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The calculation of one-electron density of state values from the coefficient y of the term of the low

temperature specific heat linear in temperature is complicated by many-body effects. In particular, the

electron-phonon interaction may enhance the measured y as much as twofold. The enhancement factor

can be evaluated in the case of superconducting metals and alloys. In the presence of magnetic mo-

ments, additional complications arise. A magnetic contribution to the measured y was identified in the

case of dilute alloys and also of concentrated alloys where parasitic antiferromagnetism is superim-

posed on an over-all ferromagnetic order. No method has as yet been devised to evaluate this magnetic

part of y. The separation of the temperature-linear term of the specific heat may itself be complicated

by the appearance of a specific heat anomaly due to magnetic clusters in superparamagnetic or weakly

ferromagnetic alloys.
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1. Introduction

In the Sommerfeld-Bethe theory of metals the elec-
tronic specific heat at low temperatures is linear in tem-
perature in first order approximation. The lattice
specific heat in the low temperature approximation is
proportional to 7% so that, in the absence of other con-
tributions, the total specific heat

C=~T+BT? (1)

If C is known as a function of 7T, the two terms can be
separated by making use of the linear variation of C/T
with 72 and by extrapolating to 7= 0. The intercept of
the extrapolated line with the ordinate axis gives the
temperature coefficient of the electronic specific heat
v. In the simplest case, y is proportional to the elec-
tronic density of states at the Fermi surface, N(Er):

v=1/3)m*ak*N(Er) (2)

where £ is the Boltzman constant and « is a numerical
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factor determined by the units used for v, N(Ep) and k.
Unfortunately, in a very large majority of cases, the
simple procedure just described cannot be used, or at
least it does not give reliable results. Many-body effects
and, in some alloys, magnetic effects may make the
determination of N(Er) from low temperature specific
heat data more complicated than implied by eqgs (1) and
(2), or even impossible at the present state of the art.

2. Many-body Effects

In recent years it has become known that many-body
effects, in particular the electron-phonon interaction,
require renormalization of the effective mass of the
electrons at the Fermi surface. This increases the mea-
sured electronic specific heat coefficient over the one-
electron “band structure” value by the enhancement
factor (1 + N). For Na, Al and Pb, it was possible to
determine the value of this factor [ 1], by comparing the
“band structure electronic specific heat,” calculated
from the known band structure and the topography of
the Fermi surface, with the measured electronic
specific heat. These values: 1.25, 1.45 and 2.00, respec-
tively, were found to agree quite well with the enhance-
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ment factors calculated from band structure, Fermi
surface topography and phonon dispersion curves, on
the basis of the electron-phonon interaction [ 1]. Unfor-
tunately, for most other metals calculations of this sort
cannot be made at present since at least some of the
required data are not yet available. For superconduct-
ing metals the electron-phonon coupiing constant \ has
been recently calculated by McMillan [2], using the
following equation which he derived from the strong
coupling theory:

S _[ 1.04(14\) ]
=145 P [ N=uF(1+o0.62)) |’

3)

where T¢ is the superconducting transition temperature
and 6 is the Debye temperature. The electron-electron
interaction constant u* was assumed to have a value of
0.13 for all transition metals. The values of A calculated
by McMillan [2] for superconducting metals are given
in table I.

TABLE 1. The Electron-Phonon Interaction Coefficient N and
“Band Structure” Density of States N(Eg) for Superconducting
Metals.?

Element ;I‘IE D(;)( N eVE\fgi;r)n*‘
.026 1390 .23 .032
1.16 428 .38 .208
.85 309 .38 .098
1.08 325 .40 .091
.52 209 .38 .106
3.40 112 .69 212
3.12 200 .60 .238
4.16 72 1.00 146
2.38 79 71 .182
7.19 105 12 276
.39 425 .38 .5l
5.30 399 .60 1.31
.55 290 41 42
9.22 277 .82 91
.92 460 41 .28
.49 550 .38 .46
.09 252 .34 .34
4.48 258 .65 a1
.012 390, .28 15
1.69 415 .46 .33
.65 500 .39 .35
14 420 .34 .51

