
J~ 
1 

1. 

JOURNAL OF RESEARCH of the Nationa l Burea u of Stand a rds - A. Physi cs and Chemistry 

Vol. 74A, No.2, M arch-April 1970 

The Electronic Structure of Disordered Alloys* 

J . L. Beeby 

Theoretical Physics Division, Atomic Energy Research Establishment, Harwell, Didcot, Berks., England 

(October 10, 1969) 

The proble m of ca lc ulating the e lec tronic dens it y of s tates in an alloy is considered from first prin· 

c iples. C hoos in g a suitably simplified mode l pote nti al a diagrammatic expan s ion is disc ussed within 
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1. Introduction 

It has long bee n appreciated that the information ob
tainable from experiments on alloys provides a useful 
supplem ent to one's knowledge of the pure materials. 
Much of this information, such as the Hume-Rothery 
rules , was obtained using binary alloys with similar 
non-transition-metal constituents. In such an alloy the 
electron mean free path is long and the alloy can often 
be regarded as homogeneous. The problem whi ch will 
be disc ussed in this paper concerns how to calculate 
the properties of an alloy in whi ch the constitue nts are 
very different. For such an alloy there arises, besides 
the routine difficulty of choosing an appropriate poten
tial, a major proble m involving the order. Perfectly or
dered alloys can be handled just as for pure materials, 
but disordered alloys with strong scattering potentials 
have needed the development of new theoretical 
techniques. These methods will be discussed below via 
a diagrammatic expansion which appears to give im
proved insight into the whole problem of di sorder. No 
attempt will be made to formally review the literature 
and no claim is made to comple te ness. Rather, it is 
hoped, readers will be better able to judge for them
selves the contents of papers in the field. 

The paper will begi n with a derivation of the alloy 
potential. The inte ntion here is to clarify, for those not 
already familiar with the field , what di sorder is and how 
the th eori s t can describe it by an averaging process. 

* An invi ted pape r present ed a l the 3d Materia ls Research Symposium , ELectronic Density 

of Sta tes. November 3- 6. 1969, Gaithersburg, Md. 

While co ncepts of thi s type are already common , as in 
stati s ti cal mechan ics for example, it is clear from the 
current literature th at many authors s till misun
ders tand them in the alloy context. Th e derivation of 
th e pote nti al is the n comple ted by briefly li s ting the as
sumption s required with a few comme nts on the ir 
val idity. The pote ntial used is of muffin-tin type with in
variant potenti als for each constituent. The bre vity of 
thi s sec tion should not be regarded as indi cative of the 
trivial nature of ob taining the pote ntial , which in itself 
form s a most interesting and diffi c ult tas k. The heart of 
the paper is conta ined in sec tions 4-6 where the density 
of states is obtain ed by conside rin g the imagin ary part 
of the T-matrix for the alloy. The T-matrix can be ex
panded in a series involving the individual scatte ring 
centers (the muffin tins) in the usual way. The 
procedure adopted in section 5 concerns the way in 
which the series is to be averaged term by term. Each 
term requires the knowledge of a probability func tion 
and it is these probability functions which must be ap
proximated if the series is to be resumed. A diagram
matic expansion is given which, it is argued, formally 
converges like Z- 1 where Z is the number of nearest 
neighbors. In prac ti ce, however , it is the degree offluc
tuation whi ch de termines the convergence whic h is 
anyhow at best asymptotic. Section 6 illustrates these 
remarks by looking at numerical solutions for differe nt 
approximations. In the final sections a few examples 
will be cited of the interrelation between thi s work and 
experiment. These are mainly concern ed with the 
transition metals to which the formali sm is mos t ap
propriate. 
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2. The Meaning of Disorder 

When an alloy sample is made there is much infor· 
mation which is available in principle yet is not availa· 
ble in practice. It is normally possible to determine the 
content of each constituent, the structure and certain 
ordering parameters. But it is plainly absurd to expect 
to know the act uaL positions of all the atoms in a disor· 
dered sample. Thus while an experiment is performed 
on a particular sample whose atomic positions may be 
regarded as fixed during the experiment, a theoretical 
calculation for thi s sa mple must proceed in ignorance 
of the actual positions. The formal device used to offset 
this ignorance consists of an averaging procedure about 
which one might make the following comments. 

