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Th e co nce pt " dens it y of s ta tes" can be given many differe nt mea nin gs whe n we go beyond the o ne

e lectron app rox imation. In thi s s ur vey we concentrate on the de fin iti o n ti e d to excitation processes, 

whe re one e lec tron is added or re moved from the solid. We disc uss the one-pa rti c le s pectral (uncti on for 

co ndu ction a nd core e lec trons in me ta ls, how it c an be approximately ca lc u late d , and ho w it can be re

late d to diffe re nt types of ex pe ri me nts like x-ray photoemi ss ion , x-ra y e miss ion and absorpti on , 

photoemiss ion and opti ca l abso rpti on in th e ultravio le t, and the CO)nplOn e ffect. We a lso di sc uss the 

form of the exc hange-co rre lat ion pote ntia l for use in band structure ca lcu lation s_ 

Key word s: De nsity of states: inte ractin g e lec trons; one- parti c le Green fun ction; oscillator 

stre ngths; quas i partic le d ensity of s tat es; x-ray e miss ion and absorption_ 

1. Introduction functions. The quantity which is most easy to define is 
the true density of states of the fully inte ractin g 

In the one-electron approximation the concept "elec- systems 
tronic de nsity of states" is unique and simple and is 
defined by the formula 

(1) 

where Ei denotes the single-particle energies_ Similarly 
the optical density of states is given by the joint density 
of state for electrons and holes, thus 

(2) 

These funct ions only describe the cruder aspects of 
experim e nts suc h as soft x-ray e mission or opti cal ab
sorption_ They must be augmented with the proper 
oscillator strengths, whic h provide important selection 

N(w) = L o(w - EII)' (3) 
n 

where Ell are the e nergy levels of the sys te m. Although 
being a key quantity in thermodynamics it is of no use 
for the description for e.g. optic al, x-ray or e nergy loss 
spectra. We rather need the proper extensions of eqs 
(1) and (2) to describe one- and two-electron propertie s 
of the system. A particularly simple case is that of parti
cles having a Lorentzian energy distribution 

(4) 

The density of s tates is then given by 

N J (w) = LAk(W). (5) 
'-" rules and as well give rise to de viations from the de ns ity I of s tate c urves. 
I Whe n one goes beyond the one-elec tron approxima
~ tion and conside rs inte ractions not included in a self-

k 

In cases where the line width r k is small compared with 
the width of the band, the formulas (5) and (1) obviously 
will give similar results. 

consis te nt field theory the situation becomes non-trivial 
and one enco un ters a wide varie ty of density of states 

* An invit ed paper prese nt ed at the 3d Mat e rial s Researc h Sympos ium , El.ectronic Densi ty 

ojSt.ates, Nuve mber 3·6, 1969, Gai t h e rs Lur~. Md . 

The simple case just mentioned does not really carry 
us beyond the one-electron theory. We have in th e 
general case to abandon a concept based on sin gle-par
ticle levels and instead use distribution fun ctions o r 
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spectral densities of which the function A", (w) given 
above is a simple and almost trivial case. Such distribu
tion functions include the proper oscillator stre ngths, 
and they re fer to formally exact many-electron s tates, 
properly weighted according to the physical process 
considered. They are clos ely related to correlation 
functions and Green functions. An example is the 
density-density correlation function (p(rt)p(r't')), 
which correlates density fluctuations at different times 
and different positions. This function is of basic im
portance for describing optical experiments and energy 
loss spectra. Unfortunately it is very difficult to analyze 
its structure a nd we will here instead concentrate on a 
simpler en tity , the one-particle Green function and its 
assoc iated s pec tral function [1] . 

The one-particle spectral function is a generalization 
of the usual density of states N1(w). It gives an asymp
totically exac t description of x-ray photoemission, is 
connected with x-ray emission and absorption and also 
has some relevance for uv photoemission and absorp
tion. 

It is, however, not capable to describe edge effe cts in 
general, and does not at all account for final state or 
particle-hole interactions. Such effects, which in their 
simplest form are described by N2(w) or generalizations 
therefrom provide intricate problems upon which we 
shall only briefly touch here. These questions will be 
take n up in de tail in the le cture by Mahan. 

It has recently been noticed that the one-electron 
spectral fun c tion should exhibit some marked and 
strong structure. This structure is primarily associated 
with the interaction be tween the elec tron and plasmon 
excitations. It should be quite important in x-ray 
photoemission , influencing the line shape of the core 
electron peak and giving low energy satellites both to 
the core electron and conduction band structures. It is 
important in x-ray emission and absorption spectra 
showing up at the thres hold , and giving rise to satellite 
structures. Its effect may also be noticeable in uv 
photoemission and optical absorption spectra. 

We should also mention the structure in the one-elec
tron spectrum caused by coupling to phonons. This 
stru cture is limited to a region of the order of the De bye 
energy around the Fermi level, but in that region it is 
quite pronounced, causing e.g. the well-known 
enhancement of the quasi particle density of states. 

In the next sec tion we will disc uss the connections 
between the one-electron spectrum and x-ray 
photoemission, and with x-ray emission and absorption. 
In section 3 we discuss the spectrum of the conduction 
electrons from calculations to lowest order in the 

dynamic interaction between the electrons and 
between the electrons and phonons. (' 

In section 4 we take up the core electron spectrum ;1 
and discuss calculations to first order in the dynamic 
interaction with the valence electrons. We also survey 
the recent work by Langreth who obtained the exact 
solution to an important model problem. In section 5 we 
give a qualitative disc ussion of some experimental 

\' 
results for photon absorption and emission, photoemis-
sion and Compton scattering. In section 6 finally we 
give some concluding remarks. 

2. The One-Electron Density of States in an. / 
Interacting System and its Connection with X- -~ 
Ray Photoemission and with X-Ray Emission l 

and Absorption 

In this section we introduce some theoretical techni· 
calities, which however seem unavoidable in order to 
establish a firm connection between theory and experi
ment. 

The one-electron spectral weight function is defined 
as 

A (x, x' ; w) = 2: i s (x)ls* (x')a (w - Es). (6) 

In the independent-particle approximation the quan
tities Is and Es are the one-electron wave fun ctions and 
energies. In an interac ting system the oscillator ~ 
strength functionls is defined as 

(7) 

where t{J(x) is the electron field operator. It gives the r 
probability amplitude for reaching an excited state "'
IN - 1, s) , when an electron is suddenly removed from 
the ground state IN). The quantity Es is the excitation 
energy 

Es=E(N) - E(N -l ,s ). (8) 

These definitions apply for w in eq (6) smaller than 
the chemical potential fl. For w larger than fl, states 
with N + 1 particles are involved. 

In applications of the theory it is often practical to 
represent the spectral fun c tion as a matrix in a space 
spanned by some suitable complete orthonormal set of 
single·particle states flk(x), thus 

A kk , (w) = J ui (x)A (x, x'; w)uk,(x')dxdx' 

=2: (Nl atIN - 1, s) (N 
s 
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· Th e spec tral weig ht function is the general di stribution 
fun c tion describin g one-electron properties, and is a 

:( generalization of the one-electron density matrix, which 
is obtained after an integration over the freque ncies. 
Di s tribution s with respect to a single variable are in the 
usual way obtained by summation over all other varia
bles. Thus, the one-electron density of states is defined 

>, as 

N(w) =Tr A (w) 

= jA(x , x; w)dx=LAH(w). 
k 

(10) 

As indicated, the definition is independent of the 
y' choice of matrix basis. 

