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The mos t s trikin g cha rac te ri s ti c of c rysta lline so lids is their pe riodi city. As a res ult of thi s fe ature, 
theore ti ca l descri ptions of ph ysica l phenomena in suc h systems are us ua ll y give n in wave number or 

mom.entum s pace. The rec iproca l la tti ce of a c rystal a nd th e Fe rmi surface of a meta l a re examples. In 
a di sordered sys te m, on the other han d , the re is no such pe ri odi cit y a nd momentum space desc ri ptions 
a re mu c h less natural. However, in s uc h sys te ms, phys ica l cond iti ons near a point r , in coordinate 
s pace, become inde pende nt of the conditions a t a di sta nt po int ,. ', provi ded th at I r ' -d is :a rge compared 
to e ithe r a charac te ri st ic mean free path or some othe r app ropri ate le ngt h. This s ugges ts th at one can 
a na lyze a macroscopic di so rde red sys te m by averaging ove r the prope rti es of microscopic ne ighbo r

hoods. 
In th e prese nt pa per we re port so me detail s of s uch a progra m. Although the po int of vie w is of 

q uit e gene ral applica bilit y we have, fo r the sa ke of definit e ness, studi ed so fa r onl y one type of sys te m: 

No ninte rac ting e lec trons movi ng in the fi e ld of inte rac tin g, di sorde re d sca tt e ring ce nt ers. We have 
foc used especia ll y on the e lec tron ic density of s ta tes. The macroscopic sys te m is rep resented by a n 
ave rage o~e r sma ll neighbo rh oods. If one did not take spec ia l preca uti ons, one wo uld encoun te r one 
c lass of errors of the order of dlL whe re L is a characte ri st ic dim ension of the neighbo rhood, and d is a 
c haracte ri s ti c a tomic dime ns ion; and another c lass of e rrors of the orde r of l iN whe re N is the nu mber 
of ions. Both are 1.00 large to be to lera ble for practi ca l purposes. However, b y an appropri a te treatment 
of th e s ta t is t ica l mecha ni cs of th e sca ttere rs and by periodic re petit ion of the s mall ne ighborhoods, 
these erro rs can be a voide d. The re maining errors a re exponenti a ll y s ma ll in the rati o y(LI I?) whe re y is 

of ord e r unit y a nd I? is the s mall e r of the e lec troni c mea n free path or the deBrogli e wave length of the 
e lect ro ns. This ex ponenti a l conve rgence of the s ma ll ne ighborhood theory prom ises to make it a useful 
prac ti cal method fo r the stud y of di sordered sys te ms , especia ll y very highly d isorde re d ones. 

N ume rical exa mpl es a re presented a nd discussed. 

Key words: Binary alloys; de nsity of s tates; di sorde red systems; periodicall y continued neighbor
hood. 

1 . . Introduction 

The ph ysical properties of strongly interacting disor
dered sys te ms are in gene ral diffi c ult to calculate since 

>- simplifying symmetri es, prese nt in cr ys talline materi
> als, a re not present. In thi s pape r we prese nt and 

develop to some small e xtent a viewpoint which ap
I pears to provide a useful line of a ttack on the theory of 
ydi so rde red syste ms. 

te ris tics at a point r depe nd signifi cantly only on condi
tion s inside a rather small neighborhood I r' -rl <R, 
where R is of the order of a mean free path l or a 
charac teristic thermal deBroglie wavelength, At. The 
effects of the more distant environment fall off ex

ponentially with distance . This s uggests that the pro
perties of an infinite disordered system could be accu

rately calculated by suitable averaging over an e nsem
ble of small neighborhoods. This sche me, furth ermore, 

should be most successful for strongly di sordered 
syste ms in whic h the mean free path is short. 

W e s hall de monstra te a nd utili ze the rath er plausible 
> fact th at in a di sorde red sys te m the physical charac -

> * An in vit ed pape r l)resented a t th e 3d Mat e ria ls Hcse a rc h Syml}os iulll , ElectTOnic Density 
ojSulles, Nove mbe r 3-6, 1969.l:u ilhe rs bu rg, Md_ 

1 S upport ed in part by the Office of Naval Resea rc h and the Nationa l Science Foundation_ 
t P resent add ress: Deparlment of Ph ys ics . Auburn Univers it y, Auburn , Alabama_ 

In the followin g sections we ske tch an application of 
these ideas to the muc h-studied proble m of the de nsity 
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of s ta tes of noninteracting electrons moving In the 
stati c potent ial of di sordered scattering cen ters .3 

2. Demonstration of the Locality Principle 

In this section we shall sketch the demonstration that 
the physical properties near a point r of a system of 
noninteracting electrons moving in a disordered ext er· 
nal pote ntial are nearly independent of the cir cum
stances outside a characteris ti c range R. More specifi
cally , the effect of a perturbation at a distant point r ' on 
physical properties at r falls off expone ntially, on a 
scale given by a range of influence, R, which is of the 
order of ei th er the mean free path or, at high te mpera
tures, th e thermal wavelength of the electrons, 
whichever is the smaller. 