(i) It is expected that all macroscopically 
identicaLLy produced samples will have 
(within experimental error) identical properties. 
Systems with large fluctuations in their proper, 
ties due to unavoidable variations in production 
need a different approach. Such fluctuations are 
usually due to variations in some macroscopic 
parameter not yet controlled in the production 
process. 

(ii) The detailed microscopic order is therefore 
only important to the extent that certain macro· 
scopic properties (e .g., order parameters) are 
satisfied. 

(iii) Naturally the theoretician is, in these circum· 
stances, at liberty to choose anyone microscopic 
distribution which satisfies the macroscopic 
restraints. However, since all such distributions 
are equivalent, it is easier to average over them 
with a probability function specifying the chance 
that they occur-

(iv) Such an approach is well known in Statistical 
Mechanics and works for the same reason: the 
number of particles involved in the average is 
very large. 

It is most important that any such averaging is made 
only over observable properties of the sample. As an ex· 
ample consider the density of states which for a given 
sample might be written n(E , qt, q2, ... q,,) depending on 
certain parameters of the sample. If these parameters 
have a probability of occurence P(qt ... q,,) within the 
constraints of the sample production then the average 
density of states is I n(E, qt ... q,,) P (qt ... q,,) dqt ... 
dq". If the job has been done properly this average 
value should differ from a typical single alloy value only 
to the order (l/N) where N is the number of atoms. 

Averaging in this way makes things a little simpler al· 
gebraically because , like the experimenter, the theorist 

can ignore all except the macroscopic features of the 
sample. There are some conceptual difficulties, how· 
ever, which are worth briefly illustrating. Take first a .~ 
perfect lattice of one type of atom. Figure 1 a shows for 
a finite number of atoms the energy levels of the system 
and the singularities which will occur in the complex E· 
plane for a single particle Green function. A pole will 
correspond to each energy level. When N becomes in· 
finite the energy levels pack together and can be 
described by a density of states n(E) as in figure lb. At 

E E - PLANE 

0) N FINITE 

E 
E - PLANE 

, I 

'----~n (E) 

b) N INFINITE 

FIGURE L The energy levels and complex plane singularities for (a) 
afinite, (b) an infinite ordered system. 

the same time the poles merge together to form a 
branch cut along a portion of the real axis. For an im· 
perfect arrangement the finite system again has poles 

J 

I 
. ,\. 

on the real axis which will turn into branch cuts upon 
averaging. When approximations are made in the 
averaging these branch cuts may have been replaced <J 
by poles off the real axis; the importance of remember· 
ing that this is a consequence of the approximations has 
been particularly stressed by S. F. Edwards. A related 
point concerns the limit N ~ 00. In the perfect lattice r 

case periodic boundary conditions can be used and no f 

difficulty arises. In the disordered case the limit can(~ 
only be taken after the averaging procedure. To see 
this consider a group of N atoms which is infinitely ex· 
tended by repetition. The resultant crystal then has N 
atoms/unit cell and this is well known to yield a band 
structure with N·l band gaps in general. As N is in· 
creased the band gaps become more numerous and nar· 
rower, showing that this is not a sensible treatment. 
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3. The Alloy Potential 

> A co rrec t procedure for obtaining an alloy potential 
would be as follows . 

(i) The pos itions of the nuclei and core electrons 
are conside red known. (But will in practice be 
supposed to lie on a perfect lattice). 

(ii) The potential throughout the entire lattice is 
) guessed. 

:> 

(iii) The density of electrons in the system is the n 
obtained. 

(iv) A new estimate of the potential is made. 
Such an "in principle" self-consistent calculation must 
be made for a single unaveraged alloy and is plainly an 
impossible task. Some part of this self-consistency can 
be achieved in s pec ial cases, e .g., where the Friedel 
sum rule can be used in dilute alloys. Step (iii) to (iv) is, 
of co urse, similar to the same step in the perfec t latti ce 
except for the lack of order, but e ven in ~he perfec t lat-

l tice case is far from easy to carry out properly. The 
novelty of alloy theory lies in ste ps (ii) to (iii), describin g 
the electron de nsity once the pote ntial is known. Since 
this s te p is the prim ary interes t of thi s paper the di sc us
sion can be greatly clarified by choosing a suitably sim
ple form for the pote ntial. Only the one-electron ap
proximation will be considered. 

