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In the study of soft x-ray transitions in solids, there has always been some hope that the results pro-

vide a direct measure of the density of states. This assumes that (a) matrix element variations over the

band and (b) final state interactions are small. Both of these assumptions are now known to be incorrect.

To illustrate the possible strength of these effects, two approximate calculations are presented: the one

electron oscillator strength of a simple bce metal as a function of energy: and the strength of the

Nozieres — DeDominicis singularity at threshold, with phase shifts estimated from an assumed Yukawa

interaction between conduction electrons and core hole.
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probability.

l. Introduction

The absorption of a photon can cause an electron to
change its state. The traditional viewpoint of this transi-
tion assumes that if one knew the electrons initial
and final Yy state, then the oscillator strength was
simply proportional to the square of the momentum
matrix element.

py= f d*risFpi (1.1)

This simple viewpoint is now known to be incorrect.
The proper picture is that the optical transition creates
an electron and hole, and these two excitations interact
with each other, and each separately with their environ-
ment. The coulomb scattering between the electron
and hole is called the exciton effect, named after the
first known example of Frankel excitons in solids. The
electron and hole can also emit phonons, suffer elec-
tron-electron collisions, etc. The sum of all of these
processes are called final-state interactions. The rate
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of optical absorption is affected by these subsequent in-
teractions of the electron and hole.

Upon reviewing our present understanding of the op-
tical properties of solids, one finds that some solids are
well understood while others are not. We classify as un-
derstood the semiconductors Siand Ge, [ 1] and simple
metals like aluminum [2,3]. It is noteworthy that in
these materials the final-state interactions are small:
they are small in semiconductors because the large
dielectric constant suppresses the exciton effect.
Ehrenreich and his co-workers have shown that many
body effects are small in aluminum. In these solids the
simple one-electron picture implied in (1.1) seems to
work quite well.

We classify wide band gap insulators [4], and metals
such as copper [5], as solids whose optical properties
are not well understood. There is not yet good agree-
ment between theory and experiment in these materi-
als. The dominant optical transitions in these materials
create hole states which are heavy, and which are sub-
ject to significant final state interactions [3]. We
speculate that final state interactions are important in
these materials, and explain the difference between
theory and experiments.

In the study of x-ray transition in solids, there has al-
ways been some hope that the results provide a direct
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measure of the density of states [6]. This presumes
that (a) matrix element variations over the band are
small, and (b) final state interactions are small. Both of
these assumptions are now known to be incorrect
[7,8,9].

The importance of exciton effects in x-ray trarnsitions
was reported in an earlier reference [ 10]. The effects
are large if the hole is highly localized, and if the con-
duction band of the electron is isotropic. Because the
coulomb scattering between the electron and hole oc-
curs in an electron gas, the electron can only scatter
into states not already occupied. This Fermi-Dirac ex-
clusion, as well as the exchange interaction among the
electrons, causes the problem to resemble the Kondo
effect more than the Wannier-exciton case. The hole
also has a large interaction with the entire electron
gas—this leads to a renormalization effect which in-
hibits the x-ray transition near threshold [11]. Nozieres
and DeDominicis [ 12] have shown that the exciton and
renormalization effects combine to give a threshold
behavior for ex(w)

€ (w) ~i< £o (1.2)

a
) 0(w— wr)
w2 \w— wr
where wr is the absorption threshold frequency, & ~
Er is a characteristic band energy, and o is a function
of the phase shifts §; of electrons at the Fermi energy
scattering from the static potential of the hole.

o 26’ 22 (20+1)

5 eean (=)

The term 28;/7 is the exciton part which tends to make
the threshold singular, while the second term in (1.3)
arises from renormalization. The angular momentum /[
is that of the conduction electron [ 13]. If the x-ray hole
has s-symmetry, the conduction electyon must have p-
symmetry ([ = 1). If the hole has p-symmetry, the con-
duction electron can have either s- or d-symmetry; in
this case (1.2) has a separate term for each symmetry
type.

The x-ray spectra can only be unravelled with a
knowledge of the phase shifts §—these are the phase
shifts for simple electron-hole scattering. These have
been calculated for a free electron gas by Ausman and
Glick [13]. They find ap > 0, and oy <0 for [ = 1 so that
singularities only occur for the /=0 case (p-state hole).
These results qualitatively agree with the experimental

(1.3)

results.

We have independently calculated the phase shifts,
and we describe our result in section II. We have con-
cluded that these phase shifts are qualitatively correct

but for the wrong reasons. The wrong potential is used
in the calculation, but it does not seem to make much
difference in this case.