The s pectral weight func tion is a key quantity in the 
Green function formulati on of the ma ny-elec tron 
proble m. A more detailed account is give n In many 
texts, e.g. in sec ti ons 9 a nd 10 of ref. [1]. 

We next di sc uss the parti c ular cases of x-ray 
" photoe mi ssion and soft x-ray e mi ssion , where approxi

mate reductions to the one-electron spectrum ca n be 
made. 

In the x-ray photoe mi ssion experiment (XPS), an 
energetic photon of energy w is absorbed, exciting a 
photoelectron which leaves the syste m. If the elec tron 
has a large enough energy we can write the final s tate 

7 as 

I'l'J ) = a~ IN -1, s ) , (11 ) 

whe re K refers to a Bloch wave fun ction of energy EK = 
h2k 2 /(2m), describing the photoelectron. The probabili
ty of thi s event is , by the Golden rule, 

w ~ L I ('l'JI P I 'l'i)1 28(w- EJ+ Ed 
J 

= L I (N -1, sl a" L Pk" rat, akiN) 128(w-E" + Es), (12) 
K ,S k ,II ' 

where P is the total momentum and Pick" the momentum 
matrix element. For a fa st electron, which is outside the 
region of ground state flu ctuations, aKIN) = 0, and the 
express ion for W reduces to 

W ~ L I (N - 1, s I L PICk a, .. IN) 128(u.I - E" + Es) 
K ,S k 

= L L A Irk' (E" - w) P:;' P Kk ' (13) 
K k ,k' 

The energy di stribution of photoelectrons IS hence 
give n by 

J(E) - vELAk·k.'( E- W)P': P"k" (14) 
/;" ,1." 

taking eK=E. Using an average momentum matrix ele
ment and neglecting nondiagonal term s in A we obtain 
the simple result 

(15) 

The neglect of nondiagonal term s s hould be a good 
approximation if the one-electron functions are care
fully chosen Bloch functions and core-elec tron fun c
tions. We note that if the electron is ejec ted from a core 
level and if we neglect excitations of the core electron 
system, the operator air in eq (13) must des troy a core 
electron (air = ad, giving 

W ~ L I(N: , sINv)p"" 128(w-E,,+Es). (16) 
K , S 

Here INvl de notes the ground state of the valence elec
tron sys te m , and IN,:, Sl are excited states in the 
presence of the core hole. We recognize eq (16) as th e 
result in th e sudde n a pproximation. 

We nex t turn to soft x-ray emi ssion. In thi s case we 
may write the initial state as [2] 

(17) 

whe re the s tar on N indicates that the vale nce electron 
sys te m is relaxed towards the core hole. Applying the 
Golden rule again we ha ve for the x-ray inte nsity 

I(w) - W L I ( 'l'JI L PIc'kat,akac IN * ) 12 . 
f klr' 

8(w-Ei + Ef) 

=w L I (Nv -l , sl L PCkalrlN: )128(w + Ec- Es). 
k (18) 

If we could neglec t the relaxation effec ts in the initial 
state and replace INn by INv ), we would again have 
the spectral function A involved. The relaxation effects 
can be accounted for in an approximate way by only 
considering particle-hole excitations, thus 

IN: ) = (a+ L aKa;a,,) INv ). (19) 
II ,p 

Insertion of this expression in eq (18) leads after some 
further approximations to a very simple expression 

I(w) ~ w L Ip~~12AkIr(w+ Ee), (20) 
k 

where peJf involves the coefficients a and is w-d epen
dent. Such an approximation is however invalid a t the 
Fermi edge, where, as Anderson [3] has pointed out , 
we need an infinite nu mber of particle-hol e pairs to 
represent INv*). 
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The edge problem has recently been treated by sev
eral people [4-6]. We choose here to give a brief ac
count of Langreth's version [6] of Nozieres; and de 
Dominicis' (ND) treatment of the problem in order to 

show how the one·electron spectrum e nters the 
problem. The basic quantity needed for the evaluation 
of eq (18) is the correlation function 

To evaluate that function ND study the multiple time 
function 

(22) 

The simple way, in which the core state operator en
ters their model Hamiltonia n, causes the equation of 
motion for F to close onto itself and allows a solution as 
a product, 

Fkk'(T,T';t,t')=4>kk'(T,T';t,t') GcCt,t') (23) 

where Gc is the core electron Green function , 

GcCt, t')= (N*IT(ac( t)at (t'))IN* > (24) 

and 4> a valence electron Green function which obeys 
an equation with a transient potential from the core 
hole. The x-ray spectrum is given by a convolution of 
the core and valence electron spectra. Both spectra are 
singular at the edge as a power law and so is also the 
resulting convolution. 

The point in keeping the operator ac in eq (22) is that 
the time dependence of ak(t) then can be given by the 
same Hamiltonian as that used for IN*), while when 
studying (N:J'IT(ait)ak,+)INj) , the time evolution of 
ak(t) is given by a Hamiltonian that does not include the 
potential from the core hole, and thus the usual many
body techniques do not apply. X-ray absorption can be 
described in an analogous manner by the function F, 
only replacing IN*) by IN). 

It should be mentioned that the ND treatment is 
based on a mod el Hamiltoni a n that does not include in
teractions between the conduction electrons. This is 
quite appropriate for their purposes of treating the edge 
problem but is not sufficient for the spectrum far away 
from the edge. It is not clear if their treatment can be 
extended to the more general case. We then have to 
resort to other methods, such as the approximation in 
eq (19) or to a frontal attack on the dielectric function 
itself [7] . 

We have in this section given a definition of the one-

electron density of states and have indicated its relation 
to some measurable quan tities. We conclude from this 
that a theoretical investigation of this kind of experi- '), 
ments can not avoid the calculation of the one-electron 
density of states of interacting electrons , but at the 
same time due to a variety of effects there may be es
sential modifications of the density of states as it ap
pears in the actual experiment. Explicit results from ap- ' 
proximate calculations of the spectral function A and 
the density of states N( w} are discussed in sections 3 
and 4, and the actual comparison with experiment is 
made in section 5. 

3. One-Electron Spectrum of Conduction 
Electrons 

The common picture of the one-electron spectra of 
solids is obtained from energy band calculations, in 
which the Schrodinger equation of independent elec
trons in a periodic potential is solved. For the different 
bands one obtains the electron energy as a function of 
wave-vector, E(k). The main contribution to the poten
tial seen by an electron is the average electrostatic field 

'" 

r 

or the Hartree field. When going beyond the one-elec
tron approximation the next step would be to include 
dynamical effects of the interaction as well as exchange 
effects. Such effects can not be described by an ordina- j 

ry local potential. A generalized "potential," non-local 
in space and time, must be introduce d. 

Let us for simplicity study the case , where specific 
effects of the periodicity are of minor importance, and 
assume the distribution of conduction electrons to be 
uniform. Due to the non-locality of the generalized 
"potential," its Fourier transform to momentum-energy 
space will show a dependence on both wave-vector k 
dnd energy E, L (k, E). The quantity L is called the self
energy of the electron. 