For a dilute alloy the bes t potential to use is the per
) fee t lattice (host) potential with an additional potential 

at each impurity site re presenting the differe nce 
between the impurity and host pote ntials. This pote n
tial can then be used in perturbation theory or eve n in 
more sophisticated sche mes. A modified version of thi s 
approach will also work quite well for concentrated 
nearly· free-electron alloys. 

For the case where at least one constitue nt of the 
alloy has a strong scattering pote ntial with just-bound 
or nearly-bound states the muffin-tin approximation is 
bes t. The muffin-tin assumption is worse in an alloy 

'"\ than in a pure ma terial because the local inte rs titial 
/ energy may vary from place to place through the alloy. 

It is hard to see how one can readily es timate the ef
fects of such variation. It is c us tomary to make the ad
ditional assumption that the muffin-tin potentials for 
each constituent are inde pende nt of the environment. 

)- This is not generally correc t; there is a spill over of the 
impurity potential onto neighboring sites. Unfortunate
ly neglec ting thi s c han ge is ine vitable at this stage in 

, the development of the theory and, it will be noticed, 
resembles neglect of posi tional relaxation about the im
purity si te in defect calculations. It should be borne in 

I mind , however, that the level of the theory at which 
such effects would enter is well beyond anything that 

will be di scussed in thi s paper. Since it is clear that par
ti c ular features of the band s tru cture may de pe nd criti
cally upon s uc h local effects, the mos t obvious example 
bein g bound s tates localized near an impurity atom, the 
defect type theo ri es plainly have im portant applications 
he re. 

The virtue of the nonoverlapping muffin-tin form of 
the pote ntial is that in the potential free region be twee n 
the s pheres electrons move as in free space. The mo
tion of an electron can thus be seen as a series of scat
terings from individual sites with free electron propaga
tion in between. It is this separation of the scattering 
eve nts which is so important to what follows. 

If the alloy constituents are at sites Ri , i = 1, .. . N 
then the pote ntial just discussed may be written for a 
particular alloy 

V(r) =2: vIJ.J r -R,,) 
i 

where fL i is the type of atom at site Ri and vlJ.( r) is the 
potential of the fL ' th atom type . The nonoverlapping 
res tric tion is that 

VIJ.( [· ) =0 r > ro 

where ro is half th e near neighbor di s tance. The re is ac
tually no res tric tion that vCr) be spherically symme tri c 
thou gh thi s is often quoted as necessary. With thi s 
greatly simplified form for the pote ntial it is possible to 
proceed with the formal theory of di sordered alloys. 

4. The T -Matrix 

In the discussior.. of the density of s tates in an alloy 
it is necessary to appeal to the concept of aT-matrix 
and it is therefore worthwhile to demonstrate that it is 
actually a simple concept. Indeed, while much of the al
gebra is rather involved, the use of the T-matrix allows 
almost classical mental pictures to be used and the al
gebra very largely suppressed. 

Consider then a single sca ttering center of potential 
V(r) with particles incident upon it. It is well known 
that thi s problem can be solved in integral equation 
form as 

1 J eih"1 r - r ' I 
!./J(r) = 1> (r) -47T r;.- r' I V(r') !./J(r' )dr' 

where 1>(r) is the incident beam and the second term 
gives the wave scattered from the potential. Note that 
the complete wave function !./J(r') appears in this latter 
term; if ~r) were inserted here the scattering would be 
given in Born approximation. The T-matrix is formally 
defined by 

V(r')!./J(r') = J T(r' , r')1>(r")dr" 
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but is bes t understood in terms of the physical descrip
tion. The point is that it is very convenient to describe 
a potential by the scattering it induces among a set of 
states defined outside the potential and this is what the 
T-matrix describes. In the crystal these states will be 
spherical harmonics centered on the atomic position in 
question. The T-matrix for the potential describes the 
scattering from one (ingoing) spherical state to another 
(outgoing) such state. 

The infinite crystal potential leads to aT-matrix of 
different interest. The feature dominant here is that the 
scattering cross section is infinite for electrons incident 
on a potenti al well a t an energy at which that well has 
a bound s tate. Using this in reverse one may look for 
the energy levels of the crystal by seeking the poles (or 
branch cuts) of the T·matrix. Actually the density of 
states is directly proportional to the imaginary part of 
the T-matrix and thi s is th e link which will be adopted 
below. One can now utilize the fact that the total alloy 
potential is made up of individual scattering sites with 
their own T-matrices ti. All scattering processes from 
the alloy can be described in terms of the sequence of 
scatterings from the se sites. Thu s 

(1) 
i'" j 

where the nth term describes those scatte rings from 
the alloy in which n individual site scatterings occur. Gij 
describes formally the way in which the electron moves 
between the scatterings at i and j and it is to be noted 
that two consecutive scatterings cannot be from the 
same site. 

