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The most striking characteristic of crystalline solids is their periodicity. As a result of this feature,
theoretical descriptions of physical phenomena in such systems are usually given in wave number or
momentum space. The reciprocal lattice of a crystal and the Fermi surface of a metal are examples. In
a disordered system, on the other hand, there is no such periodicity and momentum space descriptions
are much less natural. However, in such systems, physical conditions near a point r, in coordinate
space, become independent of the conditions at a distant point ', provided that [r'-r| is large compared
to either a characteristic mean free path or some other appropriate length. This suggests that one can
analyze a macroscopic disordered system by averaging over the properties of microscopic neighbor-
hoods.

In the present paper we report some details of such a program. Although the point of view is of
quite general applicability we have, for the sake of definiteness, studied so far only one type of system:
Noninteracting electrons moving in the field of interacting, disordered scattering centers. We have
focused especially on the electronic density of states. The macroscopic system is represented by an
average over small neighborhoods. If one did not take special precautions, one would encounter one
class of errors of the order of d/L. where L is a characteristic dimension of the neighborhood, and d is a
characteristic atomic dimension; and another class of errors of the order of 1/N where N is the number
of ions. Both are too large to be tolerable for practical purposes. However, by an appropriate treatment
of the statistical mechanics of the scatterers and by periodic repetition of the small neighborhoods,
these errors can be avoided. The remaining errors are exponentially small in the ratio y(L/R) where vy is
of order unity and R is the smaller of the electronic mean free path or the deBroglie wavelength of the
electrons. This exponential convergence of the small neighborhood theory promises to make it a useful

practical method for the study of disordered systems, especially very highly disordered ones.

Numerical examples are presented and discussed.
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1. Introduction

The physical properties of strongly interacting disor-
dered systems are in general difficult to calculate since
simplifying symmetries, present in crystalline materi-
als, are not present. In this paper we present and
develop to some small extent a viewpoint which ap-
pears to provide a useful line of attack on the theory of

~disordered systems.

We shall demonstrate and utilize the rather plausible
fact that in a disordered system the physical charac-
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teristics at a point r depend significantly only on condi-
tions inside a rather small neighborhood |r'-r|<R,
where R is of the order of a mean free path [ or a
characteristic thermal deBroglie wavelength, A;. The
effects of the more distant environment fall off ex-
ponentially with distance. This suggests that the pro-
perties of an infinite disordered system could be accu-
rately calculated by suitable averaging over an ensem-
ble of small neighborhoods. This scheme, furthermore,
should be most successful for strongly disordered
systems in which the mean free path is short.

In the following sections we sketch an application of
these ideas to the much-studied problem of the density

443



of states of noninteracting electrons moving in the
static potential of disordered scattering centers.?

2. Demonstration of the Locality Principle

In this section we shall sketch the demonstration that
the physical properties near a point r of a system of
noninteracting electrons moving in a disordered exter-
nal potential are nearly independent of the circum-
stances outside a characteristic range R. More specifi-
cally, the effect of a perturbation at a distant point r’ on
physical properties at r falls off exponentially, on a
scale given by a range of influence, R, which is of the
order of either the mean free path or, at high tempera-
tures, the thermal wavelength of the electrons,
whichever is the smaller.

We consider a very large system of volume ()

described by the Hamiltonian

H:Ho'f‘V—f‘U,' (21)

here H, is a periodic Hamiltonian, which for simplicity
we take to be the kinetic energy

Ho: p2; (2-2)

V' is a potential produced by disordered scattering cen-
ters, located at the points r,,

V=3 Va(r—ra):

«

(2.3)

and v is an additional small perturbation localized at a
point r’. We shall study the effect of v on physical con-
ditions at the point r.

First, we shall consider the one particle Green’s func-

¢).

In terms of the eigenfunctions s, of H, and the eigen-

tion
1
19/ =14l

G(r,r"; E)= (r (2.4)

values £,

Gir, v B =3 YE) o5,

n E—E"
Of special interest is the contracted function G(r,r; E)
which determines the density of states by means of the
following relation,

n(E)=—%IderG(r, r: E4+i0).  (2.6)

3 Among fairly recent papers we mention the following: H. Schmidt, Phys. Rev. 105,425
(1957); S. F. Edwards, Phil. Mag. 3, 1020 (1958): ibid. 6,617 (1961): Proc. Roy. Soc. A267,
518 (1962): J. L. Beeby. Proc. Roy. Soc., A279, 82 (1964); Phys. Rev. 135A, 130 (1966): P.
Soven, Phys. Rev. 151,539 (1966); ibid., 156, 809 (1967).

We see that we may regard the unintegrated quantity

1 .
n(r, E) = Im G(r, r; E+i0) (2.7)
as the local density of states density.

We would like to estimate the effect of introducing
the weak additional potential v, at the point ¥, on n(r,
E) at the point r. The quantity of physical interest is
then

<$G(ra r;E+i0)>

=(G(r,r'; E+i0)G(r', r; E+10)) -0 (2.8)
where the brackets () denote configuration average.
The equation (2.9) follows directly from the equation of
motion of G.