" 

Adding the self-energy to the average potential, we I 
~ 

have to solve the equation 

E = E(k) + L (k,E). (25) 

The self-energy includes all the interactions between 
the electron state considered and the system. This 
necessarily includes dissipative effects, which lead to 
the decay of the state. Consequently the self-energy 
must be a complex quantity , thus 

(26) 

The spectral weight function defined in section 2 is re
lated to the self-energy according to the formula 1, sec-
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tion 1 

I 

[ 
In the simple case that the self-energy I is independent 
of e nergy, th e s pectral function for fixed k will have a 
Lorentzian shape and II determines the width of the 
line. Whe n I de pends on energy there are no a priori 
res tri c tions on the shape ofthe spectrum. 

Most of our present knowledge about the self-energy 
has been based on calculations , where vertex cor
rection s have been neglected , i. e. using th e formulae 
[9-13] 

L (k, w) = (2:)4 J eiWSv( k ') c 1 (k', w ')Co(k 

+ k', w + w')dk'dw ', (28) 

where 

Go(k,w)=(w - E(k)+io sign (k-kp)) - I (29) 

is the propagator for a non-interactin g electron, and 

is the bare Coul omb pote ntial. The cons tant kfo' means · 
the F ermi momentum, and 0 is a positive infinitesimal. 

To make connection with another approximation, we 
note that the Hartree-Fock approximation corresponds 

) to the choice E = 1 in eq (28). As it stands, eq (28) ex
presses the lowes t order co upling to the density flu ctua
tions of the conduction electrons, described by the 
wave -vector- and frequency-depe nde nt dielectric func
tion E(k,w). This function contains information about 
th e s tatic screening, given by E(k,O), but also important 

. ., effec ts of the dynamic be havior of the density fluctua
tion s. Th e typi cal s mall-k-behavior of the spectral func
tion for thi s kind of excitations, -1m c l(k,w), is in
di cated in fi gure 1. The clearcut classification of the ex
citations into elec tron-h ole pairs and plasmons is 
c haracteris ti c for th e Lin earized Time de pe ndent Har-

::> tree (LTH) or Random Phase Approximatio n [14]. For 
s mall wave-lengths the electron-hole pair excitations 

beco me of increasin g importance, while in the k~ 0-
limit the plas mon exhaus ts co mpletely the s um rule for 
1m c l, i. e. it is the only excitatio n. The latter property 

~ follow s from general arguments about charge conserva· 
tion and tra nslation invarian ce [8 , p. 288], and should 
be valid for any u seful approximation for E(k,w). In the 

1 
- 1m E(g,W) 

Electron -hole 
pairs 

Plasmon 
peak 

--~~~--------~~--------w 

2q 

FIG URE 1. Qualitative behavior of 1m ,,-t (q,w)for smallq. 

LTH approximation the plasmon is undamped for 
wave-numbe rs smaller than a critical value kc, whi ch at 
metalli c de nsities is of the same order of magnitude as 
kp . 

A great part of th e lite rature about the electron gas 
is devoted to the searc h for an improved dielec tri c fun c
tion [15 - 20] , particularly because of the failure of the 
LTH formula to describe interac tion effect a t short 
di stan ces. Th e las t word re main s to be sa id in thi s 
ques tion, but it is inte res ting to note the relative insen
sibility of the self-e nergy to the choice of dielec tri c 
fun ction [11 ,12,21]' An a pproxi mation, whi ch has 
proved to be mos t useful, is to ta ke a plasmon·1ke 
s harp absorption for all k according to the formu la 

(31) 

whe re Wp is the class ical plas ma frequ e ncy a nd w(k ) th e 
resonance frequency at wave numbe r k. The freq uency 
w(k) reduces to Wp when I kl~O and is proportional to 
Ikl 2 for large Ikl. This formula correctl y re presents the 
small and large w-limits and gives a quite reasonable in
terpolation for intermediate w values [1, 1]. With 
this choice one can perform the frequency integration 
in eq (28) and obtain 

~ (k w) = __ 1_ Jd3q v(q)no(k + q) 
L.. ' (27T)3 E(q, E(u+q) -w) 

+ Wp2 Jd3q v( q) 1 (32) 
(27T)3 2w(q) w-E(h+q)-w(q) 

The first term in eq (32) is a screened exchange poten
tial, no(k) being the momentum di s tribution for inde· 
pendent electrons , and the second term describes the 
correlation hole around the electron [12,22J . 

Because of the plasma resonance in the di elec tri c 
fun ction there will be a rapid variation in the real part 
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FIGURE 2. The seLf-energy ~ and the corresponding spectraL function 
A for fs = 5 [21]. The cross ings be tween the Re ~ curves and the 

straight Lines give the soLutions to the Dyson equation. The numbers at 
the peaks indicate the strengths of the Lines. 

of ~ at the frequency w = E(k) + Wp for electrons and at 
W = E(k) - Wp for holes. This be havior of the electron 
gas seems to have been first noticed and discussed by 
Hedin et al. [23J and has been studied in great detail 
by Lundqvist [13,21J. Typical c urves for ~ obtained 
with this dielectric function are shown in the upper half 
of figure 2. In the lower part of figure 2 we have given 
the results for A(k,w) calculated from eq (27). 

For k = kf' there is only one strong peak in the spec· 
tral function, corresponding to the usual quasi particle. 
For the other k-values in the fi gure, we find three solu· 
tions of the Dyson equation 

W=E(k)+Lf{(k,w). (33) 

One of the m, however, falls at w = E(k) ± Wp , where the 
dampin g is very strong, and therefore this solution is ef. 
fec tively suppressed. Of the two remaining solution s, 
one correspo nds to the usual quasi particle, i.e . a bare 
electron s urrounded by a cloud of virtual plasmons and 
elec tron· hole excitations. For hole states, i.e. for k < kF , 
a new state appears which has an e nergy lower than 
that corresponding to a hole plus a plasmon, i.e. e(k)
Wp. This result from a low order treatme nt corresponds 
to a coherent state of hole-plasmon pairs, and may be 
thought of as holes coupled to real plasmons. This cou
pled state, which has been called a plasmaron, has a 
large oscillator strength, and thus gives an essential 
contribution to the sum rule for the one-electron spec· 
trum. For electron states, k > kF, there is no sharp state 

but a broad resonance with a sharp onset at w = E(k) + 
Wp. 

Figure 3 illustrates how th e parabolic quasi particle 
di spersion law is accompanied by a second branch of 
the spectrum, the plasmaron. In fi gure 4 the momen
tum distribution fun ction for the interacting electrons 
is given. 

The characteristic structure due to plasmon effects 
will modify the density of states. This is demonstrated 
schematically in figure 5. The conduction band will 
retain approximately its parabolic shape. At an energy 
Wp below the Fermi edge there is the onset of the 
second band due to the plasmaron states. This band is 
terminated at low energies with a rather distinct edge. 
For unoccupied s tates there is an extra contribution to 
the density of states starting at an energy Wp above the 
Fermi level. Figure 6 gives a survey of the density of 
state curves at four different values of the electron gas 
parame ter rs (rs = 2 corresponding roughly to the elec
tron density of AI, and rs= 4 to that of Na). 