5. The Alloy Formalism 

The aim of thi s section is to introduce a diagra m
mati c technique which carries considerable insight into 
the nature of the disorder problem. The algebra 
required to set up the diagrams is given mainly because 
of its intrinsic interest. This algebra may otherwise 
largely be skipped since the meaning of the diagrams 
is fairly readily understood. 

For a si ngle alloy the series (1) can be cast in an en
tirely real form and the imaginary part corresponding 
to the density of s ta tes (n(E)~ 2.o(E-Ei) for this alloy) will 
only e merge after the infinite series has been summed. 
In other words the bound states occur at the points 
where the series diverges. Since the averaging plainly 
cannot be carried out on the summed T-matrix it is 
necessary to resort to a term by term averaging fol· 
lowed by the infinite summation. To be specific con· 
sider a binary alloy specified by writing at the site i 

t i= ~ tvcr 
v=a./3 

where ta , t/3 are the t-matri ces for pote ntial wells of type 
A and B respectively. Also the ci are defined by 

e;'" = 1 if the a tom at site i is of type A 
= 0 otherwise 

ef= l- ef= 1 if the atom at site i is of type B 
= 0 otherwise 

In the average system these ci are given by certain dis
tribution functions appropriate to the alloy composition 
in question. It is convenient to introduce dummy varia
bles eV , e" = 0 , 1 so that cj = ~ e"oc" cf ' Then the T-
matrix becomes c" 

". J.1. 

and the averaging which must be performed has been 
entirely concentrated into the Kron ecker-delta fun c
tion s. 

Consider these averages. What one requires to know 
are probability distributions such as 

( e 1 C2 e3 c4 ) 
Pi' j ' k ' l = (o c'. cr o c"c) , oc",cz , oc' . c) (3) 

For example, take a completely disordered binary 
system in which th e concentration of the constitue nt A 
is c. Then the probability distribution of the ci 's is 

11 {eoc"c~ + (l -e) o c"c.} 
a ll " i , 

(4) 

sites 

Since the probability of finding atom A is indepen
dently c on every site. When thi s probability function 
is used to evaluate the ave rage on the right-hand side of 
(3) the factor in braces in (4) only occurs once for each 
independent site in (3). This means there is not neces
sarily one such factor for each Kronecker delta in (3) 
but rather only one for each independent site. Thus one 
obtains 

where the prime on the product denotes the restriction 
that only independent sites among the i, j , k , 1 are 
included. It is this restriction which is at the heart of 
the disordered alloy problem. It states that when the 
same atom appears more than once in a term of the se
ries (2) the average cannot be taken as though each ap
pearance is independent of the others. It is to be 
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emphasized that this restriction is geometrical; it is a 
sort of counting pl"o ble m. Obviously the magnitude of 

) any counting error will depend on the relative size of 
the various terms and the precise determination of th e 
physical parameters de termining these sizes is the es
sential probl em to be faced. The partial progress in thi s 
direction will later be illus trated by example but much 
remains to be done. 

> 

> 

> 

A common first step in dealing with a restri ction is to 
first ignore it and then make successively more accu
rate correction s_ This procedure is readily ado pted 
here. Consider the product over independent sites of 
some factor fi : 

11 li= 11 Ii II [fi+1-ji] 
indep. 
sites 

indcp. 
sites 

= lJf;{l + I 
a ll other 

sites sites 

other 
sites 

(l -f, ) 

Ii 

(l-f;) (I-fj) 
Ij + . Ii 

+ I 
two other 

sites 

} (6) 

where th e last line is obtained by expanding the second 
product. Clearly the correct res ult will only be regained 
after all the terms in the sum have been included . This 
formula allows a simple diagrammati c re presentation 

;" in which all the sites appearing in a term are given as 
dots on a line as in figure 2a. The dots the mselves 
represe nt the t-ma tri ces a nd the lin es betwee n the dots 
represent the propagators Gij . In this series of scat
terings the repetition of a given scattering center can 
be treated by the device of eq (6). The firs t term in 

'> the sum in (6) corresponds to ignoring the res tri c tion in 
which case the probability distribution will be given by 