Now it is well known that, for weak random poten-
tials V,,

1
dar|r—r’|

eiﬁ\r*rﬂe —|r—r'|/2U(E),

(G(ryr'; E4+i0)) =
2.9)

where [(E) is the mean free path of an electron of ener-
gy E. Similarly, one can show from (2.8) that for large
|r-r|

~e —|r—r'|/l(E)

(2.10)

‘ <80%,)G(r, r; E+ i0)>
Thus we see that when |r'-r| > [(E), a change of poten-
tial at r’ has a negligible effect on the quantity n(r, E).

Next we show a similar locality effect, this time not
due to a finite mean free path but due to elevated tem-
perature. We consider a system of independent elec-
trons and use Boltzmann statistics for simplicity. We
take as Hamiltonian

H=Hy+v, (2.11)

where, in comparison with (2.1), we have eliminated the
disordered scattering potentials. We write the partition
function as

Z=[dr Z(r), (2.12)

where

Z(r) = (r|e#H|r). (2.13)
Our interest now is in the influence of a small perturba-
tion v at r’ on Z(r). By standard perturbation theory one

can show that, for large |r'—r|,

77'5/2

16 r—r| €

dZ (r)
dv(r')

o it
L)

2.14)
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where A, is the thermal wavelength

A=BY2(=h/(2mkT)1/2). (2.15)

Of course at high temperature and with disorder, the
characteristic “‘range of influence” R will be either a
representative mean free path [, or A, whichever is the
smaller.

3. The Periodically Continued Neighborhood

We shall now develop a concrete method of calcula-
tion, based on the locality principle of the previous sec-
tion. We shall concentrate on the density of states n(E).

The most straightforward way would be as follows.
We imagine the large disordered system as given. We
choose at random a large number of points R; and sur-
round them by spheres of radius p considerably larger
than the “range of influence” R, but not too large. Each
sphere is surrounded by an infinite wall (see fig. 1). The
electronic Hamiltonian for each sphere is given by

where
V=1|3V.(r—

+

lr—Ri|<p

Ta)

3.2)
r>p

We then calculate for each sphere the density of
states density at its center, n(R,,E). Because of the rela-
tively small size of the neighborhood this is a much
more manageable problem than n(E) for the macro-
scopic disordered system. In view of the locality princi-
ple, n(R,E) is only insignificantly affected by the
presence of the infinite wall. Hence, the density of

FIGURE 1. Spherical neighborhood centered at R,.

states for the macroscopic system is given by

n(E) = Qn(RLE), (3.3)
where the bar denotes an average over many R,.*

The practical drawbacks, for finite p/R,, are two: (1)
The replacement, in the outside region, of the actual
potential, 3, V,, by an infinite repulsive barrier is a quite
drastic change and unless p/R is very large, will cause
sizeable errors. (2) This method does of course not lead
to the exact results in the special case of a vanishing or
periodic potential.

These drawbacks can be largely overcome by using,
instead of a finite and bounded neighborhood, as in
figure 1, a periodically continued finite neighborhood

as indicated in figure 2. We choose a fundamental cell,
say the cube, of volume Q; = .3,

el Iyl Jol <%

L > 2R (3.4)

and construct the space-lattice generated by it. Let us
call 7) the lattice translation vectors. Then we place
any number of scatterers in some definite configuration
¢ in the fundamental cell and populate the other cells in
the identical way (see fig. 2). The electrons now move
in a periodic cubic lattice. Their energy eigenvalues

L

O 0
O
a
O 0
O

oL o

O
O

O
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=

FIGURE 2. Periodically continued neighborhood.

+If we would use the total densities of states of the spherical neighborhoods, rather than
the quantities n(R;,E) computed at their centers, we would incur large errors behaving as

L7, due to the presence of the infinite wall boundaries.
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are, because of the relatively small size of the unit
cell, much more amenable to calculation than the
eigenvalues of the macroscopic disordered system. Let
us call the density of states, corresponding to the con-
figuration ¢ and total volume €, n(E). Then our approx-
imation for the density of states of the actual macro-
scopic system will be

n(E) ~ 2 w(‘nc(E). (3.5)

where w. are weights, which we shall presently discuss,
and the approximate equality, =, will signify accuracy
to within terms exponentially small in L/2R.>

We shall now describe a suitable choice of w. and
later demonstrate that it leads to the claimed accuracy.
Let us suppose that in the actual, macroscopic system
under consideration there are given two-body forces
between the scatterers,

Pap= Pap(ra—rg), (3.6)
which vanish beyond a range a which is much smaller
than L. Let us suppose further than the scatterers obey
classical statistics. Thus, in the macroscopic system
the probability of a given configuration ¢ = (ry, 12, . . .)
is given by the grand canonical weight function,

(3.7)

2 ‘PaB_'E iV

wi=)=A=) exp {—,8 [%
a=p j
where A=) is the normalization constant, w; is the
chemical potential of scatterer of type j, and N; is the
total number of scatterers of this type.®
A suitable choice of we, for the periodically continued
neighborhood, is obtained as follows. We take the unit
cell and associate with each original position vector r,
the infinite set of vectors

r =rpr+70) 3.8)
This corresponds to the topology of a three dimensional

torus and is illustrated in figure 3 in one dimension.
The weight w, is then determined by the equation

we=A exp {—B [% ;B Qap(Fap) =, Mij]} (3.9)

5 Provided the forces between the scatterers are sufficiently short range.

6 For the macroscopic system, one could of course equally well use a canonical distribu-

tion. However, in our local neighborhood theory, this would lead to unacceptable errors of

order 1/N, where N is a mean number of scatterers in {);.

