	73.053	8.704	8.321	89.004	72.845	25.28	1.27
121	192.537	10.314	73.088	8.700	8.225	90.032	74.078	24.96	1.30
122	201.228	11.230	73.125	8.696	9.643	91.099	75.285	24.73	1.28
123	211.965	12.355	73.171	8.690	12.101	92.340	76.653	24.52	1.24
124	225.285	13.739	73.230	8.683	14.820	93.804	78.188	24.40	1.22
125	240.581	15.316	73.298	8.675	16.052	95.418	79.769	24.44	1.22
126	257.055	16.999	73.373	8.666	17.250	96.938	81.293	24.42	1.23
127	275.383	18.851	73.457	8.656	19.832	98.526	82.811	24.52	1.22
215	145.586	5.509	72.901	15.207	1.592	116.052	65.248	44.63	1.17
216	148.230	6.116	72.914	15.204	3.738	106.091	65.886	35.76	0.86
217	153.049	7.229	72.938	15.199	5.966	102.260	66.995	31.65	.79
218	162.488	9.422	72.986	15.189	5.989	100.533	68.985	28.28	.86
219	169.101	10.969	73.021	15.181	7.341	100.628	70.252	27.21	.84
220	176.346	12.671	73.060	15.173	7.265	101.105	71.537	26.47	.86
221	184.279	14.535	73.103	15.164	8.736	101.761	72.834	25.88	.85
222	192.861	16.551	73.151	15.154	8.587	102.574	74.125	25.44	.87
223	201.351	18.538	73.199	15.144	8.576	103.543	75.301	25.24	.88
316	146.736	6.508	72.913	21.305	4.342	112.663	65.528	30.10	.75
317	151.590	8.466	72.915	21.303	5.439	112.005	66.667	28.49	.73
318	151.590	11.202	72.990	21.293	7.844	110.993	68.107	27.31	.67
319	165.967	14.489	73.044	21.265	7.819	111.295	69.664	26.48	.70
320	173.700	17.787	73.100	21.249	7.769	112.027	71.079	26.01	.71
401	120 216	5 515	72.880	26.298	4.171	117 579	63.374	27.84	.72
401 402	$138.316 \\ 142.452$	5.515	72.880	26.298	4.171	$117.573 \\ 117.631$	63.374 64.462	27.84 27.28	.72 .73
402	142.452 146.560	8.307 11.092	72.917	26.284	4.140	117.031	65.485	26.93	.73
403	150.651	13.867	72.994	26.270	4.130	118.010	66.452	26.70	.74
404	154.652	16.575	73.028	26.243	4.098	118.889	67.349	26.38	.77
406	154.052	19.294	73.066	26.229	4.076	119.551	68.214	26.26	.78
407	162.321	21.709	73.100	26.216	3.241	120.014	68.952	26.11	.86
408	136.840	4.521	72.868	26.303	2.434	117.418	62.970	27.99	.90
409	140.138	6.741	72.896	26.292	4.197	117.547	63.860	27.56	.72
410	144.283	9.548	72.933	26.278	4.137	117.849	64.925	27.15	.74
411	148.395	12.338	72.971	26.264	4.129	118.233	65.925	26.81	.75
412	152.431	15.071	73.008	26.250	4.106	118.646	66.857	26.52	.76
413	156.495	17.813	73.046	26.236	4.088	119.232	67.748	26.35	.77
414	160.539	20.522	73.084	26.223	4.067	119.780	68.592	26.18	.78

