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The concept “density of states’ can be given many different meanings when we go beyond the one-

electron approximation. In this survey we concentrate on the definition tied to excitation processes,

where one electron is added or removed from the solid. We discuss the one-particle spectral function for

conduction and core electrons in metals, how it can be approximately calculated, and how it can be re-

lated to different types of experiments like x-ray photoemission, x-ray emission and absorption,

photoemission and optical absorption in the ultraviolet, and the Compton effect. We also discuss the

form of the exchange-correlation potential for use in band structure calculations.
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1. Introduction

In the one-electron approximation the concept “‘elec-
tronic density of states’ is unique and simple and is
defined by the formula

Nl(w)ZE d(w—ei), (1)

where €; denotes the single-particle energies. Similarly
the optical density of states is given by the joint density
of state for electrons and holes, thus

Nz((l)):E S(w—ef-l-efl). 2)

These functions only describe the cruder aspects of
experiments such as soft x-ray emission or optical ab-
sorption. They must be augmented with the proper
oscillator strengths, which provide important selection
rules and as well give rise to deviations from the density
of state curves.

When one goes beyond the one-electron approxima-
tion and considers interactions not included in a self-
consistent field theory the situation becomes non-trivial
and one encounters a wide variety of density of states

* An invited paper presented at the 3d Materials Research Symposium, Electronic Density
of States, November 3-6, 1969, Gaithersburg, Md.

functions. The quantity which is most easy to define is
the true density of states of the fully interacting
systems

where E, are the energy levels of the system. Although
being a key quantity in thermodynamics it is of no use
for the description for e.g. optical, x-ray or energy loss
spectra. We rather need the proper extensions of eqs
(1) and (2) to describe one- and two-electron properties
of the system. A particularly simple case is that of parti-
cles having a Lorentzian energy distribution

1T
Ak(w)_ﬂ (w—er)2+ Tk @)
The density of states is then given by
Niw) =3 Au(w). 5)
7

In cases where the line width I' is small compared with
the width of the band, the formulas (5) and (1) obviously
will give similar results.

The simple case just mentioned does not really carry
us beyond the one-electron theory. We have in the
general case to abandon a concept based on single-par-
ticle levels and instead use distribution functions or
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spectral densities of which the function Ay (w) given
above is a simple and almost trivial case. Such distribu-
tion functions include the proper oscillator strengths,
and they refer to formally exact many-electron states,
properly weighted according to the physical process
considered. They are closely related to correlation
functions and Green functions. An example is the
density-density correlation function {(p(rt)p(r't")),
which correlates density fluctuations at different times
and different positions. This function is of basic im-
portance for describing optical experiments and energ
loss spectra. Unfortunately it is very difficult to analyze
its structure and we will here instead concentrate on a
simpler entity, the one-particle Green function and its
associated spectral function [1].

The one-particle spectral function is a generalization
of the usual density of states Ni(w). It gives an asymp-
totically exact description of x-ray photoemission, is
connected with x-ray emission and absorption and also
has some relevance for uv photoemission and absorp-
tion.

It is, however, not capable to describe edge effects in
general, and does not at all account for final state or
particle-hole interactions. Such effects, which in their
simplest form are described by Nas(w) or generalizations
therefrom provide intricate problems upon which we
shall only briefly touch here. These questions will be
taken up in detail in the lecture by Mahan.

It has recently been noticed that the one-electron
spectral function should exhibit some marked and
strong structure. This structure is primarily associated
with the interaction between the electron and plasmon
excitations. It should be quite important in x-ray
photoemission, influencing the line shape of the core
electron peak and giving low energy satellites both to
the core electron and conduction band structures. It is
important in x-ray emission and absorption spectra
showing up at the threshold, and giving rise to satellite
structures. Its effect may also be noticeable in uv
photoemission and optical absorption spectra.

We should also mention the structure in the one-elec-
tron spectrum caused by coupling to phonons. This
structure is limited to a region of the order of the Debye
energy around the Fermi level, but in that region it is
quite pronounced, e.g. the well-known
enhancement of the quasi particle density of states.

causing

In the next section we will discuss the connections
between the and x-ray
photoemission, and with x-ray emission and absorption.
In section 3 we discuss the spectrum of the conduction
electrons from calculations to lowest order in the

one-electron  spectrum

dynamic interaction between the electrons and
between the electrons and phonons. »
In section 4 we take up the core electron spectrum
and discuss calculations to first order in the dynamic
interaction with the valence electrons. We also survey
the recent work by Langreth who obtained the exact
solution to an important model problem. In section 5 we
give a qualitative discussion of some experimental
results for photon absorption and emission, photoemis-
sion and Compton scattering. In section 6 finally we
give some concluding remarks.

2. The One-Electron Density of States in an.
Interacting System and its Connection with X-
Ray Photoemission and with X-Ray Emission
and Absorption

In this section we introduce some theoretical techni-
calities, which however seem unavoidable in order to
establish a firm connection between theory and experi-
ment.

The one-electron spectral weight function is defined
as

A(x, x'; w)=2fs(x)fs*(x')8(w—€s). (6)

In the independent-particle approximation the quan-
tities f; and €, are the one-electron wave functions and
energies. In an interacting system the oscillator
strength function f; is defined as

Ji(x)=(N—1,sl¢(x) V), (7)

where i(x) is the electron field operator. It gives the
probability amplitude for reaching an excited state
[IN—1,s), when an electron is suddenly removed from
the ground state |N). The quantity € is the excitation
energy

e=E(N)—E(N—1,s). (8)

These definitions apply for w in eq (6) smaller than
the chemical potential u. For w larger than w, states
with N+ 1 particles are involved.