N2 la

FIGURE 3. Schematic representation of the toroidal topology. The
circumference is L.

where rqg is the shortest vector contained in the set
ro® —rg), For example, ry» is shown schematically
in figure 3. The normalization constant A is chosen so
that

(3.10)

chzl,
@

where the sum goes over all configurations, including
all possible numbers of the scatterers.

It can be shown that, with the choice (3.10), the cor-
relation functions, ny(r; . .. . rg|L), in the finite toroidal
system, differ negligibly from those of the infinite
system, ng(ry, . . . . rs|®), for values of |ro—rg|<L/2
and s up to s<L/a. The error of a given correlation func-
tion behaves as exp [—a;L/a], where «;is of order unity.
This fact assures that, if L. > a, the statistical distribu-
tions of the ions in any neighborhood of size < L/2 are
practically identical in the ensemble of periodically
continued neighborhoods and in the macroscopic
system. Hence, in view of the locality principle demon-
strated in section 2, the density of states n(E) of the in-
finite system may be determined, via eq (3.5), from the
density of states in the periodically continued neighbor-
hoods. The error will be exponentially small in the
quantity L/R or L/a, whichever is the smaller. Typically
both a and R are of the order of 1 A,so that one must
work with neighborhoods of dimensions of several in
order to obtain quantitatively useful results.

It is evident that this method will give exact results
for perfectly periodic systems. Since it is also very ac-
curate for highly disordered systems (small R), it should
give good answers for most intermediate situations.

The ensemble of systems defined by eq (3.9) is a
grand canonical ensemble in which the volume Q(=L3)
is fixed while the numbers of particles N; assumes all
possible values. For a single species of atoms it has
been found practically preferable to work with a
periodically continued isothermal-isobaric ensemble,
in which N is fixed but the volume (), is variable. Here
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a unit cell of volume (), with the N atoms in a configu-
ration ¢ must be given the weight

A 1
wa,, = exp {—B [5 ZB <p(,,,(f-(.ﬁ)—RQ,,] } 3.11)

where P is the pressure. The density of states of the ac-
tual macroscopic system is approximated by

n(E) zJ’ dQ);, 2 waq, , cn(kE; Qr:c) (3.12)

where n(E; Qu; c¢) is the density of states, per unit cell
Q.. in the periodically continued neighborhoods. The
normalization 4 of wa,,c

fdQI 2 wil,{,(':Nm[/N (313)
=

where Ny is the total number of scatterers in the

macroscopic system. Again the convergence of (3.13) to

the exact result is exponential, as for the case of the

grand canonical ensemble.

4. Numerical Illustration

To illustrate the theory of the previous sections we
have numerically studied the following model of a one-
dimensional alloy:

d2

Hz—w-}'; Aod(x— ad) 4.1)

where the distance between potentials, d, was taken as
1, and A\, was taken, with equal probability, as —2 and
—4.. (This corresponds to a high temperature limit for the
two different kinds of scatterers, an idealized model for
-crystalline Cu Au well above the ordering temperature.)
Here the grand canonical method was appropriate. Two
calculations were performed, with L=6 and LL=10. Let
us take the case L=6. A typical, periodically continued
neighborhood is shown schematically in figure 4. Each
configuration of potentials in the fundamental interval
0 < x < 6 has the same weight, 276,
In this simple example all correlation functions are
evidently exact, as long as the crystal sites considered
are all contained in a single unit cell.

“d> « | ————— | ——
0

. 6 12

FIGURE 4. A typical periodically continued neighborhood of the

A:-4

illustrative model.

The density of states curves was calculated for each
of the 26 configurations and then averaged. For L =10
a sampling procedure was used. The results are shown
in figure 5, together with the exact result obtained for
the infinite system using the Schmidt method.? Our ap-
proximation reproduces quite accurately all the details
of the density of states structure, even for L=6. To ob-
tain similar accuracy from a single randomly populated
chain would require a length of the order of L = 103.
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FIGURE 5. Integrated density of states for binary alloy. The solid line
is the exact result.

5. Concluding Remarks

It is commonplace to emphasize the theoretical dif-
ficulties caused by disorder. In the present paper we
draw attention to a favorable feature: For a highly disor-
dered system the physical properties near a given point
depend only on circumstances in a small neighborhood,
whose dimension is of the order a mean free path. Con-
sequently, a macro-system may be treated, so to speak,
neighborhood by neighborhood and the macro-problem
can be reduced to an ensemble of micro-problems. We
have shown that the errors of such a procedure can be
made to vanish exponentially with the size of the
neighborhood. A numerical model calculation bears out
these considerations.

A more complete account of this program will be
published elsewhere.

(Paper 74A3 —610)
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