ID	T_a	Р	V_b	D	ΔT	$Q/\Delta T$	Tare	C_v	Error in C _v
	K	MN/m^2	cm^3	mol/l	K	J/K	J/K	J/mol K	%
$\begin{array}{c} 501\\ 502\\ 503\\ 504\\ 505\\ 506\\ 507\\ 508\\ 509\\ 510\\ 511\\ 512\\ 513\\ 514 \end{array}$	$\begin{array}{c} 143.968\\ 150.160\\ 157.025\\ 164.958\\ 173.561\\ 182.850\\ 192.588\\ 203.140\\ 214.436\\ 226.887\\ 241.823\\ 258.287\\ 274.496\\ 290.482 \end{array}$	$\begin{array}{c} 4.531 \\ 5.035 \\ 5.576 \\ 6.186 \\ 6.837 \\ 7.530 \\ 8.249 \\ 9.021 \\ 9.841 \\ 10.738 \\ 11.806 \\ 12.975 \\ 14.114 \\ 15.228 \end{array}$	$\begin{array}{c} 72.887\\ 72.909\\ 72.934\\ 72.963\\ 72.995\\ 73.030\\ 73.068\\ 73.109\\ 73.154\\ 73.204\\ 73.265\\ 73.333\\ 73.401\\ 73.469\end{array}$	$\begin{array}{c} 6.568\\ 6.566\\ 6.563\\ 6.558\\ 6.554\\ 6.551\\ 6.547\\ 6.543\\ 6.539\\ 6.533\\ 6.527\\ 6.521\\ 6.515\end{array}$	$\begin{array}{c} 6.264\\ 6.193\\ 7.630\\ 8.344\\ 9.010\\ 9.728\\ 10.269\\ 11.047\\ 11.777\\ 13.401\\ 16.807\\ 16.518\\ 16.373\\ 16.164 \end{array}$	$\begin{array}{c} 78.966\\ 79.565\\ 80.543\\ 81.731\\ 83.033\\ 84.443\\ 85.684\\ 87.039\\ 88.433\\ 89.815\\ 91.380\\ 92.961\\ 94.356\\ 95.605 \end{array}$	$\begin{array}{c} 64.846\\ 66.338\\ 67.861\\ 69.470\\ 71.055\\ 72.608\\ 74.085\\ 75.538\\ 76.950\\ 78.362\\ 79.890\\ 81.400\\ 82.741\\ 83.946\end{array}$	$\begin{array}{c} 29.41 \\ 27.54 \\ 26.40 \\ 25.52 \\ 24.92 \\ 24.62 \\ 24.12 \\ 23.91 \\ 23.86 \\ 23.79 \\ 23.86 \\ 24.00 \\ 24.10 \\ 24.18 \end{array}$	$\begin{array}{c} 1.39\\ 1.50\\ 1.48\\ 1.51\\ 1.54\\ 1.55\\ 1.58\\ 1.59\\ 1.60\\ 1.58\\ 1.55\\ 1.57\\ 1.59\\ 1.60\\ \end{array}$
$\begin{array}{c} 612 \\ 613 \\ 614 \\ 615 \\ 616 \\ 617 \\ 618 \\ 619 \\ 620 \\ 621 \\ 622 \\ 623 \end{array}$	$\begin{array}{c} 146.154\\ 157.907\\ 169.905\\ 182.617\\ 196.025\\ 210.026\\ 224.468\\ 239.344\\ 253.945\\ 271.674\\ 285.815\\ 298.381\\ \end{array}$	$\begin{array}{c} 4.772\\ 5.751\\ 6.709\\ 7.701\\ 8.731\\ 9.795\\ 10.883\\ 11.994\\ 13.075\\ 14.377\\ 15.406\\ 16.315\end{array}$	$\begin{array}{c} 72.896\\ 72.938\\ 72.983\\ 73.031\\ 73.083\\ 73.139\\ 73.197\\ 73.258\\ 73.319\\ 73.394\\ 73.455\\ 73.509\end{array}$	$\begin{array}{c} 6.788\\ 6.784\\ 6.779\\ 6.775\\ 6.770\\ 6.765\\ 6.759\\ 6.754\\ 6.748\\ 6.741\\ 6.735\\ 6.730\\ \end{array}$	11.929 11.696 12.437 13.158 13.861 14.402 15.194 14.932 14.696 15.897 12.963 12.775	79,850 81,181 82,937 84,761 86,567 88,329 89,981 91,523 92,969 94,492 95,630 96,617	$\begin{array}{c} 65.387\\ 68.048\\ 70.400\\ 72.571\\ 74.574\\ 76.415\\ 78.098\\ 79.647\\ 81.017\\ 82.517\\ 83.605\\ 84.503 \end{array}$	$\begin{array}{c} 29.14\\ 26.45\\ 25.24\\ 24.53\\ 24.12\\ 23.96\\ 23.88\\ 23.86\\ 24.00\\ 24.04\\ 24.13\\ 24.30\\ \end{array}$	$1.17 \\ 1.30 \\ 1.37 \\ 1.42 \\ 1.46 \\ 1.48 \\ 1.50 \\ 1.53 \\ 1.55 \\ 1.55 \\ 1.62 \\ 1.63 \\ $
708 709 710 711	113.159 116.127 119.070 121.991	4.271 8.617 12.839 16.927	72.804 72.848 72.891 72.934	$\begin{array}{c} 34.121 \\ 34.100 \\ 34.079 \\ 34.058 \end{array}$	$2.987 \\ 2.960 \\ 2.944 \\ 2.916$	128.246 128.856 129.683 130.538	55.210 56.333 57.400 58.415	28.37 28.18 28.08 28.04	0.73 .74 .75 .75