In applications of the theory it is often practical to
represent the spectral function as a matrix in a space
spanned by some suitable complete orthonormal set of
single-particle states wy(x), thus

A (w) "—‘f uif (x)A4(x, x'; o)u(x")dxdx’
= (Nl|a}|N—1, s) (N

—1, s|ax|N) d(w—€s). 9)
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The spectral weight function is the general distribution
function describing one-electron properties, and is a
generalization of the one-electron density matrix, which
is obtained after an integration over the frequencies.
Distributions with respect to a single variable are in the
usual way obtained by summation over all other varia-
bles. Thus, the one-electron density of states is defined
as

N(w)=TrA4(w)

=jA(x, x; 0)dx=Y Agr(w). (10)
%

As indicated, the definition is independent of the
choice of matrix basis.

The spectral weight function is a key quantity in the
the
problem. A more detailed account is given in many
texts, e.g. in sections 9 and 10 of ref. [1].

Green function formulation of many-electron

We next discuss the particular cases of x-ray
photoemission and soft x-ray emission, where approxi-
mate reductions to the one-electron spectrum can be
made.

In the x-ray photoemission experiment (XPS), an
energetic photon of energy o is absorbed, exciting a
photoelectron which leaves the system. If the electron
has a large enough energy we can write the final state
as

¥, )=a}|IN-1,s ), (11)
where k refers to a Bloch wave function of energy €, =
f2k2/(2m), describing the photoelectron. The probabili-
ty of this event is, by the Golden rule,

W~ (V| P|Vi}|*6(w—Ef+Ei)
-

=Y KN—1,sla, > prrajy ar|N)[*d(o—ectes), (12)

kK"

where P is the total momentum and pgx the momentum
matrix element. For a fast electron, which is outside the
region of ground state fluctuations, ac|[N) =0, and the
expression for W reduces to

W"‘K}; |<N—1, S| Zp'd' ll/\.|N)|28((L.—€K +€5)

IEEAI\"\”(GK_‘”)I’,:PKA» ;

L W

(13)

The energy distribution of photoelectrons is hence
given by

I(e) ~ \/EEAA-A"(G—O))P,:. 1Y

k' ?
kk'

(14)

taking e,= €. Using an average momentum matrix ele-
ment and neglecting nondiagonal terms in 4 we obtain
the simple result

I1(e) ~ VepiN(e—w). (15)

The neglect of nondiagonal terms should be a good
approximation if the one-electron functions are care-
fully chosen Bloch functions and core-electron func-
tions. We note that if the electron is ejected from a core
level and if we neglect excitations of the core electron
system, the operator ay in eq (13) must destroy a core
electron (ar = ac), giving

W~ (NS, s|INo)p, |*8(0—ectes).  (16)

Here |N,) denotes the ground state of the valence elec-
tron system, and |NJ, s) are excited states in the
presence of the core hole. We recognize eq (16) as the
result in the sudden approximation.
We next turn to soft x-ray emission. In this case we
may write the initial state as [ 2]
| W:) = ac|N*) (17)
where the star on /N indicates that the valence electron
system is relaxed towards the core hole. Applying the
Golden rule again we have for the x-ray intensity

Ho) ~o Y | (VY prrajarac|N*) |2
S

-
S(w—Ei+Ey)

=w2| <Np—],slE])(-/\»(1;\-|N:.‘k>|28((D+Er‘_€s)-
s k
' (18)

If we could neglect the relaxation effects in the initial
state and replace |[NF) by |N,), we would again have
the spectral function 4 involved. The relaxation effects
can be accounted for in an approximate way by only
considering particle-hole excitations, thus

INY Y= (at+ > ofatan)|N, ).

h,p

19

Insertion of this expression in eq (18) leads after some
further approximations to a very simple expression

I(w) ~w2 |p${.f|2Akk(w+€('), (20)
7

where p® involves the coefficients « and is w-depen-

dent. Such an approximation is however invalid at the

Fermi edge, where, as Anderson [3] has pointed out,

we need an infinite number of particle-hole pairs to

represent |NF).
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The edge problem has recently been treated by sev-
eral people [4—6]. We choose here to give a brief ac-
count of Langreth’s version [6] of Nozieres; and de
Dominicis’ (ND) treatment of the problem in order to
show how the one-electron spectrum enters the
problem. The basic quantity needed for the evaluation
of eq (18) is the correlation function

Fir(£)= { N¥|T(ar(t)at.ac(t)af)|N* ). (21)

To evaluate that function ND study the multiple time
function

FI\'/\"(T9 T/; L, t,)

= ( N¥T(ar(7)ai,(t")ac(t)at (t")|N* ). (22)

The simple way, in which the core state operator en-
ters their model Hamiltonian, causes the equation of
motion for F to close onto itself and allows a solution as
a product,

Fro(r,m'5t,t") = i (r,7'58,") Ge(2,t") (23)
where G, is the core electron Green function,
Ge(t,t')= ( N¥|T(ac(t)at(t'))IN* ) (24)

and ¢ a valence electron Green function which obeys
an equation with a transient potential from the core
hole. The x-ray spectrum is given by a convolution of
the core and valence electron spectra. Both spectra are
singular at the edge as a power law and so is also the
resulting convolution.

The point in keeping the operator a. in eq (22) is that
the time dependence of ax(t) then can be given by the
same Hamiltonian as that used for |[NV*), while when
studying (NF|T(ax(t)ar*)|NF), the time evolution of
ax(t) is given by a Hamiltonian that does not include the
potential from the core hole, and thus the usual many-
body techniques do not apply. X-ray absorption can be
described in an analogous manner by the function F,
only replacing [N*) by |N).

It should be mentioned that the ND treatment is
based on a model Hamiltonian that does not include in-
teractions between the conduction electrons. This is
quite appropriate for their purposes of treating the edge
problem but is not sufficient for the spectrum far away
from the edge. It is not clear if their treatment can be
extended to the more general case. We then have to
resort to other methods, such as the approximation in
eq (19) or to a frontal attack on the dielectric function
itself [7].