It is now clear that the enhancement factor (1 + \) of
the electronic specific heat due to the electron-phonon
interaction can be as high as 2, or more. This interac-
tion affects only the electrons whose kinetic energy is
close to the Fermi energy. The density of states at lower
levels, that is for most of the electrons in the metallic
band, may be assumed to correspond to the one-elec-

tron ‘“band structure’ situation. Hence, the lower,
“band structure density of states’ values must be used
in determining the band width, for instance, rather than
the density of states enhanced by electron-phonon in-
teraction, as obtained from low temperature specific
heat measurements. Using the
coupling constant \, for instance the values given in
table I, the “band structure density of states” at the
Fermi level N(Er) can be calculated from the experi-
mentally determined value of the low temperature
specific heat coefficient y’ as follows:

_ 3 '
NEN= i n Y @)

electron-phonon

For most of the nonsuperconducting metals and alloys
the value of \ is at present unknown and, as a result,
the ““band structure density of states’ cannot be calcu-
lated from the low temperature specific heat.

As seen in figure 1, the experimental electronic
specific heat coefficient y’ for the b.c.c. 3d-transition
metals and their alloys as a function of electron concen-
tration [3] shows prominent maxima and minima in the
range of e/a from 4 to 9. Since in the region of the
minima and of the second maximum the alloys are not
superconducting, the ‘“band structure density of
states’ cannot be calculated at present. Thus, the in-
teresting question whether the prominent features of
these curves are due to changes in the electron-phonon
enhancement factor upon alloying, or indeed these fea-
tures are characteristic of the electronic band structure
of the transition metals concerned, cannot be answered
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FIGURE 1. Coefficienty' ory" of the low temperature specific heat

term linear in temperature vs electron concentration efa for b.c.c.

alloys of 3d transition metals [3]. Points marked by filled squares
represent data for close-packed structures.
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with certainty. However, the work of McMillan [ 2] al-
lows the conclusion that the electron-phonon coupling
constant (and, thus, the enhancement factor) depends
primarily on the phonon frequencies, rather than on the
electronic properties. Since the elastic constants and,

therefore, the phonon frequencies are not known to

undergo drastic changes with the composition in such
solid solution alloys composed of metals near one
another in the same row of the periodic table, it may be
concluded with a reasonable degree of probability that
the prominent features mentioned of the y' versus e/a
curve of figure 1 are in fact resulting from correspond-
ing variations in the “band structure density of states,”
even though the relative magnitude of the various
minima and maxima may be appreciably altered by the
gradual changes in the coupling constant with composi-
tion.

3. Magnetic Effects

Considerable difficulties are often encountered in
determining the value of ' for solid solution alloys of
ferromagnetic with antiferromagnetic or nonmagnetic
metals. For instance, it was found [4] for the random
solid solution alloys Mn-Ni that, in addition to the elec-
tronic specific heat coefficient ', the measured coeffi-
cient y" of the term of the low temperature specific he ..
linear in temperature includes also a magnetic con-
tribution yy,:

Y'=v"+vm (5)

The alloy MnNi; can be ordered by thermal treat-
ment and, in the well-ordered condition, the coefficient
of the linear term of the low temperature specific heat
is approximately half that for the disordered alloy of the
same composition. This lower value is substantially
free of the magnetic contribution vy, and it may be con-
sidered as approximately equal to the real experimental
electronic specific heat y’ of the alloy. On the other
hand, the larger y" value for the disordered alloy in-
cludes yu. Similar magnetic contributions to y” were
identified in a number of other f.c.c. solid solution alloy
systems [4] and in b.c.c. Fe-Al alloys [5]. It is signifi-
cant that in the same alloy systems, and at similar com-
positions, magnetic measurements by Kouvel [ 6,7] de-
tected the appearance of an asymmetrical hysteresis
loop after cooling in a magnetic field through the Curie
temperature (“‘exchange anisotropy”). In addition to this
effect of field cooling on the magnetic properties, in
several instances an effect of field cooling on y,, was
also detected [4.8], figure 2.
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FIGURE 2. (C-A)/T vs T2 (where C-A is low temperature specific heat
less magnetic cluster contribution, see eq (5)) for alloy Nio.4s Cuo.52
cooled without a magnetic field (top graph), cooled in 14 kQe field

from 300 to 4.2 K with the field turned off during the measurements
(graph m) and field-cooled with the field on during measurements

(graph m—m) [8].