We consider a very large sys tem of volume D 
described by the Hamiltonian 

l 
We see that we may regard the unintegrated quantity 

nCr, E) =" -11m G(r, r ; E + iO) 
7T 

(2.7) -

as the local density of states density. 
We would like to estimate the effect of introducing 

the weak additional potential v, at the point r ', on n(r, 
E) at th e point r. The quantity of physical interest is 
then 

(ovtr') G(r, r ; E+iO)) 

= (G(r, r' ; E + iO)G(r', r ; E+ iO)/v=o (2 .8) r 

where the brackets () denote configuration average_ 
The equ ation (2.9) follows directly from the equation of 
motion of G. '\ 

Now it is well known that, for weak random poten-

H = Ho+ V+v; (2.1) ti als Vi" 

here Ho is a periodic Hamiltonian, which for simpljcity 
we take to be the kinetic energy 

(2.2) 

V is a potential produced by disordered scattering cen
ters, located at the points r o , 

(2.3) 

and v is an additional small perturbation localized a t a 
point r '. We shall stud y the effect of von physical con
ditions at the point r. 

First, we s hall consider the one particle Green's func
tion 

(2.4) 

In terms of the eigenfunctions tjJll of H, and the eigen
values Ell , 

G( '. E) =~ tjJ,f(r)tjJll(r') . 
r , r , L.. E-E 

11 n 
(2.5) 

Of special interes t is the contracted func tion G(r, r; E) 
which determines the densi ty of states by means of the 
following relation , 

neE) =-; 1m J drG(r, r; E+ iO). (2.6) 

;1 Among fairly recent papers we mention the following: H. Schm idt , Phys . Rev. 105,425 
(1957): S. F. Edward s. Phil. Mag. 3, 1020 (1958): ibid. 6,61 7 (1961): Proc. Roy. Soc. A267 , 

5 18 (1962): J. L. Beeby. Proc. /i oy. Soc., A279, 82 (1964): Ph ys. Rev. 135A, 130 (1 966): P. 

Soven, Phys. Rev. 15 1, 539 (1966): ibid ., 156 , 809 (1967). 

(G( r r'· E+iO) = 1 e i v't:' I,- ,'l e + - I" 1/2 / (E), 
, , 47T I r - r' I 

(2.9) 

where irE) is the mean free path of an electron of ener- ( 
gy E. Similarly, one can show from (2.8) that for large 
Ir-r'l 

I (ovtr') G(r, r; E+ iO)) 1- e -1 .. - ,·' ll lIE) (2_10) 

Thus we see that when I r ' -rl :.> irE), a change of poten
tial at r' has a negligible effect on the quantity n(r, E)_ 

Next we show a similar locality effect, this time not 
due to a finite mean free path but due to elevated tem
perature. We consider a system of independent elec
trons and use Boltzmann statis ti cs for simplici ty. We 
take as Hamiltonian 

H = Ho+v, (2.11) 

where, in comparison with (2.1), we have eliminated the 
disordered scattering potentials. We write the partition 
function as 

Z = J dr Z(r), (2. 12) 

where 

(2. 13) 

Our interest now is in the influence of a small perturba
tion v at r ' on Z(r). By standard perturbation theory one 
can show that, for large I r' - r I , 

oZ(r) 7T5/2 
__ ~ _ - 11'-1" I'/A; 
ov(r') 16f33/2I r-r 'l e (2.14) 
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wh ere At is the thermal wavelength 

A, == f31 /2( = Ii / (2mkT)1 /2). (2.15) 

Of co urse at high te mperature and with di sorder, the 
c harac teri s ti c " range of influence" R will be either a 
r epresentative mean free path I, or At, whic hever is the 
s maller. 

3. The Periodically Continued Neighborhood 

We shall now de velop a concrete method of calc ula· 
tion , based on the locality principle of the pre vious sec· 
tion. We shall concentrate on the de nsity of states n(E). 