(C.1C2C:l )= (C1) (C2) ( C3) P ' k P . P P .. _ 
£,] , ,- . . £ j k 

> where 

p(~ I) = I OC"C~ { co c~,c7 + (l -c)oc~,c~} 
c~ 

Thi s gives a t once 

) 
(7) 

- The independent averaging of a point can be denoted 
by a cross as in figure 2b. Th e next term in the sum (6) 
con nec ts each repeat site with the previous occasion 

> on which the site ap peared and can be represented by 
a dotted lin e as in figure 2c_ The third term contain s 

a) 

c) 
f 

: 
/ 

/ 

------- .... ----/.:; 
/ /, 

// / \ 

: .' \ 

, , 
\ 

\ 

~ 

F1CUHE 2. The diagrammatic expa.nsion/or the T-matrix showing (a) 
an unaveraged line, (b) the lowest order approximation, (c) a typical 
lowest order correction term , (d) a second order correction term , 
and (e) a/orbidden graph. 

two repeats i. e. two dashed Ii nes and so on. Indeed, the 
entire se ri es (2) may be given by the diagrammatic ex
pan sion sati sfying four sim ple rules. For each value of 
n , n = 1,2,3, .. _ draw all possible diagrams hav ing th e 
followi ng properti es 

(i) There are n points on a straight line. 
(ii) Pairs of these points (but not a consecutive 

pair) are joined by dashed lines. 
(iii) No two dashed lines leave a point in the same 

direction_ 
(iv) All points not touched by a dashed line have 

crosses on them. 
The meaning of these diagrams can be readily put 

into words. For example figure 2c corresponds to a term 
in which the elec tron first scatters from 6 different si tes 
then scatters again at the fourth one and finally scatters 
at two more different sites. Figure 2d represents the 
electron returning to the first and second sites for its 
third and fifth scatterings_ All such scattering topologies 
must be drawn and included in the series though it is 
important to note that diagrams of th e type of fi gure 2e 
are forbidden by rule (i ii)_ Finally , the dashed line does 
not represent the actual value of the process it 
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describes but the correction to the related process in 
which the restriction is ignored and the two ends of the 
dashed line replaced by crosses. This is illustrated in 
the example below. 

The evaluation of the contribution of a diagram is 
complicated by the two separate features involved. 
First there is the t-average which is given by the 
procedure outlined between eqs (3) and (6). Secondly 
the propagator sum must be evaluated for each dia
gram; it is this which is the limiting difficulty as the dia
gram becomes more and more complicated. Consider 
any diagram of the type 2c i.e. with only one dashed 
line. The average corresponding to the dashed line may 
be written 

(8) 
cPo , c" 

o ij is written here as a reminder that j is exactly the 
same as i and was only introduced as a dummy varia
ble. This is plainly of the form of the exact term less the 
zeroth approximation to it. Each cross on the line is 

replaced by l as in eq (7). Propagator lines which do n0t 
appear inside the dashed curve occur in the combina
tion L Gij=G. (In practice the sum is k-dependent; 

j( ,., i) 

(,(1.:)= L C(Ri- R j)e'k(ll ,- Rj) . 
j( ,., ,) 

Between the ends of the dashed line the propagator 
must trace a scattering path beginning and e nding at 
the same point so that the sum involved is 

5= L GijGjI, - •• (;/II/10/li. 

j( ,., i) , !;( ,., j ) etc. 

There is an additional restriction that no intermediate 
site can be that of the end point, otherwise rule (iii) will 
be violated and the correction terms overcounted. This 
sum is readily completed by Fourier transformation giv
ing 

5=1/ (l + tI) 

where 

(9) 

Here the appropriate number of l factors has been in
troduced and the integral in (9) is over the Brillouin 
zone of volume 7. 

The formal derivation above yields a diagrammatic 
expansion of a very familiar sort on which the usual 
tricks can be pulled. These will be discussed in the next 
section but it is appropriate that some feeling for the 
meaning of the diagrams be obtained. It will readily be 
seen that the expansion is not necessarily in powers of 
any small parameter of a physical nature (it might be 
e.g. if t were very small) but is more precisely viewed 
as an expansion in the disorder of the system_ One way 
of looking at this is to consider the sequence of 
neighboring sites, i,j ,k. Of the possible values of k, one 
will be i and therefore (l/number of values of k) of the 
terms will require corrections as discussed above. If Gij 
is short ranged, as is the tight-binding case, this means 
that the proportion of correction terms is l/Z (where Z 
is the number of near-neighbors) for each dashed line. 
An alternative is to regard the series as an expansion in 
the fluctuations of the system. While l/Z appears to be 
small the number of terms with n dashed lines in
ceases something like n! as n becomes large so that 
the series is at least asymptotically convergent. This is 
well known to occur in certain statistical mechanical 
expansions to which the above procedure is naturally 
related. 