The occurrence in the same alloys of “exchange
anisotropy”’ and of a magnetic contribution to the low
temperature specific heat term linear in temperature
suggests that these two phenomena may be associated
with the same structural condition. This expectation is
further supported by the fact that y,, is normally also af-
fected by field cooling. According to Kouvel’s highly
successful model [ 7], the structural condition responsi-
ble for ‘“exchange anisotropy” is a spatially in-
homogeneous magnetic state, e.g., the superposition of
local ‘“‘parasitic antiferromagnetism” on net overall fer-
romagnetism. Overhauser [9] and Marshall [10] con-
nected the magnetic contribution to the linear term of
the low temperature specific heat with the location of
a sufficient number of spins in a near-zero field. In
Overhauser’s theory this condition arises at the nodes
of the static spin density waves of an antiferromagnet.
Marshall pointed out that the required condition may
arise in dilute spin systems, where the average distance
between neighboring spins is sufficiently large, so as to
make the interactions weak, as in dilute Cu-Mn alloys.
The alloys considered above are neither antiferromag-
netic nor dilute. However, because of the peculiar,
complicated spin arrangement, resulting from the su-
perposition of local parasitic antiferromagnetism on net
overall ferromagnetism, it may be expected that many
spins are located in small regions where ferromagnetic
and antiferromagnetic exchange interactions nearly
cancel each other locally, so that the average field in
such regions is near zero [4]. In accordance with this
“local field-cancellation” model, the effect of field cool-
ing on y,, may come about if the application of an exter-
nal magnetic field during cooling through the Curie
temperature increases or decreases the number of
spins located in near-zero field. Both increase and
decrease [ (MnNiy [4], Nig4sCuos2 [8])] were in fact
observed. It is easy to visualize that the change in ), as
a result of field cooling may also happen to be negligibly
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small, even though the value of the magnetic contribu-
tion vy, itself is large. Thus, while the occurrence of a
measurable effect of field cooling on the temperature-
linear term of the low temperature specific heat may be
considered as a proof for the existence of a magnetic
contribution to this term, the absence of such an effect
does not prove that vy, is zero, or that it arises through
a mechanism different from the “local field cancella-
tion.”

If the experimentally determined coefficient of the

the

specific heat includes a magnetic contribution, it is at

temperature-linear term of low temperature
present not possible to derive from such a y” value the
“experimental electronic specific heat coefficient™ ',
which is free from . This is well illustrated by the Ni-
Cu alloys, for which the coefficient of the linear term
has a maximum around the composition Nij 45Cug 52
[8]. A detailed study of the properties of these f.c.c.
solid solutions at compositions in the vicinity of the
maximum [11] shows that the experimental values of
the coefficient do in fact include a magnetic contribu-
tion. It is, therefore, not possible to tell whether the
maximum is entirely due to yu, or whether y’ itself has
a maximum, which is merely increased by the addition
of ym. A maximum in y’ has been expected on theoreti-
cal grounds [12] because of enhancement due to the

electron-paramagnon interaction [13,14]. The thcory
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FIGURE 3. Coefficient y" of the temperature-linear low temperature
specific heat term, Curie temperature Tc, temperature independent
specific heat term A and coefficient 8 of the T* term, obtained by least
squares fitting to eq (5), for Cuyx Niy (solid lines) and for (Cuy- Niz)o.o
Aly.s (dashed lines) alloys vs x [ 11,22,24].
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FIGURE 4. Low temperature specific heat and Curie temperature data,
as in figure 3, for V., Fey (solid lines) and (V- Fey)o.s Alo.1 (dashed
lines), alloys [ 3,23,24] .

would require the maximum of ' to occur at the critical
composition, where ferromagnetism just begins to set
in at 0 K. Detailed study of the magnetic properties
showed [11] that the critical composition is at approxi-
mately 57 percent Cu, where y" already decreased to a
value far below its maximum. Figure 3 gives 7" for the
Ni-Cu solid solutions, together with Curie temperature
data, which define the critical composition. One may
conclude that the maximum in y” is largely, or entirely,
due to ym, rather than to y'. That the maximum in y,,
should occur in the weakly ferromagnetic region is en-
tirely consistent with the “local field cancellation”
model discussed above. It is quite likely that the max-
imum in the coefficient of the linear term for the f.c.c.
Rh-Ni solid solutions, which apparently also occurs off
the critical composition on the ferromagnetic side
[15,16], is also due to a magnetic contribution . In
fact, several solid solution alloy systems are now known
to exhibit similar conditions. Figure 3 shows this for a
series of Ni-Cu-Al ternary alloys with a constant Al-con-
tent of 10 percent. It is seen that the Al addition shifts
the critical composition to a hicher Ni/Cu ratio, that the
maximum in y” (which is here even higher than for the
binary alloys) is also shifted, and that it again appears
away from the critical composition, on the ferromag-
netic side. Further examples are given in figure 4,
which shows similar data for b.c.c. V-Fe binary and V-
Fe-Al ternary solid solutions with a constant Al-content
of 10 percent.
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As yet there appears to be no experimental evidence
* for the theoretically predicted [14] peak in 3’ in alloys
~ at the critical composition, resulting from the electron-
_ paramagnon interaction.