So far we have discussed the gross effects due to the 
coupling be twee n electrons and plasmons. These are 
quite well re presented by the plasmon-pole approxima
tion for the dielectric fun ction in eq (31). Electron-hole 
pair excitations are however not included , to re present 
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FIGURE 3. The spectraL weight function A(k ,w) given by LeveL curves 
indicating the vaLue offiwpA, at rs = 4 (fiwp = 0.435 Ry) [13]. 
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FIGU RE 4. The momenllLm. distribution Junction n(k) at r.,= 2,3,4 and 
5 [13] . 
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FI GU RE 5. Density oj states Jar conduction electrons . 

the m we mu st turn to the LTH dielec tri c function or 
highe r approximations. These excitations are responsi· 

) ble for the broadening of the quasi particle peak and 
the Auger tail at the bottom of the main band in figures 
5 and 6 as well as the broad spectral we ight contours in 

particle energy in the form 

E(k) = E(k) + V(k), (34) 

where V(k) can be interpreted as an effec tive exchange 
and correlation potential. In fi gure 9 suc h a pote ntial is 
shown. It has a remarkably wea k k-dependence for 
moderate wave vectors, its value lyin g roughly halfway 
between the Slater [25] and "2/3 Slater" values 
[26,27] . 

One of the shortcomings of the Hartree ·Fock approx· 
i mation is its prediction of a large band width. Th e 
width of the occupied part of the main band deduced 
from eq (28) is practically the same as the Hartree valu e 
E(kF)' a res ult which is in accord with the experimental 
findings. 

For large momenta (k ?: kl" + kc) there is a charac· 
teristic k-de pe nde nce of V(k), whi c h might influe nce 
properties of electrons involved in photoe mi ssion and 

-4 -3 -2 -I 

ENERGY <1<, 

o 

FIGURE 6. The density oj slates Jar the val ues oJthe electron gas 
parameter r, = 2,3,4,5. The dashed curve is the result oJthe one· 

electron theory, and the vertical broken line indicates the Fermi level 
[13]. 

figure 3. 1.5,----------------------, 

Figure 7 shows ~J(k,E(k)) calculated from eq (28) and 
is an indication of the high damping rate for quasi parti· 
cles with k greater than k,.. + kc, i.e., in the region where 
they can decay into plasmons [10,24]. However , as il· 
lus trated by the typical spectral forms for the quasi par· 
ticle peak in figure 8, the quasi particle peak is always 
di s tinguishable from the s pectral bac kground , its width 
f(k) is s maller than its excitation energy E(k) -t-L. 

From eq (28) one can also draw information about the 
exc hange and correlation "potential" for the quasi par· 
ticles. The inadequacy of the Hartree·Fock approxima· 
tion in a metal is well· known, and in band calculations 
the effec ts of exc hange and correlation are commonly 
simulated by usi ng a local potential , such as the Slater 
[25] or the Caspar [26,27] expression s. After solving 
the Dyson equation one can write the res ulting quasi· 
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LEED experiments. It is not clear, howe ver , how much 
of thi s structure that may be observed due to the short
life time of the elec trons a t these energies. 

We want to stress again that the di scussion we h ave 
give n of the on e-electron spectrum is based on the as
sumption that vertex correc tions are small. As 
discussed in the next section recent work by Langreth 
[29J shows that vertex corrections in the core electron 
problem can have a quite large effect on the form of 
satellite s tructures , while their effect on the quasi parti
cle properties see ms to be small. Preliminary inves tiga
tions by one of us (L.H.) show similar strong vertex ef
fects on the conduction band satellite. The details of 
the plas maron s tru cture should thus not be taken very 
se riously. 

The quasi parti cle s ta tes close to the F ermi surface 
are of particular interes t due to their importan ce for 
thermal and trans port properties [30J. To s tudy these 
problems the quasi particle de nsity of s ta tes or density 
of levels ra ther than the on e-elec tron de nsity of sta tes 
is of importance . Because of interaction s the quasi-par
ticle dispersion law is di storted , corresponding to the 
well-known mass enhancement at the Fermi surface. 
The correc tions to the free-elec tron mass m due to the 

electron-electron interaction , as derived from eq (28), 
are small [11,12], e.g. ome/m = -.01 for Al and ome/m 
= .06 for N a , and the properties of the quasi particles 
close to the Fermi surface are dominated by the elec· 
tron-phonon interaction. 

The effects of the ele'ctron-phonon interaction on the 
quasi-particle dispersion la w follow in a straightforward 
way using perturbation theory in the Brillouin-Wigner 
fo r m, thu s 

+ fp J 
E(k) - E(p)+w(k - p) . 

(35 ) 

In thi s equation gk- p is the matrix ele ment for the elec
tron-phonon coupling and w(k-p) the phonon frequen
c y. 

The qualitative effec t of the phonons is to flatten out 
the dispersion c urve in the immediate neighborhood of 
the Fermi surface, and this gives rise to the enhance
me nt of the density of states (fig. 10), or, equivalently, 
of the thermal effective mass and one obtains from eq 
(35) 

mp,, = m 0 + '\) 

\ 

(36) , 

where No(E f ) is the density of states without electron
phonon interaction, I pi = I kl = kF and the integration 
extends over the full solid a ngle. 

Ash croft a nd Wilkins [ 32J firs t calculated the cor
rection s for Na , Al and Pb using eq (36), and several 
similar calculations have been published over the last 
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FIGU RE 9. Exchange-correLation potentiaL/or an eLectron gas at f s = 

4 compared with the SLater and the Gtispcir(2/3 SLater) approximations 
[28]. 
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FIGURE 10. Density of qltasi·particle levels for Na at T = oaK [31]. 

few years. The most accurate values of A are those 
deduced from tunneling data by McMillan and Rowell 
[33] . For exa mple, the two methods give the values A 
= 0.49 and 0.38, respectively, for AI; A = 1.05 and 1.3, 
respectively, for Pb. 

It is obvious that the enhancement varies with te m
perature and tha t no e nh a nce ment is left at hi gh tem
peratures, where the phonon sys te m be haves like a 
flu ctuating classical medium_ 

Similarly to the case of elec tron-elec tron interaction 
the electron-phonon interaction gives a characteri sti c 
structure to the spectral fun ction_ Engelsberg and 
Schrieffer [34] pointed out th at in th e neighborhood of 
the F ermi surface the quasi particle pic ture will no 
longer apply_ They calculated the spec tral function for 
an Einstein model and for a Debye spectrum a nd ob
tained a spectral function with a very complex struc
ture in the region close to the Fermi s urface_ For sodi
um no dramatic effects occur because of the rather 
weak electron-phonon interaction [ 31]. 

We conclude this sec tion by noting that inclusion of 
dynamical and exchange effects, in particular con
sideration of the electron-electron interac tion tells us 
why the one-electron theory works so well in explaining 
many gross features of metals and what limitations it 
has. However , at leas t in a low-order treatme nt th ere 
are also ne w structures introduced by the interaction, 
schematically characterized as due to the resonant 
coupling between electron s and plasmons. In sec tion 5 
we will di scuss possibilities to observe thi s structure. 