Il. Phase Shifts

The present calculations have been performed by as-
suming that the screened electron-hole interaction has
the Yukawa form

V(r)=—""exp (— ki)
where the Fermi-Thomas screening length is
k2= 6me2n/E

for an electron gas of density ny and Fermi energy E|.
This is only a crude approximation to the actual poten-
tial the electron feels when scattering from the hole.
For example, studies of a point charge impurity in an
electron gas show that its potential differs from a Yu-
kawa at long range where Friedel oscillations occur,
and at short range where its potential is less steep [ 14].
In addition, because the hole is part of an atom, there
are term due to the exchange and orthogonality with the
atomic wave functions [7,8]. In a pseudo-potential for-
malism these latter effects contribute a short-range
repulsive term to the interaction. In spite of these short-
comings of the Yukawa potential, we believe that it pre-
dicts phase shifts which are qualitatively correct. The
reasons for this will be presented below.

The phase shifts are defined in terms of the eigen-
values E). and eigen functions {i:(r) of the electron in
the region of the potential.

V2
<— Sy E/;) Ui(r) = (2.1)
The wave is decomposed into spherical harmonics
Ue(r) = QU+ 1Pk r)gu(k.r)  (2.2)

=0

In solving for the eigen functions in (2.1), one has the
choice of specifying the boundary conditions for states
which are plane wave-like outside of the potential re-
gion. By choosing standing wave conditions, one is solv-
ing for a reaction matrix K;(k,%") and the phase shifts
are defined in terms of the diagonal k=%’ component

[15].
tan &;(k) =—2mkK,(k, k)

=—2mkf r2drji(kr)V (r) i (k, r) 2.3)
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Similarly, if one chooses outgoing wave conditions,
‘then one is solving for a T-matrix t;(k,%k") whose
diagonal components give the phase shift [15].

sin 8,e%1=—2mkt,(k, k)

=—2mkfxﬂddmb)V00¢dhr) 2.4)

We have chosen to use the reaction-matrix formalism
(2.3), mostly because it is a real function and this sim-
nlifies computation.

The phase shifts 8;(k) go to zero as k— «. Let us now
'lexamine their behavior as £k— 0. From (2.3) we have
:jl(l;r) ~ (kr)!, so

tan &/(k) ~ k' 'f xr’*zdrV(r)([)/(O, r) (2.5)

0

From Levinson’s Theorem we know that
8((0)-_— 7TM1

where M, is the number of bound states of (2.1) with
angular momentum [. For example, if M;=0 we get
&~ k!*1'. Whereas if M;=1 we get §=m+ck!*' (where
¢ is some constant) for small £. A typical case is shown
in figure 1, where My=1, and M;=0 for [ = 1. So the
s-wave phase shift comes into 7 with a linear slope,
while all other 8~ k!*! at small £.

So in calculating phase shifts, the first thing to de-
cide is the number of bound states M,. This is deter-
mined by examining the radial part of Schridinger’s
equation (2.1) which we put into dimensionless form

9

[—ﬁﬁrﬂ“’—l)— )\(:)—‘5} ri=0  (2.6)
ap* p* P

p=kr
_ 2me* _21;- 1/3
N ek ( 3) M

&=2mkE|h*k? 2.7
The parameter A determines the strength of the poten-
tial. Shey and Schwartz [16] have computed the
number of bound states which exist for each value of A
and [. For s-waves (/= 0), they find no bound states
exist for \<<1.68, one bound state for 1.68<A<<6.45, two
bound states for 6.45<A<14.3, et¢. For p-waves (L= 1)
bound states only exist for A>9.08, and d-wave bound
states exist for \>21.8.

In (2.7) we have written \ in terms of the density
parameter r; for an electron gas. Since metallic densi-
ties vary between 2 < ry < 6, then the range of \ values
in metals is 1.8 <X <3.1. For an electron gas of
metallic density, there is one bound state for s-states,
and no bound states for any other value of angular
momentum /.

These are the predictions of the Yukawa potential.
We must decide whether these are reasonable conclu-
sions for the problem of interest. For an actual point
charge in an electron gas, e.g., a proton, there is
probably a bound state. For an impurity in a host metal,
e.g., Al atoms in Mg, there is probably not a real bound
state. This is because the atomic core of the impurity
cuts off the attractive potential in the region where it is
the strongest; for example, see Ashcroft’s remarks
about the cancellation influence of the atomic cores
[8].