We have in this section given a definition of the one-

electron density of states and have indicated its relation
to some measurable quantities. We conclude from this
that a theoretical investigation of this kind of experi-
ments can not avoid the calculation of the one-electron
density of states of interacting electrons, but at the
same time due to a variety of effects there may be es-
sential modifications of the density of states as it ap-
pears in the actual experiment. Explicit results from ap-
proximate calculations of the spectral function 4 and
the density of states N(w) are discussed in sections 3
and 4, and the actual comparison with experiment is
made in section 5.

3. One-Electron Spectrum of Conduction
Electrons

The common picture of the one-electron spectra of
solids is obtained from energy band calculations, in
which the Schriodinger equation of independent elec-
trons in a periodic potential is solved. For the different
bands one obtains the electron energy as a function of
wave-vector, €(k). The main contribution to the poten-
tial seen by an electron is the average electrostatic field
or the Hartree field. When going beyond the one-elec-
tron approximation the next step would be to include
dynamical effects of the interaction as well as exchange
effects. Such effects can not be described by an ordina-
ry local potential. A generalized “potential,” non-local
in space and time, must be introduced.

Let us for simplicity study the case, where specific
effects of the periodicity are of minor importance, and
assume the distribution of conduction electrons to be
uniform. Due to the non-locality of the generalized
“potential,” its Fourier transform to momentum-energy
space will show a dependence on both wave-vector k
and energy €, 2 (k, €). The quantity 2 is called the self-
energy of the electron.

Adding the self-energy to the average potential, we
have to solve the equation

e=¢e(k)+ X (k,e). (25)

The self-energy includes all the interactions between

the electron state considered and the system. This

necessarily includes dissipative effects, which lead to

the decay of the state. Consequently the self-energy
must be a complex quantity, thus

2 (k.e)=3pr(k,e) +i2i(k,e). (26)

The spectral weight function defined in section 2 is re-

lated to the self-energy according to the formula 1, sec-
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tion 1

P09

(e—e) =3 (k, e))2+<z (k. e)>2.
R I @7)

Ak, €)=

3 [~

In the simple case that the self-energy 2. is independent
of energy, the spectral function for fixed £ will have a
Lorentzian shape and 3, determines the width of the
line. When 2 depends on energy there are no a priori
restrictions on the shape of the spectrum.

Most of our present knowledge about the self-energy
has been based on calculations, where vertex cor-
rections have been neglected, i.e. using the formulae

[9—13]
S (k) = i [ k) etk o)l

+k', o+ ow')dk'do', (28)

where
Go(k,w)= (w—€(k)+id sign (k—kp)) ! (29)
is the propagator for a non-interacting electron, and
v(k) = dme*[k? (30)

is the bare Coulomb potential. The constant £z means
the Fermi momentum, and & is a positive infinitesimal.

To make connection with another approximation, we
note that the Hartree-Fock approximation corresponds
to the choice € =1 in eq (28). As it stands, eq (28) ex-
presses the lowest order coupling to the density fluctua-
tions of the conduction electrons, described by the
wave-vector- and frequency-dependent dielectric func-
tion €(k,w). This function contains information about
the static screening, given by e(k,0), but also important
effects of the dynamic behavior of the density fluctua-
tions. The typical small-k-behavior of the spectral func-
tion for this kind of excitations, —Im e !(k,w), is in-
dicated in figure 1. The clearcut classification of the ex-
citations into electron-hole pairs and plasmons is
characteristic for the Linearized Time dependent Har-
tree (LTH) or Random Phase Approximation [14]. For
small wave-lengths the electron-hole pair excitations
become of increasing importance, while in the £— 0-
limit the plasmon exhausts completely the sum rule for
Im €71, i.e. it is the only excitation. The latter property
follows from general arguments about charge conserva-
tion and translation invariance [8, p. 288], and should
be valid for any useful approximation for e(k,w). In the

1
-l —
E(q.w
S Plasmon
peak
Electron-hole
pairs
1 T ll)
2q (.IJp + a(q2

FIGURE 1. Qualitative behavior of Im €' (q.w) for small q.

L'TH approximation the plasmon is undamped for
wave-numbers smaller than a critical value k., which at
metallic densities is of the same order of magnitude as
k]«'.

A great part of the literature about the electron gas
is devoted to the search for an improved dielectric func-
tion [ 15—20], particularly because of the failure of the
LLTH formula to describe interaction effects at short
distances. The last word remains to be said in this
question, but it is interesting to note the relative insen-
sibility of the self-energy to the choice of dielectric
function [11,12,21]. An approximation, which has
proved to be most useful, is to take a plasmon-like
sharp absorption for all k according to the formula

2

(.l)‘
elk,w)=1.+——L—
o —

0’ (k) 6D

where w) is the classical plasma frequency and w(k) the
resonance frequency at wave number k. The frequency
(k) reduces to w, when |k|—0 and is proportional to
| k|2 for large | k|. This formula correctly represents the
small and large o-limits and gives a quite reasonable in-
terpolation for intermediate w values [1, 1]. With
this choice one can perform the frequency integration
in eq (28) and obtain

L s v(g)no(k+q)
E(k,w)— (277)3fd e(q, e(u+gq) —w)

wl)2 3 U(‘l) 1
+(2w)3fd Dle) oo (@)

(32)

The first term in eq (32) is a screened exchange poten-
tial, ny(k) being the momentum distribution for inde-
pendent electrons, and the second term describes the
correlation hole around the electron [ 12,22].