4. One-Electron Spectrum of Core Electrons 

'7 The preceding discussion has emphasized th e stron g 
effects of the elec tron-plas mon coupling on the spec
trum of conduction elec trons. Similar stron g effects 
occur in the spectra of core electron s. For simplicity we 

I 
limit the di sc ussion to simple metals with small cores, 
so that th e core elec trons can be physically distin

~ gui shed from the vale nce electrons and be well local-
ized to a parti cular ion. The wave function of a core 

electron depe nds only weakly on th e state of th e outer 
electrons. The energy le vels on the oth er hand are 
shifted by an appreciable amount compared to the cor
responding atomic levels , typically of the order of 5 to 
10 e V, which is large on the scale of valence electron 
energies but is a small relative change in the energy of 
a core electron. The core shifts can be measured accu
rately by the method of x-ray photoemission spectrosco
pyas well as by x-ray absorption and inelastic scatter
ing of fast electrons. 

The shift of the quasi particle e nergy of a core elec
tron comes partly from changes in th e average Cou
lomb field, partly from polarization effects. The 
Coulomb shift is due to the different valence charge dis
tribution rela tive to that in a free atom. It generally 
results in a decrease of the binding energy. The 
poLarization shift co mes from th e relaxation of the 
valence charge di stribution around th e hole created 
when we re move the elec tron . The valence e lectro ns 
are drawn in toward s the positive hole in the ion. This 
effect decreases the binding e nergy by half of the 
c hange in the Coulomb potential calculated at the core 
site, i. e. precisely the amount obtained if we calculate 
the self-energy of th e hole us ing electros tatics. The 
shift in the core energy thus co ntains information about 
the valence elec tron distribution a nd polarizability, 
measured with the core electron as a probe. Theore ti cal 
calc ulations for simple me tals (Li , Na, K, AI) are in very 
good agreement with the experime ntally observed 
peaks in the XPS spectra [35] . 

In analogy with the strong effects of the interacti on 
between particles and plasmons previously di sc ussed, 
there is a correspondin g couplin g between a hole in the 
core and the density flu ctuations of the co nduc tion 
electron s. This leads to a s trong s tru c ture in th e core 
electron spectrum [36]. 

We assume for simplicity th at we can neglect the 
spatial extension of the core elec tron wave function. 
Calculation of the self-energy to lowes t order in the 
screened interaction gives the formula 

L (E) = - (2~)4 J d 3qdwv(q) [E - 1 (q , w) -1] 

1 
W-E+En+io ' 

(37) 

where En is the core quasi-particle energy. Reme mber
ing that c 1 (q, w) has a strong resonance in the plasmon 
regi me, we see that after integration over the frequen
cy, the self-energy will show a resonance be havior in 
the energy region E = En - Wp • This rapid variation will 
give rise to two solutions of the Dyso n eq uation. The 
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FIGURE 11. Quasi-particle peak in the spectral function for a core 
electron and the associate plasmon satellite structure for different 
densities of the conduction electrons, measured by the electron gas 

parameter r" [36]. 

second solution, however, gives a quite broad peak in 
the spectral function. The results for different densities 
of the electron gas are illustrated in figure 11. The spec
trum is measured from the shifted quasi particle ener
gy, i.e. the zero of energy corresponds to complete 
relaxation of the electrons around the hole. 

We summarize the characteristic features of the core 
spectrum 

a. A large polarization shift of the core quasi parti
cle level. 

b. The shape of the spectrum is independent of 
the core level considered. This results from 
neglecting the actual size of the core wave 
function. 

c. A pronounced satellite structure, which starts 
at W = - Wp and has a broad peak. 

d. An extended tail on the low energy side of the 
quasi-particle peak. This tail is due to the 
coupling between the hole and screened elec
tron-hole pair excitations, and corresponds to 
states of the whole system involving two holes, 
one in the core and one in the conduction band 
plus one excited electron above the Fermi sea. 

e. There is an appreciable reduction of the spec
tral strength of the quasi particle. Approxi
mately half of the spectral strength cor
responds to excitations close to the quasi parti-

cle state and approximately the same strength 
corresponds to high excitations of the conduc
tion electrons as described by the broad satel
lite structure. 

As discussed in section 2 the spectral function has 
the form (cf. eq (16» 

and shows a powerlaw singularity at the Fermi edge. 
The first order theory correctly predicts a singularity 
but of a somewhat different form, namely (wln2w) - t. 

The core electron spectrum can be obtained exactly 
if we use a simple model Hamiltonian 

H = w+a+ aa+ L gq(b q + b ~Q) + L wqbtbq, (39) 
Q Q 

Here a+ is the creation operator for a core electron of 
energy E and bq + the creation operator for a plasmon of 
energy Wq. The exact solution of this problem has been 
given by Langreth [29], and we now give a brief ac
count of his work, which also shows the close resem
blance of the problem to the Miissbauer or the impurity
phonon problem. 

The self-energy l in this model is given by the sum 
of all diagrams where the core electron is dressed with 
plasmons (fig. 12). For the true Hamiltonian including 
all electron-electron interactions we have the same set 
of diagrams, where the plasmon propagator is replaced 
by a screened interaction v( q) E- t (q,w). Except for the 
first diagram the bare Coulomb potential gives no con
tribution (the hole propagates in only one direction) and 
we can thus replace E- t by (E - t - 1). By choosing the ) 
dielectric function in eq (31) and the coupling I 

gl = v( q)wll(2wq), (40) 

the plasmon diagrams and the screened interaction dia
grams become the same. The core Green function 

Gc(t) = - i( T(a(t) a+ (0))) (41) 

can be written as (cf. eq (38» 

where 10) is the plasmon vacuum state and fI is the 
Hamiltonian for the plasmon in the presence of the core 

~=2~1 +2~1"'" 
FIGURE 12. Diagramsfor the core electron selfenergy. 

426 



hole, 

H= 2:gq(bq+ b ~q) + 2: wqbtbq (43) 
q II 

A canonical tran sformation shifts the zero point of the 
plasmon vibrations, thus 

~ where 

q q 

) We may hence write 

where 

(0 I eif1t I 0) = (0 I e- AeiHoteA I ° )e - i~<l 

= (Ole -A(O)eA«)I O )e - i~'I, 

(44) 

(45) 

(46) 

A (t) = e Wot Ae - iHot= 2: j~(b;eiwqt - bqe- iwqt). (47) 
q 

By applying the well-known formula 

(48) 

re peated times the exact solution follows, 

(0 I e if1t I 0) = exp (- AEt) exp ( - 2: fi) exp (2:.a eiwqt). r q q 

This gives for the spectral fun ction (49) 

Ac(w) =1. 1m Cc( w) =~ J'" e i(w - <)/(0Ie if1/ 10 )dt 
71" 271" _ '" 

- 'iJ! { = e" o(w -E - LlE) + 2: f,fo(w- E - AE+ Wq) 
q 
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F, GU RE 13. Comparison of the first order (dott ed line) and the exact 
result (full curve)for the core spectralfunctionfrom the model 

Hamiltoni(tn in eq (39). fn this model the quasi-particle peak is a /l. 
function . The dash.ed curve indicates a more realisticfonn of that 

peak. The results are forrs= 4. 

