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In the stud y of soft x- ray transitions in so lids _ the re has a lways bee n so me ho pe that the res ults pro­
vide a direct meas ure of the dens ity of s tat es. Thi s ass um es that (a) matri x e le me nt vari at ions ove r the 

ba nd a nd (b) fin a l s ta te inte rac tions a re sma ll. Both of th ese ass umpti ons are now known to be in co rrect. 
To illu s tra te th e poss ible stre ngth of these e ffects , two a pproximate ca lculations a re prese nted: the one 

e lec tron osc ill a tor strength of a s imple bcc me ta l as a fun c ti on of e ne rgy; and the s tre ngth of the 
Nozieres- DeDomini cis s in gul a rit y at thres hold , with ph ase shifts es tim ated from a n ass umed Yuk awa 
inte rac tion be twee n conduct ion electrons and core ho le_ 

Key words: Dens ity of s tates; exciton ; many body effects ; phase shift s; soft x-ray ; trans ition 
probability. 

I. Introduction 

The absorption of a photon can cause an electron to 
change its state. The traditional viewpoint of thi s tran si­

tion assumes that if one knew the elec trons initial "'i 
and final "'1 state, then the oscillator s tren gth was 
simply proportional to the square of the mome ntum 
matrix eleme nt. 

(1.1) 

This simple viewpoint is now known to be incorrect. 
The prope r picture is that the opti cal transition creates 
an electron and hole, and these two excitations interac t 
with each other, and each se parately with their environ-

, me nt. The coulomb scattering be tween the electron 
and hole is c alle d the exciton effect, named after the 
fir st known example of Frankel excitons in solids. The 
elec tron and hole can also e mit phonons, suffer elec­
tron-elec tron colli sions, et c. The s um of all of these 
processes are called fin al-state interactions. The rate 
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of optical absorption is affected by these s ubseque nt in ­
te rac tions of the electron and hole. 

Upon reviewing our present unde rs ta ndin g of the op­
ti cal prope rti es of solids, one find s that so me soli ds are 
well understood while others are not. W e classify as un­
ders tood the semiconductors Si and Ge, [1] and simple 
metals like aluminum [2 ,3] _ It is noteworthy that in 

these mate rials the fin al- s tate interaction s are s mall : 
they are small in semiconduc tors because th e large 
dielectric constant suppresses the exciton effect. 
Ehrenreich and hi s co-worke rs have shown that many 
body effec ts are small in aluminum. In these solids the 
simple one-electron picture implied in (1.1) seems to 

work quite well. 
W e classify wide band gap insulators [4], and metals 

such as copper [5], as solids whose optical properties 
are not well understood. There is not yet good agree­
ment between theory and experiment in these materi­
als_ The dominant optical transitions in these materials 

c reate hole states which are heavy, and which are sub­
ject to significant final state inte ractions [3]. W e 
speculate that final state interactions are important in 
these materials , and explain the differe nce betwee n 
theory and experiments. 

In the study of x-ray tran sition in solids, the re has al­
ways been some hope that the results provide a direct 
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measure of the density of states [6]. This presumes 
that (a) matrix element variations over the band are 
small, and (b) final state interactions are small. Both of 
these assumptions are now known to be incorrect 
[7,8,9] . 

The importance of exciton effects in x-ray transitions 
was reported in an earlier reference [10]. The effects 
are large if the hole is highly localized, and if the con­
duction band of the electron is isotropic. Because the 
coulomb scattering between the electron and hole oc­
curs in an electron gas, the electron can only scatter 
into states not already occupied. This Fermi-Dirac ex­
clusion, as well as the exchange interaction among the 
electrons, causes the problem to resemble the Kondo 
effect more than the Wannier-exciton case. The hole 
also has a large interaction with the entire electron 
gas - this leads to a renormalization effect which in­
hibits the x-ray transition near threshold [11]. Nozieres 
and DeDominicis [12] have shown that th.e exciton and 
renormalization effects combine to give a threshold 
behavior for E2(W) 

(1.2) 

where WT is the absorption threshold frequency, ~o ~ 
EF is a characteristic band energy, and IXI is a function 
of the phase shifts 01 of electrons at the Fermi energy 
scattering from the static potential of the hole. 