Because of the plasma resonance in the dielectric
function there will be a rapid variation in the real part
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FIGURE 2. The self-energy 3 and the corresponding spectral function
A forry=>5[21]. The crossings between the Re X curves and the
straight lines give the solutions to the Dyson equation. The numbers at
the peaks indicate the strengths of the lines.

of 2 at the frequency w = €(k) + w), for electrons and at
o = €(k) — wp for holes. This behavior of the electron
gas seems to have been first noticed and discussed by
Hedin et al. [23] and has been studied in great detail
by Lundqvist [13,21]. Typical curves for X obtained
with this dielectric function are shown in the upper half
of figure 2. In the lower part of figure 2 we have given
the results for A(k,w) calculated from eq (27).

For k = kp there is only one strong peak in the spec-
tral function, corresponding to the usual quasi particle.
For the other k-values in the figure, we find three solu-
tions of the Dyson equation

w=€(k)+Zr(k,w). (33)
One of them, however, falls at w = e(k) == wp, where the
damping is very strong, and therefore this solution is ef-
fectively suppressed. Of the two remaining solutions,
one corresponds to the usual quasi particle, i.e. a bare
electron surrounded by a cloud of virtual plasmons and
electron-hole excitations. For hole states, i.e. for k < kp,
a new state appears which has an energy lower than
that corresponding to a hole plus a plasmon, i.e. e(k)—
wp. This result from a low order treatment corresponds
to a coherent state of hole-plasmon pairs, and may be
thought of as holes coupled to real plasmons. This cou-
pled state, which has been called a plasmaron, has a
large oscillator strength, and thus gives an essential
contribution to the sum rule for the one-electron spec-
trum. For electron states, k£ > kg, there is no sharp state

but a broad resonance with a sharp onset at w = e(k) +
wp-

Figure 3 illustrates how the parabolic quasi particle
dispersion law is accompanied by a second branch of
the spectrum, the plasmaron. In figure 4 the momen-
tum distribution function for the interacting electrons
is given.

The characteristic structure due to plasmon effects
will modify the density of states. This is demonstrated
schematically in figure 5. The conduction band will
retain approximately its parabolic shape. At an energy
wp below the Fermi edge there is the onset of the
second band due to the plasmaron states. This band is
terminated at low energies with a rather distinct edge.
For unoccupied states there is an extra contribution to
the density of states starting at an energy w, above the
Fermi level. Figure 6 gives a survey of the density of
state curves at four different values of the electron gas
parameter rg (rs = 2 corresponding roughly to the elec-
tron density of Al, and r¢=4 to that of Na).

So far we have discussed the gross effects due to the
coupling between electrons and plasmons. These are
quite well represented by the plasmon-pole approxima-
tion for the dielectric function in eq (31). Electron-hole
pair excitations are however not included, to represent

=
1

n

ENERGY w/w

@

MOMENTUM k/kF

FIGURE 3. The spectral weight function A(k,w) given by level curves
indicating the value of hapA, atry=4 (hwp=0.435 Ry) [13].
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FIGURE 5. Density of states for conduction electrons.

them we must turn to the LTH dielectric function or
higher approximations. These excitations are responsi-
ble for the broadening of the quasi particle peak and
the Auger tail at the bottom of the main band in figures
5 and 6 as well as the broad spectral weight contours in
figure 3.

Figure 7 shows 2(k,e(k)) calculated from eq (28) and
is an indication of the high damping rate for quasi parti-
cles with k greater than kp + k., i.e., in the region where
they can decay into plasmons [10,24]. However, as il-
lustrated by the typical spectral forms for the quasi par-
ticle peak in figure 8, the quasi particle peak is always
distinguishable from the spectral background, its width
I'(k) is smaller than its excitation energy E (k) — u.

From eq (28) one can also draw information about the
exchange and correlation “potential” for the quasi par-
ticles. The inadequacy of the Hartree-Fock approxima-
tion in a metal is well-known, and in band calculations
the effects of exchange and correlation are commonly
simulated by using a local potential, such as the Slater
[25] or the Gaspar [26,27] expressions. After solving
the Dyson equation one can write the resulting quasi-

particle energy in the form

Ek)=ek)+ V(k), (34)
where V(k) can be interpreted as an effective exchange
and correlation potential. In figure 9 such a potential is
shown. It has a remarkably weak k-dependence for
moderate wave vectors, its value lying roughly halfway
between the Slater [25] and “2/3 Slater” values
[26.27].

One of the shortcomings of the Hartree-Fock approx-
imation is its prediction of a large bandwidth. The
width of the occupied part of the main band deduced
from eq (28) is practically the same as the Hartree value
€(kr), a result which is in accord with the experimental
findings.

For large momenta (k 2 kp + k.) there is a charac-
teristic k-dependence of V(k), which might influence
properties of electrons involved in photoemission and

)

3
F

0.5

5 4 3 e

— + T v

-4 =3 =2 = 0 | 2 3
ENERGY € /¢,

DENSITY OF STATES ga(27 ¢, /K

FIGURE 6. The density of states for the values of the electron gas
parametervy=2,3,4,5. The dashed curve is the result of the one-
electron theory, and the vertical broken line indicates the Fermi level

[13].

5

FIGURE 7. The imaginary part of the quasi-particle self-energy Im
3.(k.e(k))/Er as a function of the momentum k of the electron at
different metallic densities (Er=0.921,0.409,0.230, and 0.147 Ry at
rs=2, 3,4 and 5, respectively). The dashed curve is Quinn’s result at
ry=2[10,13].
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FIGURE 8. Typical spectral forms for the quasi-particle peak of the

spectral weight function in different momentum regions. The scales

are different for the three curves, the energy w is measured from the
Fermi level ., and the curves are drawn for rg=4 [24].

LEED experiments. It is not clear, however, how much
of this structure that may be observed due to the short-
lifetime of the electrons at these energies.