2. Th e osc illator strengths in the sa tellites are 
closely the same. 

3. In the exac t so lution the satellite has two 
marked peaks in s tead of one, and the peaks are 
s harper. 

The large diffe re nce be tween the first order res ult 
and the exac t solution for thi s model case should be a 
warning against taking the detail s r ' a low orde r calcu
lation too se riously. Knowing the importance of the 
highe r ord er diagrams in thi s case one may ask if not 
other higher order diagrams, like those of the paramag
non proble m, may playa role also for the core s pec
trum. Fina ll y, it s hou ld be s tressed that whi le the sa te l
lite s truc ture may be poorly accounted for in the fir st 
order th eory , the posit ion a nd sin gular nature of the 
quasi particl e are quite well represe nted. 

+ 2\ 2: nfq~O(W-E - LlE+ Wq+Wq') + ... } (50) 5. Qualitative Discussion of Some Experiments 
• qq' 

To co mpare the first order results (the firs t diagram in 
fi g. 12) with the e xact solution we have used the simple 

~ di spersion law W (' = Wp + q2 (in units of the F ermi e nergy 
and the F ermi momentum), which allows an analytic 
solution. The res ult for the electron de nsity of sodi um 
metal (rs= 4) is given in fi gure 13. 

Since the dielectri c fun ction in eq (31) contains no 
particle-hole pairs, th e quasi particle peak is a o-func-

7 tion . A more reali stic shape of the peak is indicated in 
the fi gure. The exac t solution has s truc ture also at 
- 3wp, -4wp, etc, which is not shown in the figure _ 
Thi s s tru c ture , h owever, has weak edges and carries 
only a few percent of the osci ll ator strength. 

Comparing the results of the first order calculation 
1 and the exact solution we note : 

1. The energy s hift AE is exac tly the sa me. 

We shall di scuss some differe nt types of experime nts 
utilizing the connections with the one-electron spec
trum discussed in section 2 and the results from the ap
proximate calculations re ported in sections 3 and 4. We 
can really not put forward much more than guesses 
about where many-body effects may possibly occ ur. 
The difficulty is that the predictions by the one-electron 
approximation have seldom been worked out in enough 
detail to give reliable level densities and matrix ele
ments, and this knowledge is required both to e valuate 
the many-body effects per se as well as to find out how 
much of the experimental structure that is accounted 
for by the one-electron approximation. Also the experi
mental data are sometimes not as accurate a nd reLable 
as one would need. Thus s urface co nditions are often 
not under good enough control, bac kground e ffec ts are 
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poorly known and disturbing secondary effects are not 
carefully analyzed and subtracted. 

The discussion will neglect the effects of final state 
interactions between the electron and hole. This means 
that the trea tm e nt is a simple extension of the usual 
theory for interband transitions in which the density of 
states for elec trons and holes in band theory is replaced 
by the corresponding quantities including many-elec · 
tron interactions as illustrated in fi gures 6, 11, and 13. 
Although certainly of restri c ted validity it seems that 
the predictions of such an approach are worthwhile to 
summarize. 

5.1. X-Ray Photoemission (XPS) 

This experiment has a fairly c1earc ut relation to the 
one· electron spectrum. Ideally the energy di stribution 
of photoelectrons will be given by eq (I S). However, thi s 
equation is valid only if the photoelectrons leave the 
solid without being scattered. Structure due to satel· 
lites in the density of states will thus be mixe d with 
structure due to e nergy losses. 

The losses to volume excitations are proportional to 
the sample thickness, while the intensity of the satellite 
structUFe in the one·elec tron spectrum has a definit e 
relation to the intensity of the quasi particle peak. Thus 
by varying the sample thickness one should be able to 
separate the two kinds. of processes. 

Theory predicts an asymme tric form of the core· 
quasi particle peak [4 ,5,6,29,36 ,37] and satellite struc· 
ture starting at Wp below the main peak. According to 
the Langre th model solution there s hould be two satel· 
lites also >xith ~n asymme tric line shape (cf. fi g. 13), 
while the first order theory predicts the satellite in 
fi gure 11. There should be a satenite structure in the 
conduc tion halil.d, as well. Even if the exact shape of 
thi s struc ture might differ from the results of the low· 
order theory discussed in section 3, the total intensity 
of the satellite band should be appreciable. 

An experimental verification of the many-body s truc · 
ture would be of great aid for the further developme nt 
of the theory. As regards th e position of the core levels 
there seems to be a good agreement be tween theory 
and experime nts but further experimental and theoreti· 
cal work on thi s problem would help to clarify how 
point defects polarize and di s tort their surroundings. 

5.2. Soft X-Ray Emission 

We consider only the simplest possible case where 
we can assume co mplete relaxation of the F ermi gas 
around the hole before the emission takes place. Thi s 

limits the approximate validity to the light metallic ele
me nts such as Li, Be, Na, Mg, Al and K and excludes 
e.g. all transition metals. 

Through the recent work by Nozieres and de 
Dominicis and others [ 4·6J the possibility of a singular 
s tructure at the Fermi edge seems to be well 
established. The magnitude of thi s Fermi edge peak 
and the influence of this effect on the intensity a t e ner· 
gies outside the immediate vicinity of the edge is how· 
ever so far unsettled, althou gh important progress has 
been made [38]. As regards the main band it is clear 
that the presence of the core hole will give an enhance· 
ment of the intensity [IJ. The ac~ual magnitude of this 
enhancement factor and its variation over the main 
band is so far not well·known. To obtain the one·elec· 
tron density of states in the main band from experi· 
ments seems to require b oth careful calculations of 
dipole matrix elements and better es timates of the 
enhancement factor. 

Below th e main band the edge for plasmon produc· 
tion is well est abli shed experimentally [1,39] . The in· 
tensity of the satellite struc ture is strongly affected by 
intri cate cancellation mechanisms due to the presence 
of the core hole and the theoretical predictions are un· 
certain. The plas maron edge (cf. figs. 5 and 6) has been 
searched for in AI, but the experime nt was not conclu· 
sive [40]. As discussed in section 3, it is not clear 
whether thi s edge is a feature of an exact solution of the 
proble m or just a result of the low order treatment. A 
clear experime ntal confirmation or di smissal would be 
of great aid for the further s tudy of these many· body ef
fects. 

5.3 . X-Ray Absorption 

Consideration of these experime nts requires a treat
ment of final state inte ractions but in the absence of a 
detailed theory for these w e shall here take a simple 
point of view and treat the s tructure in the one-electron 
spec tra as additional levels or groups of levels in a one
electron scheme. A similar di scussion of plasmon ef
fects in x-ray absorption in metals was give n by Ferrell 
[41] . Due to the presence of sate llite s tructure in both 
core and conduction band spectra there should be a 
characteris tic s tructure above the threshold [36] . 

Accurate x-ray absorption spectra for simple metals 
have recently [42] bee n obtained, which show an edge 
anomaly very similar to what one may expect from the 
Mahan exciton effect [4-6]. The fine structure of the 
absorption coeffi cient for the LII,l1l transition in mag
nesium is shown in figure 14 [43]. Immediately above 
the edge there is more detailed structure which 
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FIGURE 14. The/ine st ructure of the absorption coefficientfor the 
LII .", transition in m.agnesium [43]. 

possibly co uld be due to.ordin ary band s truc ture effects 
in the final state. 