6. The Simplest Approximations 

It is now possible to classify most of the theories of 
disordered alloys according to which diagrams they 
retain. This is useful in two ways. It gives information 
about the nature of the various approximations and it 
helps one to understand some of the physical parame
ters determining the convergence of the resummations. 
Begin with the simplest possible terms. 

6.1. The average t-matrix approximation [1] 

Ignoring all the diagrams with dashed curves gives at , 
once the result 

Nt 
( T( k) ) = 1 _ lG ( I.: ) 

N 
t- I_L(I.:) 

in which the alloy is represented by a perfect lattice 
with identical scatterers having the average scattering 
of the alloy constituents. The density of states given by 
thi s approximation for a binary tight-binding alloy is 
shown in figure 3. The tightly bound energy levels are 
EA and Ee and the various cases are found by compar
ing I EA-EB I with the bandwidth. While the gap between 
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I 

> 

> 

n (E) 

n (E) 

a) 

FIGURE 3. The densi ty of states ill th e average t -matrix lIpproxima 

tion. (a) when I E.,-E II I > > bandwidth , (b) when IE.,-En l < < 
bOlldwwth. 

I the band halves is reasonable when th e bandwidth is 
( much less than the energy splitting (fig_ 3a), thi s ap
I proximation incorrectly predic ts the gap even when the 

bandwidth is very large (fig_ 3b)_ At the same time the 
rest of the band is moderately well described s howin g 
that the accuracy of th e approximation for a give n ener
gy depends on the position of that energy within the I band_ 

6 .2. First order approximation 

Under the assumption that the liZ series converges 
. one might nex t e valuate the contribution of the terms 
>of the type shown in figure 2c. Thi s contribution must 
I include all possible numbers of intermediate scat-

terings both inside and outside the dashed loop. But 
t now consider the diagram s in figure 4a. These each 

have an intermediate denominator whic h we expect to 
be nearly sin gular and all thi s seque nce must be in

>1 cluded too. This is s imply the usual manipulation to 
give a self-e nergy rather than a t-matrix which is ab
solu tely necessary in t.hi s context. Now , 

T= N 
(t +L) - I-G 

r where L is given by th e diagram of fi gure 4b , with all 

possible numbers of intermediate states a nd can be 
evaluated from eqs (8) and (9). The inclusion of thi s 
term is an im proveme nt over the ave rage t-matrix ap
proximation but does not resolve all th e diffi c ulti es. 
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FIGURE 4. (a) the dia gram.s sum.med to give th e self energy form , (b) 

the definition of ~. 
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F IGURE S. The diagrams summ.ed to give the self-consistent propa
gator inside the dashed line. 
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FIGURE 6. Some density of states curves showing approximations 

(iii) dashed lines and (iv)fulilinesfor c = O.S and IEA-E" 1= ll/3_9. 

l 
6.3 . Self-consistency 

It has long been known that using the unperturbed 
propagator in the expression for the self-energy is not 
the best that can be done. The same is true here, where I 

the motion of the electron between successive scat
terings can readily be included as if it were being scat
tered by (l+I) scatterers_ This corresponds to includ
ing the infinite series of diagrams seen in figure 5. This 
step is necessary because one really wants to allow 
scattering of the electron into the true, not the unper
turbed, density of states_ Once this has been done the 
self-consistent equations obtained can be solved when 
the unperturbed density of states is given by the ex
pression [2J 

no(E)=:t; ~l-(Ett;ToJ if IE-Tol < M 

= 0 otherwise_ 

This self-consistency calculation is an immediate im
provement in the sense that the band gap now closes as 
the splitting I EA-EB I becomes smaller than the band
width. Figures 6 and 7 show th e alloy density of states in 
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FIGURE 7. The density of states curves for c=O.S and IEA-EI1I= Il/0.7. 
The scale here is such that E" =+ 1, E" = -1.0. 
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l FIGURE 8. The self-energy graphs reql/.ired to renormalize the scatter· 
ing energy levels. 
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the approximation as a das hed line . One major error of 
such a density of states is that it does not satisfy the 
sum rule on the density of s tates, a diffi culty that can 
be overcome by a further resummation. 