We want to stress again that the discussion we have
given of the one-electron spectrum is based on the as-
sumption that
discussed in the next section recent work by Langreth
[29] shows that vertex corrections in the core electron
problem can have a quite large effect on the form of
satellite structures, while their effect on the quasi parti-
cle properties seems to be small. Preliminary investiga-
tions by one of us (L.H.) show similar strong vertex ef-
fects on the conduction band satellite. The details of
the plasmaron structure should thus not be taken very
seriously.

vertex corrections are small. As

The quasi particle states close to the Fermi surface
are of particular interest due to their importance for
thermal and transport properties [30]. To study these
problems the quasi particle density of states or density
of levels rather than the one-electron density of states
is of importance. Because of interactions the quasi-par-
ticle dispersion law is distorted, corresponding to the
well-known mass enhancement at the Fermi surface.
The corrections to the free-electron mass m due to the

electron-electron interaction, as derived from eq (28),
are small [11,12], e.g. dm./m =—.01 for Al and dm./m
~ .06 for Na, and the properties of the quasi particles
close to the Fermi surface are dominated by the elec-
tron-phonon interaction.

The effects of the electron-phonon interaction on the
quasi-particle dispersion law follow in a straightforward
way using perturbation theory in the Brillouin-Wigner
form, thus

_ . 1—fo
() = (k)2 lgns | |Fio—ewr i)

fe
e el O
In this equation gj_, is the matrix element for the elec-
tron-phonon coupling and w(k —p) the phonon frequen-
cy.

The qualitative effect of the phonons is to flatten out
the dispersion curve in the immediate neighborhood of
the Fermi surface, and this gives rise to the enhance-
ment of the density of states (fig. 10), or, equivalently,
of the thermal effective mass and one obtains from eq

(35)
Mph—Mm (1 aF )\)

dQpx |gp*k '2
47 w(p—k)’

— No(Er) (36)
where N,(Er) is the density of states without electron-
phonon interaction, |p| = |k| = kr and the integration
extends over the full solid angle.

Ashcroft and Wilkins [32] first calculated the cor-
rections for Na, Al and Pb using eq (36), and several
similar calculations have been published over the last

V(k)/E 0 T T T
F

“2/3-Slater”

Slater

FIGURE 9. Exchange-correlation potential for an electron gas at ry=
4 compared with the Slater andthe Gaspar (2/3 Slater) approximations
[28].
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FIGURE 10.

few years. The most accurate values of \ are those
deduced from tunneling data by McMillan and Rowell
[33]. For example, the two methods give the values A
= 0.49 and 0.38, respectively, for Al; A = 1.05 and 1.3,
respectively, for Pb.

It is obvious that the enhancement varies with tem-
perature and that no enhancement is left at high tem-
peratures, where the phonon system behaves like a
fluctuating classical medium.

Similarly to the case of electron-electron interaction
the electron-phonon interaction gives a characteristic
structure to the spectral function. Engelsberg and
Schrieffer [ 34] pointed out that in the neighborhood of
the Fermi surface the quasi particle picture will no
longer apply. They calculated the spectral function for
an Einstein model and for a Debye spectrum and ob-
tained a spectral function with a very complex struc-
ture in the region close to the Fermi surface. For sodi-
um no dramatic effects occur because of the rather
weak electron-phonon interaction [ 31].

We conclude this section by noting that inclusion of
dynamical and exchange effects, in particular con-
sideration of the electron-electron interaction tells us
why the one-electron theory works so well in explaining
many gross features of metals and what limitations it
has. However, at least in a low-order treatment there
are also new structures introduced by the interaction,
schematically characterized as due to the resonant
coupling between electrons and plasmons. In section 5
we will discuss possibilities to observe this structure.

4. One-Electron Spectrum of Core Electrons

The preceding discussion has emphasized the strong
effects of the electron-plasmon coupling on the spec-
trum of conduction electrons. Similar strong effects
occur in the spectra of core electrons. For simplicity we
limit the discussion to simple metals with small cores,
so that the core electrons can be physically distin-
guished from the valence electrons and be well local-
ized to a particular ion. The wave function of a core

electron depends only weakly on the state of the outer
electrons. The energy levels on the other hand are
shifted by an appreciable amount compared to the cor-
responding atomic levels, typically of the order of 5 to
10 eV, which is large on the scale of valence electron
energies but is a small relative change in the energy of
a core electron. The core shifts can be measured accu-
rately by the method of x-ray photoemission spectrosco-
py as well as by x-ray absorption and inelastic scatter-
ing of fast electrons.

The shift of the quasi particle energy of a core elec-
tron comes partly from changes in the average Cou-
lomb field, partly from polarization effects. The
Coulomb shift is due to the different valence charge dis-
tribution relative to that in a free atom. It generally
results in a decrease of the binding energy. The
polarization shift comes from the relaxation of the
valence charge distribution around the hole created
when we remove the electron. The valence electrons
are drawn in towards the positive hole in the ion. This
effect decreases the binding energy by half of the
change in the Coulomb potential calculated at the core
site, i.e. precisely the amount obtained if we calculate
the self-energy of the hole using electrostatics. The
shift in the core energy thus contains information about
the valence electron distribution and polarizability,
measured with the core electron as a probe. Theoretical
calculations for simple metals (Li, Na, K, Al) are in very
good agreement with the experimentally observed
peaks in the XPS spectra [ 35].

In analogy with the strong effects of the interaction
between particles and plasmons previously discussed,
there is a corresponding coupling between a hole in the
core and the density fluctuations of the conduction
electrons. This leads to a strong structure in the core
electron spectrum [36].