At still higher e nergies comes a s tron g peak [43-45] _ 
• We will argue that thi s peak may be a many-body ef

fect. In table 1 we give results for the posi tions of the 
peaks measured from the threshold [43J , and compare 
with the position of the core plasmaron peak discussed 

)- in section 3 (cf. fig. 11). There is good agreement for 
I aluminum but not for the other metals. 

t 

Th e importan t point, however, is that Epeak/ Wp is a 
very smooth function of the elec tron density_ ActuaUy 
its value is closely 0_8 Ts in all cases. This indi cates that 
the peak is associated with properties of the electron 
gas rather than being due to oscillator s tre ngth effects. 
The latter would be connected with the properties of 
the ion co re and there is then no obvious reason to ex
pect a regular variation with the conduction electron 

TABLE 1. Position of the strong peak in soft x-ray absorption and 
comparison with the location of the satellite peak (€pm) in 
figure J 1. 

Element rs Epeak, eV 

AI... ... . . ...... ....... 2.07 24 
Mg......... ..... .... .. . 2.66 22 
Na. . . .. . . ....... .... 4.00 18 

Epeak/Wp 

1.6 
2.1 
3.2 

1.7 
1.8 
2.1 

density_ The position of the plasmaron peak should be 
given better at higher densities and the discrepa ncy 
with experiment at lower densities is in no way alarm
ing. More serious is the fact that Langreth's calculation 
has shown the higher order effects to be strong. The 
strong peak could of course also be due to many-body 
effects involving final-state interactions. 

5.4_ Photoemission in the Ultraviolet 

The basi c m echanisms of the photoemission process 
are still not well understood. It may be regarded in one 
extreme as a pure surface effect and in another as a 
pure volume effect. In the latter case we have to ac
count for the very important inelastic scattering effects 
of the outgoing photoelectrons. If the surface effects 
are not too strong, and if we can sort out the in elasti
cally scattered elec trons, the pnotoemission results in 
the ultraviolet s hould reflect structure due to the satel
lite band of the co nduction electrons_ There is so me 
hint of suc h a s tru c ture in the recent results for cesium 
[46J (fig. 15) at an e nergy of abo ut 4 eV below the Fermi 
edge. However, the structure co uld also be due to a loss 
of two s urface plas mons [46J. 

o 
E 
(; 
c: 
c: 

.2 
z 
o 
i= 
::J 
m 
n: 
f-
(f) 

o 
>
t? 
n: 
w 
Z 
w 

z 
o n: 
f-
u 
W 
...J 
W 

f2 o 
:r: 
0.. 

llw=I02eV 

o 234 567 8 9 
KINETIC ENERGY leV) 

FIGURE 15. Photoelectron energy distribu.tion curves at hw = 10.2 eV 
for Na, K, Rb and Cs [46]. The hori zontal bars indi cate the values of 

the s urface (full curve) and volume (dashed) plas mons. 
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5.5. Optical Absorption in the Ultraviolet 

The description of optical properties of metals in 
terms of Drude (see e.g. refs 47 ,48) and interband con
tributions is often in qualitative agreement with experi
ment. To go beyond that description we need to know 
the dielectri c fun ction including final state interactions_ 
The many-body effects may show up as changes in in
tensity and as new structures_ Attempts to account for 
the former have been made e.g. by Mahan [49J, who 
considered the contributions from virtually exchanged 
plasmons. Absorption caused by electron gas effects 
has been considered by Hopfield [50J. He observed 
that while the electron gas by itself cannot absorb 
radiation the effect of a weak perturbing potential from 
phonons or disorder is enough to provide the necessary 
momentum conservation for the absorption process and 
th us allow the plasmon reso nances of the electron gas 
to show up. 

A straightforward way to extend the one-electron 
joint density of states expression is to make a convolu
tion of the spectral weights of occupied and unoccupied 
states. This has been done for semiconductors by Bar
dasis and Hone [51J who in addition considered vertex 
corrections. They obtained improved agreement with 
experiment. Calculations for metals by the convolution 
approximation indicate the existence of a plasmon-in
duced structure at photon energies above En + Wp [52J , 
where En is the interband threshold energy. There are 
some experimental indications of structure beyond the 
ordinary interband absorption in this energy region. 

5.6. The Compton Effect 

X-ray scattering from an electron gas in the regime 
of large mom entum transfer is a direct meas ure of th e 

Ifp) (0.") 
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FIG URE 16. The linear momentum distributionfor Li [54,55]. 

one-dimensional momentum distribution [53J. From 
recent measurements of the Compton profiles of Li, Na J 
and Al the linear momentum distribution has been 
deri ved [54J . The result for Li is shown in figure 16. ~, 

In section 3 approximate values of the momentum I 

distribution for an electron gas have been shown (fig. 4). 
Th e corresponding linear momentum distribution 
shows a too small reduction compared to the free-elec
tron case to reproduce the experimental results for Li 
(fig. 16) and AI, while for Nathe electron gas curve falls -C 

almost entirely within the experimental region. 
As band structure effects could be expected to be 

more important in Li and Al than in Na, this kind of cor
rection has also been calculated using the OPW 
method [55J. As shown in figure 16 these effects 
reduce the discrepancy, even if a quantitative agree
ment has not been obtained. 

This kind of experiment provides a way of illuminat
ing another aspect of the distribution of electrons in 
metals and provides a useful way of checking theoreti
cal models including many-body interactions. 

6. Concluding Remarks 

This paper has presented a discussion of the possible 
nature of many-electron effects on the density of states. 

y 

It is based on a study of the one-electron spectrum in
cluding interactions and points out the existence of 
characteristic satellite structure in the density of states • 
of electrons and holes in simple metals. Considering 
the joint density of states of electrons and holes as in 
the theory of interband transitions certain predictions 
about possible effects in x-ray and optical spectra can 
be made. All this material is however only qualitative J 
and tentative. The structure in the one-particle spec- i 
trum has been calculated in low order and considerable 
changes may result by including higher-order effects. 
Further, the convolution of the electron and hole spec-

J trum implies neglecting the final state interaction (i 
between the electron and the hole. The final state in- , 
teractions may partly cancel out the structure in the "\., 
electron and hole spectrum, and it leads to charac
teri s tic new effects such as edge singularities, and of 
course also gives an overall distortion of the spectrum. 
With all these reservations , however, the discussion 
points out the existence of a number of possible in
teres ting effects which offer a challenge for further stu
dy. In assessing the possibility of pursuing this ap
proach to obtain quantitative theoretical results one has 
to consider critically the present state of the art with re
gard to ordinary band theory. Indeed , rather little has 
yet been done in a quantitative way to calculate spectra 
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,. 
es peciaUy with regard to oscillator strengths. Such 
more deta iled knowledge from energy band calcula· 
tions also forms a necessary prerequisite for making 

) qua ntita tive sta te me nts about many·electron effects. 

) 

> 

7. References 

[1] For a general re view, see L. Hedin and S. Lundqvist, Solid 
State Ph ys ics 23, (F. Seitz, D: Turnbull and H. Ehrenreich, 
Editors (Academic Press, New York, 1969). 

[2] Hedin , L. , in "Soft X·Ray Spectra and the Electronic Structure 
of Metals and Mate rials," D. Fabian, Editor (Academic Press, 
New York, 1968). 