6.4. The renormalized energy levels 

The work of Hubbard [21 and la te r workers [3,41 
ove rcomes the sum rule proble m by extending th e scat
terin g fro m any s ingle site to include all possible 
processes involving only that site . These are the dia-

~ grams of figure 8. Thi s has the effec t of renormalizing 
the e nergy levels and gives the full line de nsity of states 
in figures 6 and 7. It will also be noticed that the bump 
in n(E) near EA and E B has flatt ened out. Thus overall 
thi s more sophisticated summation gives a smoother 
densi ty of states. It is interes ting to observe that neither 

) the value of the gap width nor the critical ratio lEA ~ E~I 
at which the gap closes is affected by thi s last improve
me nt. Within the num erical e rror approximations (6.3) 
and (6.4) are identical in thi s respec t. 

This last approximation has allowed several alloy 
dens ity of states calculations to be carried through 
[3,4J and is probably the best that can be done at the 
momen t. It is rather difficult to see what to do next. 
There is no general rule for selecting sets of diagrams 
obeying the density of states sum rule and one has no 
insight into whi ch of the higher order terms are the 

( mos t important. Indeed diffe rent sets will probably be 
important in diffe re nt regions of the energy spectrum. 

7. Dimensions and Fluctuations 

This section is intende d to draw atte ntion to a few of 
the difficulties associate d with the alloy theories just 
outlined. Rather than dealin g directly with the alloy 
case it i s prefe rable to simplify to the vacancy problem. 
Here th e second alloy species is re place d by vacancies 
so that only a proportion c of the perfect latti ce sites are 
occupied by type A atoms. In the formali sm of the 
preceding sections it is only necessary to put t$ == O. 

The illustrative value of the number of dimensions in 
this argument arises because the formed procedure just 
outlined is independent of the dimensionality for fixed 
unperturbed n(E). The physical nature of the problem , 
howeve r , de pe nds extremely strongly on the dimension 
principally through the importance of flu c tuation s. Ob
viously the flu c tuations in one dimen sion are very large 
compared to those in three . dimensions since the 
number of neighbors is so much less. This is reflected 
in the fact that in one dime ns ion the de nsity of states 
for the alloy proble m has a s trongly peaked s truc ture, 
the peaks being ide ntifiable as loc al groupings of a few 
atoms as was firs t remarked upon by Borland [5]. In 
particular, for the vacancy ti ght binding cases, the 
probability of findin g a line of n occupied sites with a 
vacancy on either end i c"(1-cF a nd the density of 

II 

sta tes for such a group is L o(E-E;). The total density 
i = 1 

of states is th en effectively a weighted sum over 0-
functions and is not continuous. Obviously in two and 
three dimension s the same is true for s uffi ciently small 
concentration s but not in general. Plainly when 
fluc tuations are this important the re is no c hance that 
the theory described previously can hold. 

Another point which can be r eadily de monstrated is 
that in such a vacancy case there exist states outside 
the bands calculated by any of the models just 
discussed. Consider a simple square lattice in two 
dimensions. This has coordination 4. A square of side 
n fully occupied by atoms will have a mean coordina
tion number 

4n2 -4n 1 
4n2 = 1--; 

since atoms at the sides only have c oordination 3. In a 
tight binding model the mean coordination number is 
a least estimate for the bandwidth of a group of atoms 
compared to that for the full lattice. This can be r eadily 
seen by a variational calculation with trial fun c tion 'I' 

n 2 

= L 'I';/n. Now the theories described above give a 
i= l 

bandwidth ex: (approx. (6.1» or Vc (approx. (6.4» so for 
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the latter case there is a probability cl/ 2 = C(I -YC) - 2 of 
groups of atoms with energy levels outside the calcu
lated band. Such states of course tail off rapidly but 
nevertheless exist with positive density of states right 
out to the full perfect lattice bandwidth. The same ap
plies in three dimensions where the tail is smaller but 
still there. Figure 9 illustrates this point. Obviously 
such states are very difficult to spot in the type of 
theory discussed earlier. They certainly exist at the out
side edges of the alloy bands but whether or not they 
exist inside the band gap is a more difficult question 
which will undoubtedly be the object of more study. 