We assume for simplicity that we can neglect the
spatial extension of the core electron wave function.
Calculation of the self-energy to lowest order in the
screened interaction gives the formula

S (© == 5053 | dadov(@) e (0. )~ 1]

1

(l)—€_+_€n'i_i87 (37)

where €, is the core quasi-particle energy. Remember-
ing that €~ '(q, ) has a strong resonance in the plasmon
regime, we see that after integration over the frequen-
cy, the self-energy will show a resonance behavior in
the energy region € = €, — wp . This rapid variation will
give rise to two solutions of the Dyson equation. The
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FIGURE 11. Quasi-particle peak in the spectral function for a core
electron and the associate plasmon satellite structure for different

densities of the conduction electrons, measured by the electron gas
parameterrs [ 36].

second solution, however, gives a quite broad peak in
the spectral function. The results for different densities
of the electron gas are illustrated in figure 11. The spec-
trum is measured from the shifted quasi particle ener-
gy, i.e. the zero of energy corresponds to complete
relaxation of the electrons around the hole.
We summarize the characteristic features of the core
spectrum
a. A large polarization shift of the core quasi parti-
cle level.
b. The shape of the spectrum is independent of
the core level considered. This results from
neglecting the actual size of the core wave

function. ‘
c. A pronounced satellite structure, which starts
at w=— wy and has a broad peak.

d. An extended tail on the low energy side of the
quasi-particle peak. This tail is due to the
coupling between the hole and screened elec-
tron-hole pair excitations, and corresponds to
states of the whole system involving two holes,
one in the core and one in the conduction band
plus one excited electron above the Fermi sea.

e. There is an appreciable reduction of the spec-
tral strength of the quasi particle. Approxi-
mately half of the spectral strength cor-
responds to excitations close to the quasi parti-

cle state and approximately the same strength
corresponds to high excitations of the conduc-
tion electrons as described by the broad satel-
lite structure.
As discussed in section 2 the spectral function has
the form (cf. eq (16))

Ae(w) = KNT, sINo)[*8 (0w —€) (38)

and shows a powerlaw singularity at the Fermi edge.
The first order theory correctly predicts a singularity
but of a somewhat different form, namely (wln2w)'.

The core electron spectrum can be obtained exactly
if we use a simple model Hamiltonian

H=e€a*a+ aat 2 gq(bgt+bt,)+ 2 webiby, (39
q q

Here a* is the creation operator for a core electron of
energy € and b,* the creation operator for a plasmon of
energy w,. The exact solution of this problem has been
given by Langreth [29], and we now give a brief ac-
count of his work, which also shows the close resem-
blance of the problem to the Missbauer or the impurity-
phonon problem.

The self-energy > in this model is given by the sum
of all diagrams where the core electron is dressed with
plasmons (fig. 12). For the true Hamiltonian including
all electron-electron interactions we have the same set
of diagrams, where the plasmon propagator is replaced
by a screened interaction v(q) €' (q,w). Except for the
first diagram the bare Coulomb potential gives no con-
tribution (the hole propagates in only one direction) and
we can thus replace € ! by (e7! — 1). By choosing the
dielectric function in eq (31) and the coupling

& =v(q)wp?/2w,), (40)
the plasmon diagrams and the screened interaction dia-
grams become the same. The core Green function

Ge(t)=—i(T(a(t)a*(0))) (41)
can be written as (cf. eq (38))
Ge(t) =i(0]|ei|0)e~icf(—t) (42)

where |0) is the plasmon vacuum state and H is the
Hamiltonian for the plasmon in the presence of the core

S=28TN g e T

FIGURE 12. Diagrams for the core electron self-energy.
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hole,

H=73 g(bs+b%,)+ wbsb,

q q

(43)

A canonical transformation shifts the zero point of the
plasmon vibrations, thus

e‘He=4=H,— Ae, (44)
where
A ZEfq(b:; —be); fo= 84l wg Ho:z web by
q q
Ae= E W fE. (45)
q
We may hence write
<0|eim,0> = <Ole—,.aeinoteA,0>c—iAu
(46)

- (()|e‘-”“’e‘“"]O)e‘m",
where
A(t) =eitot e~ Hol= 2 fa(b}e®qt—bye-iogt). (47)
q
By applying the well-known formula
eA+B — (’A eli e*l/Z[A,B] (48)
repeated times the exact solution follows,

) |eiﬁt|0> =exp (—Aet) exp (— zj(?) exp (2/38'@(11).
q ¢

49)
fx eilo—e n(O | e;m ' O>dt

This gives for the spectral function

1 , 1
Ac(w) :; Im G.(w) :277

_, {S(w—e—Ae) +3 f28(w—e—Aetwg)
q

+zl?gﬁffq‘%8(w—e—Ae+wq+wq/)+ .. } (50)
To compare the first order results (the first diagram in
fig. 12) with the exact solution we have used the simple
dispersion law w,= wp + ¢ (in units of the Fermi energy
and the Fermi momentum), which allows an analytic
solution. The result for the electron density of sodium
metal (ry;=4)is given in figure 13.

Since the dielectric function in eq (31) contains no
particle-hole pairs, the quasi particle peak is a §-func-
tion. A more realistic shape of the peak is indicated in
the figure. The exact solution has structure also at
—3wy, —4wp, etc., which is not shown in the figure.
This structure, however, has weak edges and carries
only a few percent of the oscillator strength.

Comparing the results of the first order calculation
and the exact solution we note:

1. The energy shift Ae is exactly the same.

AcW)
Quasi- |
Satellites | |particle |
|
» [
> [}
/
/
) //
. "
I | al /wp
3 -2 -1 0

FIGURE 13. Comparison of the first order (dotted line) and the exact
result (full curve) for the core spectral function from the model
Hamiltonian in eq (39). In this model the quasi-particle peak is a -
function. The dashed curve indicates a more realistic form of that
peak. The results are for rg=4.

2. The oscillator strengths in the satellites are
closely the same.
3. In

marked peaks instead of one, and the peaks are

the exact solution the satellite has two
sharper.