Figures 3 and 4 illustrate also a complication, which
~ arises quite frequently in extracting the coefficient of
_the temperature-linear term from low temperature
specific heat data for weakly ferromagnetic and almost
ferromagnetic alloys. In many alloy systems in a certain
region around the critical composition an anomaly in
the measured low temperature specific heat is ob-
“served, so that C is no longer given by eq (1). This
anomaly is conspicuously evident in the usual C/T
~versus T2 graph. Instead of being a straight line, this
graph becomes a curve, extending upward at low tem-
peratures. It was shown by Schroeder [16] that, in
such cases, eq (1) can be usually replaced by

C=A+T+pT>. ©)

Schroeder found that the addition of a temperature-in-
dependent term A to the low temperature specific heat
results from the thermal excitation of magnetic clusters
present in many nearly ferromagnetic and weakly fer-
" romagnetic alloys. The presence of magnetic clusters
in Ni-Cu alloys in the composition range 50-56 percent
Cu has been recently beautifully documented by Hicks,
Rainford, Kouvel, Low and Comley [17] by means of
neutron magnetic diffuse scattering. In Schroeder’s
theory the magnetic clusters, which interact with a
- weak crystal field, are thermally excited and they con-
tribute an Einstein specific heat, which is temperature-
independent above the Einstein temperature. The tem-
perature range of 1.4 to 4.2 K, frequently used in low
temperature specific heat measurements, appears to be
above the Einstein temperature in most such systems.
Investigations by Scurlock [18] show a decrease at
- lower temperatures of the anomalous specific heat from
its constant value above 1.4 K, suggesting that the Ein-
stein temperature is near 1.4 K. Since A includes an
equal contribution of k for each cluster, regardless of
the cluster moment [ 16], the low temperature specific
heat data, from which the value of 4 can be extracted
by least squares fitting to eq (6), give reliable informa-
tion as to the number of thermally excited magnetic
clusters. The correlation of the number of clusters for
Ni-Cu alloys by specific heat measurements [11] with
the number of clusters derived from neutron scattering
[17] is given in figure 5. It is seen that the low tempera-
ture specific heat data for the superparamagnetic alloys
(Cu-content larger than 57%) are quite consistent with
the neutron scattering data. For the weakly ferromag-
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FIGURE 5. Concentration of magnetic clusters in Ni-Cu alloys vs
composition [ 22]. Filled circles represent cluster concentrations
calculated from specific heat data. Empty circles give magnetic
cluster concentrations derived from neutron magnetic diffuse
scattering [ 17].

netic alloys the number of thermally excitable clusters
rapidly decreases with increasing Curie temperature
(decreasing Cu-content). In this composition range
most of the magnetic clusters interact with one another
and become part of the ferromagnetic system. As seen
in figures 3 and 4 the maximum of 4 corresponds well
with the critical composition for all four alloy systems
considered. Figures 3 and 4 also show the anomalous
behavior of the parameter 8, obtained by least squares
fitting to eq (6). The anomalous variation of 8 with com-
position occurs in all four alloy systems in the vicinity
of the critical composition, and it is clearly magnetic in
origin [5].

4. Nuclear Specific Heat Effects

It was shown by Marshall [ 19] that the hyperfine in-
teraction between the dipole moments associated with
certain nuclides and the effective field Hey at these
nuclei, resulting from electronic spin moments, gives
rise to a contribution to the low temperature specific
heat. This contribution decreases rapidly with increas-
ing temperature; in the 1.4 to 4.2 K range it is propor-
tional to -2 (“high temperature’” approximation). Con-
sequently, the nuclear magnetic specific heat term can
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be separated easily from the electronic specific heat
term y7 in that temperature range. The nuclear
quadrupole specific heat recently reported by Phillips
[20] and by Martin [21] is also proportional to 7-2 and,
thus, poses no problem in determining the electronic
specific heat.
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