[3] Anderson, P. W., Phys. Rev. Le tters 18,1049 (1967). 
[4] e.g., Mahan, C. D. , Ph ys. Rev. 163,612 (1967): Bergersen, B., 

and Brouers, F. , J. Ph ys. Chem. 2, 65 1 (1969); Mizu no, Y. , and 
Ishikawa, K., J. f' hys. Soc. Japa n 25, 627 (1968). 

[5] Nozieres , P. , and de Domin ic is, C. .I. , Phys. Rev. 178, 1097 
(l969). 

[6] Langreth, D. c., Ph ys. Rev. 182,973 (1969). 
[7] Longe, P. ,and G lick,A . .J., Phys. Rev. 177, 526(1969). 
[8] Nozieres , P., T heory of lnl e ractin g Fe rmi Systems (W. A. 

Benjamin , Inc. , New York , 1964). 
[9] Quinn,.1 . .I ., and Ferrell , R. A. , Phys. Rev. 112 ,812 (1958). 

[10] Quinn , J. J. , Phys. Rev. 126, 1453 (1962). 
[11] Rice, T.M.,A nn. Phys. (N.Y.) 31,100 (1965). 
[12] Hedin , L. , Phys. Rev. 139, A 796 (1965). 
[ 13] Lundq vist, B.I. , Ph ys. Kondens. Ma lerie 7,11 7 (1968). 
[ 14] Lin dhard , J., Da n. Math. Ph ys. Medd. 28, No.8 (1954). 
[15] Hubbard, J., Pro c. Roy. Soc. A243, 336 (1957). 
[ 16] C lick, A. J., Ph ys. Rev. 129 , 1399 (1963). 
[17] Celdart, D. J. W., and Vasko, S. H. , Can. J. Phys. 44, 2137 

(1966). 
/ [18] S ingwi, K. S . . Tosi, M. P. , Land , R. H., and Sji,lander, A., 

Phys. Rev. 176 , 589 (1968). 
[19] 
[20] 

;. [21] 

Kleinm an, L. , Phys. Rev. 172, 383 (1968). 
Langrelh , D. c., Phys. Rev. 181, 753 (1969). 
Lundqvis t, B. l. , Ph ys . Kondens. Mat e ri e 6, 193 (1967); 6, 206 
(1967). 

, [22] Hedin , L. , Lun'dqvist, B. I. , and Lundqv ist, S ., Inte rn . J. 

> 

Quantum Chem. IS (1967) 791. 
[23] Hedin , L. , Lundq vist, B. I. , and Lundqvist, S. , Solid State 

Comlll . 5, 237 (1967). 
[24] Lundqvi st, B. I. , Phys. Sta t. So l. 32, 273 (1969). 
[25] S later, J. C., Phys . Rev. 81, 385 (1951). 

[26] Gaspar, R., Acta Ph ys. Hun g. 3, 263 (1954). 
[27] Kohn , W. , and Sham, L. J. , Ph ys. Re v. 140, A1133 (1965). 
[28] Hedin , L. , Lundqvi st, B. l. , and Lundq vis l, S. (10 be publis hed). 
[29] Lan greth , D. C. (to be publi shed). 
[30] e.g ., Pines, D. , and Nozie res, P. , "The Th eory of Quantum 

Liquids," Vol. I, (Benjamin , New York , 1966). 
[31] Grimvall , G., J. Phys. Che m. Solids 29 , 1221 (1968); Phys. Kon· 

dens. Materie 6, 15 (1967). 
[32] Ashcroft , N. W., and Wilkins , J. W. , Ph ys . Leit e rs 14 , 285 

(1965). 
[33] McMillan, W. L., and Rowell , J. M., in "S uperconductivity," 

R. D. Parks, Editor (Dekker, Inc., New York, 1969). 
[34] Engelsberg, 5., and Schrieffer, J. R. , Phys. Rev. 131, 993 

(1963). 
[35] Hedin , L., Ark. Fys. 30, 231 (1965). 
[36] Lundq vist, B. I., Ph ys. Kondens. Materie 9,236 (1969). 
[37] Doniach, S., a nd Sunji c, M. (to be publi shed). 
[38] Ausman , C. A., Jr. , and Cli ck, A. (to be published). 
[39] Roo ke, C.1\. , Ph ys. Le ll ers 3, 234 (1963). 
[40] Cuthill , .I . R., Dobbyn, R. c. , McAlister, A. J. , and Willi ams, 

M. L. , Ph ys. Rev. 174,515 (1968). 
[41] Ferre ll , R. A. , Rev. Mod . Phys. 28 , 308 (1956). 
[42] Haense l, R., Keil e l, C., Schreibcr, P., Sonnt ag, B. , and Kunz, C. 

(to be publi shed). 
[43] Haense l, R., a nd Kunz, C. (priva te co mmunicat ion). 
[44] Fomi chev, V. A. , and Lukirskii , A. P. , Soviet Physics-Solid 

Slate 8 , 1674 (J967): Sagawa , T., Iguchi , Y. , Sasanuma , M. , 
Ejiri, A. , Fujiwara. S. , Yokota, M. , Yamaguchi , S. , Nakamura , 
M. , Sasaki , T ., and Oshi o, T. , .J. Ph ys. Soc. J apan 21, 2602 
(1966): Cod li ng, K. , and Madden, R. P. , Ph ys. Rev. 167, 587 
(1968). 

[45] Watanabe, H., J . App l. Ph ys.· 3, 804 (1964); S wanson , N. , 
and Powell , C. .I ., Ph ys. Rev. 167, 592 (1968). 

[46] S mith , N. V. , and Sp icer, W. E. , Phys. Rev. Lette rs 23 ,769 
(1969). 

[47] Nette l, S . .1. , Phys. Rev. 150,421 (1966); Miskovs ky, N. M., 
and Cutl er, P. H. , Solid State CO IllIll . 7, 253 (1969). 

[48] Haga, E. , and Aisaka, T. , J. Phys. Soc. Japan 22, 987 (1967). 

[49] Mahan , C. D., Ph ys. Lelle rs 24A, 708 (1967). 
[50] Hopfield , J. J. , Phys. Rev. 139, A419 (l965). 
[51] Bardas is, A. , and Hone, D. , Ph ys. Rev. 153, 849 (1967): see 

also Bru st, D. , and Kane, E. 0., Phys. Rev. 176, 894(1968). 
[ 52] Lundqvist, B.l. , and Lyden, c. (to be published). 
[53] Platzman, P. M., and Tzoar, N. , Ph ys. Rev. 139, A410 (1965). 
[54] Phillips, W. C.,and Weiss,R.].,Phys. Rev. 171, 790(1968). 
[ 55] Lundqvist, B. I. , and Lyden, c. (to be published). 

(Paper 74A3-608) 

431 


	jresv74An3p_417
	jresv74An3p_418
	jresv74An3p_419
	jresv74An3p_420
	jresv74An3p_421
	jresv74An3p_422
	jresv74An3p_423
	jresv74An3p_424
	jresv74An3p_425
	jresv74An3p_426
	jresv74An3p_427
	jresv74An3p_428
	jresv74An3p_429
	jresv74An3p_430
	jresv74An3p_431
	jresv74An3p_432