The large difference between the first order result
and the exact solution for this model case should be a
warning against taking the details ¢ a low order calcu-
lation too seriously. Knowing the importance of the
higher order diagrams in this case one may ask if not
other higher order diagrams, like those of the paramag-
non problem, may play a role also for the core spec-
trum. Finally, it should be stressed that while the satel-
lite structure may be poorly accounted for in the first
order theory, the position and singular nature of the
quasi particle are quite well represented.

5. Qualitative Discussion of Some Experiments

We shall discuss some different types of experiments
utilizing the connections with the one-electron spec-
trum discussed in section 2 and the results from the ap-
proximate calculations reported in sections 3 and 4. We
can really not put forward much more than guesses
about where many-body effects may possibly occur.
The difficulty is that the predictions by the one-electron
approximation have seldom been worked out in enough
detail to give reliable level densities and matrix ele-
ments, and this knowledge is required both to evaluate
the many-body effects per se as well as to find out how
much of the experimental structure that is accounted
for by the one-electron approximation. Also the experi-
mental data are sometimes not as accurate and reliable
as one would need. Thus surface conditions are often
not under good enough control, background effects are

427



poorly known and disturbing secondary effects are not
carefully analyzed and subtracted.

The discussion will neglect the effects of final state
interactions between the electron and hole. This means
that the treatment is a simple extension of the usual
theory for interband transitions in which the density of
states for electrons and holes in band theory is replaced
by the corresponding quantities including many-elec-
tron interactions as illustrated in figures 6, 11, and 13.
Although certainly of restricted validity it seems that
the predictions of such an approach are worthwhile to
summarize.

5.1. X-Ray Photoemission (XPS)

This experiment has a fairly clearcut relation to the
one-electron spectrum. Ideally the energy distribution
of photoelectrons will be given by eq (15). However, this
equation is valid only if the photoelectrons leave the
solid without being scattered. Structure due to satel-
lites in the density of states will thus be mixed with
structure due to energy losses.

The losses to volume excitations are proportional to
the sample thickness, while the intensity of the satellite
structure in the one-electron spectrum has a definite
relation to the intensity of the quasi particle peak. Thus
by varying the sample thickness one should be able to
separate the two kinds of processes.

Theory predicts an asymmetric form of the core-
quasi particle peak [4.,5,6,29,36,37] and satellite struc-
ture starting at w, below the main peak. According to
the Langreth model solution there should be two satel-
lites also with an asymmetric line shape (cf. fig. 13),
while the first order theory predicts the satellite in
ficure 11. There should be a satellite structure in the
conduction band, as well. Even if the exact shape of
this structure might differ from the results of the low-
order theory discussed in section 3, the total intensity
of the satellite band should be appreciable.

An experimental verification of the many-body struc-
ture would be of great aid for the further development
of the theory. As regards the position of the core levels
there seems to be a good agreement between theory
and experiments but further experimental and theoreti-
cal work on this problem would help to clarify how
point defects polarize and distort their surroundings.

5.2. Soft X-Ray Emission

We consider only the simplest possible case where
we can assume complete relaxation of the Fermi gas
around the hole before the emission takes place. This

limits the approximate validity to the light metallic ele-
ments such as Li, Be, Na, Mg, Al and K and excludes
e.g. all transition metals.

Through the recent work by Nozieres and de
Dominicis and others [4-6] the possibility of a singular
structure at the Fermi edge seems to be well
established. The magnitude of this Fermi edge peak
and the influence of this effect on the intensity at ener-
gies outside the immediate vicinity of the edge is how-
ever so far unsettled, although important progress has
been made [38]. As regards the main band it is clear
that the presence of the core hole will give an enhance-
ment of the intensity [1]. The actual magnitude of this
enhancement factor and its variation over the main
band is so far not well-known. To obtain the one-elec-
tron density of states in the main band from experi-
ments seems to require both careful calculations of
dipole matrix elements and better estimates of the
enhancement factor.

Below the main band the edge for plasmon produc-
tion is well established experimentally [1,39]. The in-
tensity of the satellite structure is strongly affected by
intricate cancellation mechanisms due to the presence
of the core hole and the theoretical predictions are un-
certain. The plasmaron edge (cf. figs. 5 and 6) has been
searched for in Al, but the experiment was not conclu-
sive [40]. As discussed in section 3, it is not clear
whether this edge is a feature of an exact solution of the
problem or just a result of the low order treatment. A
clear experimental confirmation or dismissal would be
of great aid for the further study of these many-body ef-
fects.

5.3. X-Ray Absorption

Consideration of these experiments requires a treat-
ment of final state interactions but in the absence of a
detailed theory for these we shall here take a simple
point of view and treat the structure in the one-electron
spectra as additional levels or groups of levels ina one-
electron scheme. A similar discussion of plasmon ef-
fects in x-ray absorption in metals was given by Ferrell
[41]. Due to the presence of satellite structure in both
core and conduction band spectra there should be a
characteristic structure above the threshold [ 36].

Accurate x-ray absorption spectra for simple metals
have recently [42] been obtained, which show an edge
anomaly very similar to what one may expect from the
Mahan exciton effect [4-6]. The fine structure of the
absorption coefficient for the L;;;; transition in mag-
nesium is shown in figure 14 [43]. Immediately above
the edge there is more detailed structure which
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FIGURE 14. The fine structure of the absorption coefficient for the
Lisur transition in magnesium [43].

possibly could be due to ordinary band structure effects
in the final state.

At still higher energies comes a strong peak [ 43-45].
We will argue that this peak may be a many-body ef-
fect. In table 1 we give results for the positions of the
peaks measured from the threshold [43], and compare
with the position of the core plasmaron peak discussed
in section 3 (cf. fig. 11). There is good agreement for
aluminum but not for the other metals.