9. The Experimental Comparison 

It is natural enough that when developing a theory of 
alloys one begins with the simpler, one-body quantities 
such as the density of states. Other properties, such as 
conductivity, Hall effect, et c. really require more so
phisticated theoretical treatments. The relevant experi
ments are well dealt with elsewhere in the symposium 
and so will not be discussed in detail here, but it would 
be wrong to completely omit commentary on them. 

Calculations of the density of states yield a function 
of energy and a proper experimental comparison would 
require that function to be observed. Only in the optical 
type measurements, particularly photoemission and 
soft x-ray work, is this possible even in principle. In 
practice there is a good deal of ambiguity in separating 
out the n(E) curves from other energy dependent varia
tions typically in the matrix elements and many-elec
tron effects. It is clear that for a general comparison 
with experiment the theoretical work must be pushed 
to the point of predicting directly the observed data. 
This is a step which at the moment looks to be just 
about possible though complicated by the need to take 
into account local effects through the matrix elements. 

Those experiments which measure densities of states 
at the Fermi surface are complicated by many-body fea
tures which, for example, can cause the density of 
states to be enhanced by quite large factors ( - 1.5 or 
more). There is the additional difficulty that the pure 
transition metal band structures lead to density of 
states curves with a good deal of structure on them so 
that detailed comparison with experiment requires 
precise knowledge of potentials and the Fermi energy. 
Beck and coworkers [6] have overcome some of these 
objections by using transition metal alloys which seem 
to conform very closely to the rigid band model and in 
which the parameters vary only with electron concen
tration. It is still questionable whether theory can yet 
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FIGURE 9. Density of states in the vacancy case showing the limits of 
the pelfect band and the tails extending to those limits. 

predict those cases where Beck' s attack will work and 
in particular where and why it breaks down in the 
transition metal alloys. 

The need for an indirect step in all these experimen
tal analyses has hitherto prevented a satisfactory com
parison between the calculated and the measured den
sity of states. It now seems possible that since so
phisticated yet fast band structure calculations have 
been developed and better theoretical understanding 
of the alloy problem is being rapidly gained the time 
should soon come when the comparison will become 
direct. 

Finally one might expect some rewards by looking for 
the gap predicted by the theories when the energy 
levels are well split as in figure 3a. However, this par
ticular gap is strongly reminiscent of those predicted in 
the more general disordered system theories and still 
argued about at length. It is very difficult to observe the 
difference between a gap and a very low flat minimum 
even though the distinction is theoretically very impor
tant. Perhaps the tunnelling experiments can help here. 

10. Conclusions 

The theory of disordered alloys is at last coming to 
. the point where it can truly be regarded as a theory 

rather than being a collection of ad hoc methods. The 
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proble m of a di sordered alloy can thus be treated in a 
I parallel fas hion to many-body theories and in con
>- seq ue nce considerable experience taken over from the 

many-body theorists. At the same time there remains 
a real diffi culty in producing a satisfactory dialogue 
with the relevant experiment work. Overall, however, 
the picture is one holding promise of good develop-l ments in the near future which may have a catalyzing 

I effect on the theoretical understanding of disordered 
systems. 

> 

> 

> 

11. References 

[1] Beeby, 1. L. , Phys. Rev. 135, A130 (1964). 
[2] Hubbard , J., Proc. Roy. Soc. A281, 401 (1964). 
[3] Soven , P. , Phys. Rev. 156,809 (1967); Onodera, Y. and Toyozawa, 

Y., 1. Phys. Soc. Japan 24,341 (1968). 
[4] Velicky, B., Kirkpatrick, S. , and Ehrenreich, H. , Phys. Rev. 175, 

747 (1968). 
[5] Borland , R. E. and Agacy, R. L., Proc. Phys. Soc. 84, 1017 

(1964). 
[6] See for example, Cheng, C. H., Gupta, K. P. , van Reuth , E. c., 

and Beck, P. A., Phys. Rev. 126,2030 (1962). 

(Paper 74A2-600) 

291 


	jresv74An2p_281
	jresv74An2p_282
	jresv74An2p_283
	jresv74An2p_284
	jresv74An2p_285
	jresv74An2p_286
	jresv74An2p_287
	jresv74An2p_288
	jresv74An2p_289
	jresv74An2p_290
	jresv74An2p_291
	jresv74An2p_292