The mos t stra ightforward way would be as foll ows. 
We imagin e th e large di sordered sys te m as given. We 
c hoose at random a large number of points RI a nd s ur· 
round the m by spheres of radiu s p conside rably larger 
tha n the " range of influence" R , but not too large. Each 
s phere is s urround ed by an infinite wall (see fi g. 1). The 
elec tro ni c Hamiltonian for each sphere .is give n by 

H= Ho + V (3. 1) 

where 

Ir-RII ~ p 
(3.2) 

r> p 

We then calc ulate for each sp here the density of 
s tates de nsity a t its center, n(R,,E). Because of the rela· 
tively small size of the neighborhood thi s is a mu c h 
more manageable proble m than n(E) for the macro· 
sco pi c di sordered syste m. In view of the locality prin ci· 
pIe, n(R 1,E) is only insignifi cantly affected by the 
presence of the infinite wall. He nce, the density of 

FIGU RE: 1. Spherical neighborhood centered at R,. 

sta tes for the macroscopic system is given by 

n(E) = Dn(RI,E), (3.3) 

where the bar de notes an average over many RI.4 
The practical drawbacks, for finite p/Ro, are two: (1) 

The re placement, in the outs ide region, of the actual 
pote ntial , ~ V", by an infinite repul sive barrier is a quite 
drastic change and unless p/R is very large, will cause 
sizeable errors. (2) This method does of course not lead 
to the exact results in the special case of a vani s hin g or 
periodic potential. 

These drawbacks can be largely overcom e by using, 
ins tead of a finite and bounded neighborhood , as in 
fi gure 1, a periodically continued finite neighborhood 
as indicated in fi gure 2. We choose a fundam e ntal cell, 
say the c ube, of volume Df- == [3, 

L lxi, Iyl, Izl ~ 2 

L ~ 2R (3.4) 

and co nstru ct the space-la tti ce genera ted by it. Let us 
call T (v) the lattice translation vectors. Then we place 
any numbe r of sca tterer s in some definite configuration 
c in th e fundam e ntal cell a nd populate th e oth er ce lls in 
th e ide nti cal way (see fig. 2). The electrons now move 
in a periodi c c ubi c lattice . Their energy eige nvalues 

L ----;,.i 

0000 
o 0 

0000 
o 0 

FIGURE 2. Periodically continued neighborhood. 

4 If we would use the total densities of states of the spherical neighborhoods, rathe r than 

the qua nt ities ,,(RI,E) co mputed a t the ir ce nt ers. we wou ld incur la rge e rrors behavi ng: a s 

L - 1, du e to th e presence off he infin it e wall boundaries. 
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are, because of the relatively small size of the unit 
cell, much more amenable to calculation than the 
eigenvalues of the macroscopic disordered system. Let 
us call the de nsity of states, corresponding to the con
figuration c and total volume D, ndE). Then our approx
imation for the density of states of the actual macro
scopic system will be 

nee) = L wenc(E). (3.5) 

e 

where We are weights, which we shall presently discuss, 
and the approximate equality, =, will signify accuracy 
to within terms exponentially small in L12R.5 

We shall now describe a suitable choice of We and 
later demonstrate that it leads to the claimed accuracy. 
Let us suppose that in the actual, macroscopic system 
under consideration there are given two-body forces 
between the scatterers, 

(3.6) 

which vanish beyond a range a which is much smaller 
than L. Let us suppose further than the scatterers obey 
classical statistics. Thus, in the macroscopic system 
the probability of a given configuration c = (rJ, r2, ... ) 
is given by the grand canonical weight fun ction , 

W~OO)=A( OO)exp {-.B[~ L CP"'{3-Lf..t j N j (3.7) 
a,,<{3 J 

where A(") is the normalization constant, f..tj is the 
chemical potential of scatterer of type j, and Nj is the 
total number of scatterers of this type.6 

A suitable choice of We, for the periodically continued 
neighborhood, is obtained as follows. We take the unit 
cell and associate with each original position vector r, 
the infinite set of vectors 

(3.8) 

This corresponds to the topology of a three dimensional 
torus and is illustrated in figure 3 in one dimension. 

The weight We is then determined by the equation 

!'> Provided the forces between the scatterers are sufficiently short range. 

S For the macroscopic system, one could of course equally well use a canonical distribu
tion. However, in ollr loca l neighborhood theory, this would lead to unacceptable errors of 

orde r lIN, where N is a mean numberof scalle rcrs in 0 , .. 

FIGURE 3. Schematic representation oj the toroidal topology. The 
circumference is L. 

where ra{3 is the shortest vector contained in the set 
ra(/J-) - r{3(/J-). For example, rJ2 is shown schematically 
in figure 3. The normalization constant A is chosen so 
that 

L wc=l, (3.10) 
c 

where' the sum goes over all configurations, including 
all possible numbers of the scatterers. 