The important point, however, is that €pear/wp is a
very smooth function of the electron density. Actually
its value is closely 0.8 ry in all cases. This indicates that
the peak is associated with properties of the electron
gas rather than being due to oscillator strength effects.
The latter would be connected with the properties of
the ion core and there is then no obvious reason to ex-
pect a regular variation with the conduction electron

TABLE 1. Position of the strong peak in soft x-ray absorption and
comparison with the location of the satellite peak (epm) in
Sfigure 11.

Element T's €peak s eV epeak/wll Epm/wp
2.07 24 1.6 17
2.66 22 251 1.8
4.00 18 3.2 241

density. The position of the plasmaron peak should be
given better at higher densities and the discrepancy
with experiment at lower densities is in no way alarm-
ing. More serious is the fact that Langreth’s calculation
has shown the higher order effects to be strong. The
strong peak could of course also be due to many-body
effects involving final-state interactions.

5.4. Photoemission in the Ultraviolet

The basic mechanisms of the photoemission process
are still not well understood. It may be regarded in one
extreme as a pure surface effect and in another as a
pure volume effect. In the latter case we have to ac-
count for the very important inelastic scattering effects
of the outgoing photoelectrons. If the surface effects
are not too strong, and if we can sort out the inelasti-
cally scattered electrons, the photoemission results in
the ultraviolet should reflect structure due to the satel-
lite band of the conduction electrons. There is some
hint of such a structure in the recent results for cesium
[46] (fig. 15) at an energy of about 4 eV below the Fermi
edge. However, the structure could also be due to a loss
of two surface plasmons [46].

Hw=10.2eV

PHOTOELECTRON ENERGY DISTRIBUTION (unncrmalized)

© 1

! 1 1 1

- U7 Vi T N5
KINETIC ENERGY (eV)

FIGURE 15. Photoelectron energy distribution curves at hw=10.2 eV’

for Na, K, Rb and Cs [46] . The horizontal bars indicate the values of

the surface (full curve) and volume (dashed) plasmons.
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5.5. Optical Absorption in the Ultraviolet

The description of optical properties of metals in
terms of Drude (see e.g. refs 47.48) and interband con-
tributions is often in qualitative agreement with experi-
ment. To go beyond that description we need to know
the dielectric function including final state interactions.
The many-body effects may show up as changes in in-
tensity and as new structures. Attempts to account for
the former have been made e.g. by Mahan [49], who
considered the contributions from virtually exchanged
plasmons. Absorption caused by electron gas effects
has been considered by Hopfield [50]. He observed
that while the electron gas by itself cannot absorb
radiation the effect of a weak perturbing potential from
phonons or disorder is enough to provide the necessary
momentum conservation for the absorption process and
thus allow the plasmon resonances of the electron gas
to show up.

A straightforward way to extend the one-electron
joint density of states expression is to make a convolu-
tion of the spectral weights of occupied and unoccupied
states. This has been done for semiconductors by Bar-
dasis and Hone [51] who in addition considered vertex
corrections. They obtained improved agreement with
experiment. Calculations for metals by the convolution
approximation indicate the existence of a plasmon-in-
duced structure at photon energies above E;+ w, [52],
where Ey is the interband threshold energy. There are
some experimental indications of structure beyond the
ordinary interband absorption in this energy region.

5.6. The Compton Effect

X-ray scattering from an electron gas in the regime
of large momentum transfer is a direct measure of the

I(p) (au)
"~

Free-electron
Band structure

Correlation

Total

Experiment

pH A

R R A

FIGURE 16. The linear momentum distribution for Li [ 54,55].

one-dimensional momentum distribution [53]. From
recent measurements of the Compton profiles of Li, Na
and Al the linear momentum distribution has been
derived [54]. The result for Liis shown in figure 16.

In section 3 approximate values of the momentum
distribution for an electron gas have been shown (fig. 4).
The corresponding momentum distribution
shows a too small reduction compared to the free-elec-
tron case to reproduce the experimental results for Li
(fig. 16) and Al, while for Na the electron gas curve falls
almost entirely within the experimental region.

As band structure effects could be expected to be
more important in Li and Al than in Na, this kind of cor-
rection has also been calculated using the OPW
method [55]. As shown in figure 16 these effects
reduce the discrepancy, even if a quantitative agree-
ment has not been obtained.

This kind of experiment provides a way of illuminat-
ing another aspect of the distribution of electrons in
metals and provides a useful way of checking theoreti-
cal models including many-body interactions.

linear

6. Concluding Remarks

This paper has presented a discussion of the possible
nature of many-electron effects on the density of states.
It is based on a study of the one-electron spectrum in-
cluding interactions and points out the existence of
characteristic satellite structure in the density of states
of electrons and holes in simple metals. Considering
the joint density of states of electrons and holes as in
the theory of interband transitions certain predictions
about possible effects in x-ray and. optical spectra can
be made. All this material is however only qualitative
and tentative. The structure in the one-particle spec-
trum has been calculated in low order and considerable
changes may result by including higher-order effects.
Further, the convolution of the electron and hole spec-
trum implies neglecting the final state interaction
between the electron and the hole. The final state in-
teractions may partly cancel out the structure in the
electron and hole spectrum, and it leads to charac-
teristic new effects such as edge singularities, and of
course also gives an overall distortion of the spectrum.
With all these reservations, however, the discussion
points out the existence of a number of possible in-
teresting effects which offer a challenge for further stu-
dy. In assessing the possibility of pursuing this ap-
proach to obtain quantitative theoretical results one has
to consider critically the present state of the art with re-
gard to ordinary band theory. Indeed, rather little has
yet been done in a quantitative way to calculate spectra
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especially with regard to oscillator strengths. Such
more detailed knowledge from energy band calcula-
tions also forms a necessary prerequisite for making
quantitative statements about many-electron effects.
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