In the x-ray problem there is certainly an atomic
core. Yet there is also certainly a bound state in the
potential. This bound state is the x-ray level itself. That
is, if an electron scattering from the potential of the
hole did not think a bound state existed in the potential,
then it would have no inclination to recombine with the
hole in the final emission process. Since the emission
can occur, a bound state does exist which must be
reflected on the phase shifts.

The cancellation of the potential in atomic core is
caused by the necessity of the conduction electron
wave function to be orthogonal to all of the core states.
In the x-ray problem, one core electron is absent so that
the cancellation requirements are less stringent.

The foregoing discussion shows that any phase shifts
calculated from a simple Yukawa potential are only
going to be qualitatively correct. Yet there is some in-
terest in what this simple model predicts. Our method
of calculation proceeds by solving directly the scatter-
ing equation for the reaction matrix.

K/(/fl, ko) =V i(ky, k2)

2 [ g, el Rl RiCh )
m™ Jo kz_k'?

(2.8)

where the (" component of the potential /; is obtained
from the Fourier transform V(k;-ks) of V' (r)

Vilkis ko) =%f” d6 sin OP,(cos 6)V (ki —ks)
)

(

62

2k ks

(2.9)

Qu((k3+k3+k3) 2k k)
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when cos 6 is the angle between k; and ks, and Q;is a
Legendre function. We will abbreviate the argument of
the Legendre function to write it as Qy(k1, k2). Noyes’
method is used to evaluate (2.8). We find

Ki(k, k) =Vi(k, k)[(1—Ai(k)) (2.10)
__—4m ([~ pdp
A’(k)_nV,(k,k) s Vilk, p) filk, p) - (2.11)
Sfilk, p)=Vi(k, p)

et f lesc i Tl
WVI(k,k) 0 p“

- Vl(p»

(Vilp, k)Vi(k, p")

p Wik, k)] (2.12)
One obtains fi(k,p) from (2.12), perhaps by iterating
this equation. This is used in (2.11) to obtain A/ k), and
thus one has the reaction matrix in (2.10). This is an
exact result if fi(k,p) is found exactly. The Born Ap-
proximation result is obtained by setting Kk, k)=
Vik, k).

Note that it is natural to write Aj( k) as a power series
in the interaction strength A= 2/ ksagin (2.7)

() =3 Angm(kk,)

m=1

(2.13)

Each successive power of A corresponds to another
iteration of the equation (2.12) which determines
filk,p). For example, the first term is

P 0k p)? @214)

ks -
(1)( ) = L
& (k) wo,m,mf” 2 — 4

For /=0 we can evaluate the integral and express the
integral as a summation.

5 = (=) .
26Qo(k, A)E 2 [2p!sin (ol)

m, (k)=

— sin (2lp)]

p=[1+dk2/k2]-12 (2.15)

o=tan"1(2k/ks)
Qo(k. k) =% In (1+4k2/k?)

This form is convenient for numerical computation. In
figure 1 is shown the s-wave phase shift calculated by
approximating Ay by the first term in (2.13)

Qolk, k)
kag[1—Ag(V (k)]

tan 8()(16) =

Also shown in figure 1 are the phase shifts §; and &..
We also calculated the first correction term g;‘V(k) to

30 PHASE SHIFTS
fs= 4.0

PHASE SHIFTS (RADIANS)

K/kp
FIGURE 1. The phase shifts 8, calculated by a Yukawa potential.
This potential represents a coulomb interaction of unit charge,
with Fermi-Thomas screening. The phase shift 8; is calculated in
the Born Approximation, while 8, and &, have corrections for
multiple scattering.
the p-wave phase shift, and this correction has been
added into the calculation of the curve labeled &,. This
only changes the Born Approximation result by 10 per-
cent. The [ =2 phase shift is the Born Approximation
result. The multiple scattering terms are small except
for the s-wave.
In the x-ray transition, the singular effects occur at
the Fermi surface, so we are interested in the phase
shifts evaluated at k. Figure 2 shows the critical ex-

1.5 T T T

00
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Is
FIGURE 2. The variation with electron density ry of the exponents ay
and ;. These depend upon the phase shifts evaluated at the Fermi
surface. Also shown is the renormalization parameter € and the
Friedel sum rate result Z. The value of Z is rigorously unity, and
our deviations from that value indicate the errors in the calculation.
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ponents ao and «;, in (1.3) plotted versus electron
density r5. Values of «; for [ = 2 are essentially equal to
—e€. Also shown are the values of the Friedel sum Z
and the Anderson exponent €, where

7=2% 2+1)(8)/m)

=0
e=2S (20+1) (8/m)?