801 802 803 804 805	82.992 84.877 86.751 88.610 90.459	3.711 8.707 13.555 18.265 22.835	72.733 72.775 72.815 72.856 72.895	$\begin{array}{c} 40.147\\ 40.123\\ 40.100\\ 40.077\\ 40.055\end{array}$	$1.886 \\ 1.884 \\ 1.866 \\ 1.851 \\ 1.847$	$\begin{array}{c} 138.288\\ 138.887\\ 139.729\\ 140.624\\ 141.300\end{array}$	$\begin{array}{r} 40.657\\ 41.750\\ 42.811\\ 43.839\\ 44.836\end{array}$	31.67 31.59 31.51 31.50 31.41	0.80 .81 .82 .82 .83
901 902 903 904 905 906	$\begin{array}{c} 127.307\\ 130.410\\ 133.766\\ 137.312\\ 141.435\\ 143.738\end{array}$	3.459 6.500 9.761 13.159 17.057 19.203	72.833 72.867 72.905 72.945 72.992 73.018	29.935 29.920 29.904 29.887 29.867 29.856	3.060 3.174 3.573 3.557 2.324 2.338	$126.035 \\122.094 \\122.720 \\123.401 \\123.929 \\124.410$	60.157 61.114 62.103 63.100 64.200 64.788	$\begin{array}{c} 29.56 \\ 27.30 \\ 27.12 \\ 26.97 \\ 26.70 \\ 26.64 \end{array}$	$\begin{array}{c} 0.74 \\ .77 \\ .74 \\ .75 \\ .92 \\ .92 \end{array}$
$1001 \\ 1002 \\ 1003 \\ 1004 \\ 1005 \\ 1006 \\ 1007 \\ 1008 \\ 1009$	$\begin{array}{c} 136.731\\ 139.557\\ 143.010\\ 146.658\\ 150.301\\ 146.130\\ 149.750\\ 153.359\\ 156.935\end{array}$	$\begin{array}{r} 4.878\\ 6.853\\ 9.275\\ 11.838\\ 14.391\\ 11.467\\ 14.006\\ 16.526\\ 19.004 \end{array}$	72.870 72.896 72.927 72.961 72.995 72.956 72.990 73.024 73.058	$\begin{array}{c} 26.649\\ 26.639\\ 26.628\\ 26.615\\ 26.602\\ 26.617\\ 26.604\\ 26.591\\ 26.579\end{array}$	$\begin{array}{c} 2.432\\ 3.269\\ 3.687\\ 3.678\\ 3.661\\ 3.671\\ 3.640\\ 3.625\\ 3.600\\ \end{array}$	$\begin{array}{c} 117.889\\ 118.034\\ 118.156\\ 118.586\\ 119.050\\ 118.316\\ 119.403\\ 119.840\\ 120.339 \end{array}$	$\begin{array}{c} 62.940\\ 63.707\\ 64.604\\ 65.509\\ 66.371\\ 65.381\\ 66.243\\ 67.064\\ 67.842\end{array}$	$\begin{array}{c} 27.84\\ 27.51\\ 27.09\\ 26.83\\ 26.61\\ 26.76\\ 26.86\\ 26.65\\ 26.50\\ \end{array}$.90 .79 .77 .78 .79 .78 .78 .78 .79 .80
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112	$\begin{array}{c} 147.346\\ 151.817\\ 156.825\\ 163.000\\ 170.484\\ 179.341\\ 189.770\\ 201.740\\ 215.428\\ 230.571\\ 246.166\\ 262.176\end{array}$	$\begin{array}{c} 5.524\\ 6.133\\ 6.799\\ 7.603\\ 8.562\\ 9.681\\ 10.984\\ 12.466\\ 14.147\\ 15.991\\ 17.873\\ 19.784\end{array}$	$\begin{array}{c} 72.906\\ 72.924\\ 72.945\\ 72.971\\ 73.002\\ 73.040\\ 73.086\\ 73.139\\ 73.201\\ 73.271\\ 73.345\\ 73.421 \end{array}$	9.831 9.829 9.822 9.818 9.813 9.807 9.799 9.791 9.781 9.772 9.761	$\begin{array}{c} 4.494\\ 4.528\\ 5.565\\ 6.890\\ 8.202\\ 9.833\\ 11.191\\ 12.942\\ 14.702\\ 15.862\\ 15.683\\ 16.772\end{array}$	89.746 88.710 88.556 88.838 89.572 90.590 91.825 93.192 94.770 96.420 97.942 99.494	$\begin{array}{c} 65.675\\ 66.718\\ 67.819\\ 69.087\\ 70.506\\ 72.039\\ 73.672\\ 75.353\\ 77.068\\ 78.754\\ 80.304\\ 81.734 \end{array}$	$\begin{array}{c} 33.47\\ 30.56\\ 28.81\\ 27.43\\ 26.47\\ 25.75\\ 25.18\\ 24.74\\ 24.54\\ 24.54\\ 24.47\\ 24.42\\ 24.58\end{array}$	$\begin{array}{c} 1.08\\ 1.16\\ 1.13\\ 1.11\\ 1.10\\ 1.09\\ 1.10\\ 1.10\\ 1.10\\ 1.10\\ 1.11\\ 1.13\\ 1.13\end{array}$