It can be shown that, with the choice (3.10), the cor
relation functions, ns(rJ ... _ r"IL) , in the finite toroidal 
system, differ negligibly from those of the infinite 
system, nS(rl' .... rs I 00), for values of I r a -r{31 :s; LI2 
and s up to s:s;Lla. The error of a given correlation func
tion behaves as exp [-asLla], where as is of order unity. 
This fact assures that, if L ?> a, the statistical distribu
tions of the ions in any neighborhood of size < LI2 are 
practically identical in the ensemble of periodically 
continued neighborhoods and in the macroscopic 
system. Hence, in view of the locality principle demon
strated in section 2, the density of states n(E) of the in
finite system may be determined, via eq (3.5), from the 
density of states in the periodically continued neighbor
hoods. The error will be e xponentially small in the 
quantity LIR or Lla, whichever is the smaller. Typically 
both a and R are of the order of 1 A, so that one must 
work with neighborhoods of dimensions of several III 

order to obtain quantitatively useful results. 
It is evident that this method will give exact results 

for perfectly periodic systems. Since it is also very ac
curate for highly disordered systems (small R), it should 
give good answers for most intermediate situations. 

The ensemble of systems defined by eq (3.9) is a 
grand canonical ensemble in which the volume DL(=L3) 

is fixed while the numbers of particles Nj assumes all 
possible values. For a single species of atoms it has 
been found practically preferable to work with a 
periodically continued isothermal-isobaric ensemble, 
in which N is fixed but the volume D t• is variable. Here 
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a unit cell of volume fh, with th e N atoms in a configu- The density of states curves was calculated for each 
ration c mu st be given the weight of the 26 co nfigurations and then averaged. For L = 10 

where P is the pressure. The de nsity of states of the ac
tual macroscopic sys tem is approximated by 

wh ere n(E; ilL ; c) is the density of s tates , per unit cell 
ill" ~ in the periodically continued neighborhoods. The 
normalization A of WflL .C 

(3.13) 

where N tot is the total number of scattere rs in the 
macroscopic system. Again the conve rgence of(3.13) to 
the exac t result is expone ntial , as for th e case of th e 
grand canonical ense mble . 

4. Numerical Illustration 

To illu strate the theory of the previou s sections we 
ha ve nume ri cally studied the followin g model of a one
di mensional alloy: 

d 2 

H=- dx 2 + L Aao(x - cxd) (4.1) 
a 

where th e di stance between pote ntials, d, was taken as 
1, and Aa was taken, with equal probability, as -2 and 
-4. (This corresponds to a high temperature limit for the 
two differe nt kinds of scatterers, an idealized model for 

. crystalline Cu Au well above the ordering te mperature. ) 
He re the grand canonical method was appropriate. Two 
calc ulations were performed, wi th L = 6 and L = 10. Let 
us take the case L = 6. A typical, pe riodically continued 
neighborhood is shown schematically in figure 4. Each 
configuration of pote ntials in the fundam ental interval 
0 < x ~ 6 has the same weight, 2- 6 . 

In thi s s imple example all corre lation fun ctions are 
evide ntly exact, as long as the crystal sites considered 
are all co ntained in a single unit cell. 

"' d .. ( L ·1· 
0 6 12 

I I ' I I I 
)"-2 III ' I 

A'- 4 

FIGURE 4. A typical periodicaLly continued neighborhood of the 
illu.s trative model. 

a samplin g procedure was used. The results are shown 
in figure 5, toge the r with the exact result obtained for 
th e infinite system using the Schmidt method. 3 Our ap
proxima tion re produces quite accurately all the details 
of the density of states struc ture, e ven for L = 6. To ob
tain similar accuracy from a single randoml y populated 
chain would require a length of the order of L = 103 . 

0.60 
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::!: 

~ DAD 
<:[ 

(j) 
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~ 0.30 
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0.20 

0.10 

oN'IO 

'" N = 6 

o ~~ __ ~~ __ ~~ __ L-~ __ L-~ __ ~~~ 

-6 .0 - 5.0 - 4 .0 -3 .0 -2.0 -1 .0 o 
ENERGY 

F I GURE 5. Integrated density of states for binary alloy. The solid line 
is the exact res ult . 

5. ConciudingRemarks 

It is commonplace to e mphasize the theoretical dif
ficulties caused by disorder. In the present paper we 
draw attention to a favorable feature: For a highly disor
dered system the physical properties near a given point 
depend only on circumstances in a small neighborhood , 
whose dimension is of the order a mean free path. Con
sequently, a macro·system may be treated, so to speak, 
neighborhood by neighborhood and the macro· proble m 
can be reduced to an ensemble of micro-problems. We 
have shown that the errors of such a procedure can be 
made to vanish exponentially with the size of the 
neighborhood. A numerical model calculation bears out 
these considerations. 

A more comple te account of thi s program will be 
published elsewhere. 

(Paper 74A3-610) 
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