The Friedel sum rule should rigorously be given by
z= 1. Our deviation ~20 percent from the exact result
of z =1 provides an estimate of the error in the calcula-
tion.

Another estimate of the accuracy and convergence
of the calculational method is obtained by seeing how
well it estimates the position of bound states. As k— 0

we get

2k/ks
Ii ) = =" <__>
Llli](lj So(k)=tan 1= Au(0)

A bound state is predicted if Ag>1. We find that
gU(0)=1/2
g (0)=1In (4/3) —1/4

If we jusl use the first term in the expansion (2.13) so
Ao(0)=\/2 then the criteria Ay(0) >1 means A >2. This
is an error of 16 percent from the actual criteria

A>1.68. But using two terms gives A/2+4 A%(In

4/3—1/4)>1 or A>1.765. So a considerable improve-

ment in accuracy is obtained by including the second
term in (2.13). So we conclude that the series (2.13) con-
verges rapidly for the range of A values of interest.

lll. Matrix Elements

The change of the matrix element with energy has
been discussed before and is known to be a large effect
[7,8,9]. We have calculated the change in matrix ele-
ment near the first critical point in a bee solid for an x-
ray transition from a 1ls core level. We used a simple
two band model in each 1/12 of the Brillouin Zone [17],
so that the energies and eigenstates are

1/2
= :% (&r+&x—) i[%(gl;_gk—(;)z i I(/l]

_EI%|1/‘.’.eil"(k*G )}

i o Ve
Vel

Yi(r)= Ny, {| Ex—Ex;

1 ) -2
Ni= 5[ (&r— gkf(;)")*'Vf:]

The matrix elements were calculated assuming that the
core was a delta function, and no attempt was made to
orthogonalize the conduction states to the core. Thus,
after averaging over polarizations, the matrix elements
are

(PR = =3N{ k| & — EJ|+k—G)*| &
—E3|+2k - (k—G)V,)}

In figure 3 we show the density of states p(E), and also
the absorption strength

AE)= {<pk ) OE—Ef)+ (pp)-S(E—Ey)}

(2 )?

In this figure, energy has been normalized to Eo=
#2G?%/8m so that &=FE[E, and v=V4/E,. The choice v
=0.2 is close to Ham’s value for Li (r=0.23). Indeed,
the present calculation was done with Li in mind, since
the lack of core orthogonalization should not matter
here.

(o) DENSITY OF STATES |

0.5F

Ple) SCALE ARBITRARY

1.0F

05

A(e) SCALE ARBITRARY

FIGURE 3. The density of states p(€) and absorption strength A (€)
for a bee solid such as Li. The energy scale is listed in units
Eo=1>G*10/8m, and v="V,10/Eo. The absorption strength A(e€) is
defined as the integral of the x-ray matrix element <p?> averaged
over the energy band.

The curve for v=0.2 in figure 3(b) has the expected
shape for Li [18]. Because the wave function is p-like
at the lower critical point &= 0.8, the transition is al-
lowed and the absorption strength has the same shape
as the density of states in figure 3a. The density of
states structure at £=1.2 is washed out in A(&) because
at the critical point the transition is s-like and largely
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forbidden. The curve forv = —0.2 has the same density
of states, but now the upper critical point is p-like and
A(#) has the same structure as p(&) near 1.2. Neither
the curve v=0.2 nor v=—0.2 has any striking resem-
blance to the density of states [18].

IV. Discussion

Exciton effects should influence nearly all parts of
the absorption spectra. The singular behavior at the ab-
sorption or emission edge is just one prominent feature.
Another result of final state interactions is that oscilla-
tor strength is moved from one frequency range to
another. Often these shifts are small and can be
neglected. Yet in most cases the true magnitude of
these effects are unknown, because the relevant
theoretical calculations are too complicated to do
realistically.

The calculation of exciton effects is a formidable task
which has not been performed properly. Of course
Wannier excitons have been studied in detail. Some
model calculations exist near critical point edges —the
hyperbolic excitons [ 19,20,21]. But the main optical ab-
sorption strength comes from states throughout the
Brillouin Zone [5], and all of these states are included
in the final state interactions.

So before x-ray absorption and emission measure-
ments can be used to provide information on the densi-
ty of states, two sizable corrections need to be made.
One of these is the exciton effect, and the other is the
change in the matrix element with energy.
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