 TABLE 2.
 Specific heats of fluorine - Continued

=

ID	T _a	Р	V_b	D	ΔT	$Q/\Delta T$	Tare	C_v	Error in C _v
	K	MN/m^2	cm^3	mol/l	K	J/K	J/K	J/mol K	%
1202	95.454	5.079	72.769	37.949	2.217	134.275	47.411	29.99	.78
1203	97.662	9.778	72.811	37.926	2.205	135.029	48.495	29.89	.79
1204	99.850	14.308	72.853	37.904	2.189	135.863	49.535	29.87	.79
1205	102.024	18.690	72.893	37.882	2.173	136.779	50.538	29.84	.80
1301	103.424	4.095	72.779	36.261	2.241	131.406	51.168	29.13	0.80
1302	105.653	8.130	72.817	36.242	2.233	131.819	52.144	28.95	.81
1303	107.863	12.051	72.855	36.222	2.206	132.602	53.082	28.89	.82
1304	110.062	15.860	72.892	36.204	2.211	133.243	53.986	28.83	.82
1305	112.247	19.560	72.928	36.185	2.185	133.987	54.856	28.78	.83

 TABLE 2.
 Specific heats of fluorine – Continued

uncertainty in the C_v measurements is given in the last column. This uncertainty should rapidly increase with diminishing temperature intervals, ΔT , and with diminishing mass of sample, N. It is based on the following estimated uncertainties in the different variables:

N, 0.2%	Q, 0.05%	$\Delta T, 0.1\%$
$C_b, 0.1\%$	$\Delta P, 0.1\%$	dP/dT, 1.0%.

The number of significant figures given in table 2 is not justified on the basis of the uncertainty of the data, but is presented to maintain internal consistency.

No single-phase specific heat data of fluorine are available for comparison with the new measurements. However, the general behavior of the data is illustrated in figure 2. For a wide range of densities about the critical isochore, the specific heat increases sharply as the temperature approaches the two-phase envelope, which is to be expected. At densities far removed from the critical, the temperature dependence is relatively weak. Data obtained earlier with this apparatus for oxygen [2, 3] indicated that the deviations from other published oxygen values were within the accuracy of the specific heat measurements as given in the last column of table 2.

The authors acknowledge the support of the Air Force Rocket Propulsion Laboratory, Edwards, California. Also, thanks are due to G. K. Johnson of Argonne National Laboratory for supplying the purified fluorine used for these experiments.

5. References

- Goodwin, R. D., and Prydz, R., Specific heats of fluorine at coexistence, J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 4, 499-505 (July-Aug. 1970).
- [2] Goodwin, R. D., and Weber, L. A., Specific heats of oxygen at coexistence, J. Research Nat. Bur. Stand. (U.S.), 73A, (Phys. and Chem.), No. 1, 1-13 (Jan.-Feb. 1969).

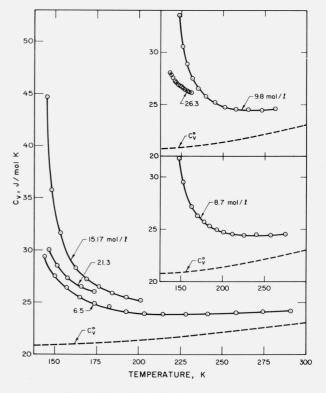


FIGURE 2. Selected isochores of C_v data.

- [3] Goodwin, R. D., and Weber, L. A., Specific heats C_v of fluid oxygen from the triple point to 300 K at pressures to 350 atmospheres, J. Research Nat. Bur. Stand. (U.S.), **73A** (Phys. and Chem.), No. 1, 15–24 (Jan.–Feb. 1969).
- [4] Straty, G. C., Bellow-sealed valve for reactive gases at moderately high pressures, Rev. Sci. Instr. 40, No. 2, 378–79 (1969).
- [5] Straty, G. C., and Prydz, R., Fluorine compatible apparatus for accurate *PVT* measurements, Rev. Sci. Instr. 41, No. 8, 1223– 27 (1970).
- [6] Prydz, R., Timmerhaus, K. D., and Stewart, R. B., The thermodynamic properties of deuterium, Advances in Cryogenic Engineering, Vol. 13, 384–96 (1967).

(Paper 74A5-630)