(1.3) 

The term 20t/7r is the exciton part which tends to make 
the threshold singular, while the second term in (1.3) 
arises from renormalization. The angular momentum l 
is that of the conduction electron [13]. If the x-ray hole 
has s-symmetry, the conduction electIon must have p­
symmetry (l = 1). If the hole has p-symmetry, the con­
duction electron can have either s- or d-symmetry; in 
thi s case (1.2) has a separate term for each symmetry 
type. 

The x-ray spectra can only be unravelled with a 
knowledge of the phase shifts 01- these are the phase 
shifts for simple electron-hole scatteri ng. These have 
been calculated for a free electron gas by Ausman and 
Glick [13] . They find IXO> 0, and IXI < 0 for l ~ 1 so that 
singularities only occur for the l = 0 case (p-state hole). 
These results qualitatively agree with the experimental 
results. 

We have independently calculated the phase shifts, 
and we describe our result in section II. We have con­
cluded that these phase shifts are qualitatively correct 

but for the wrong reasons. The wrong potential is used ' 
in the calculation, but it does not seem to make much , 
difference in this case. 

II. Phase Shifts 

The present calculations have been performed by as­
suming that the screened electron-hole interaction has 
the Yukawa form 

e2 
V{r)=--exp (-ksr) 

r 

where the Fermi-Thomas screening length is 

for an electron gas of density no and Fermi energy Ef . < 

This is only a crude approximation to the actual poten­
tial the electron feels when scattering from the hole . 
For example, studies of a point charge impurity in an 
electron gas show that its potential differs from a Yu­
kawa at long range where Friedel oscillations occur, 
and at short range where its potential is less steep [14]. 
In addition, because the hole is part of an atom, there 
are term due to the exchange and orthogonality with the 
atomic wave functions [7,8] . In a pseudo-potential for­
malism these latter effects contribute a short-range 
repulsive term to the interaction. In spite of these short­
comings of the Yukawa potential, we believe that it pre­
dicts phase shifts which are qualitatively correct. The 
reasons for this will be presented below. 

The phase shifts are defined in terms of the eigen­
values Ek and eigen functions t/l1..(r) of the electron in 
the region of the potential. 

(2_1) 

The wave is decomposed into spherical harmonics 

t/ldr) = ~ (2l+ l)i'P,(k~. ,:hp,(k , r) (2.2) 
' =0 

In solving for the eigen functions in (2.1), one has the 
choice of specifying the boundary conditions for slates 
which are plane wave-like outside of the potential re­
gion. By choosing standing wave conditions, one is solv­
ing for a reaction matrix K,(k ,k') and the phase shifts 
are defined in terms of the diagonal k = k' component 
[ 15]. 

tan o,(k) =-2mkK,(k, k) 

=-2mk r x r2drj,(kr)V(r)¢,(k, r) (2_3) Jo 
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'Similarly, if one chooses outgoin g wave conditions , 
"then one is solving for aT-matrix t,(k,k') whose 
IdiagonaJ co mponents give the phase shift [15]. 

I l s in o,eio,=-2mkt,(k, k) 

= - 2lnk 1 x r~ drj, (kr) V(r)qJ,(k, r) 
I) 

(2.4) 

We have c hose n to use th e reaction-matrix formalism 
;(2.3), mostly because it is a real function and thi s sim­
,plifies computation. 

The phase shifts ol(k) go to zero as k -'; 00. Let us now 

rexamine their behavior as k-,; O. From (2.3) we have 
jl(kr) ~ (kr)', so 

tan 0, (k) ~ k' +' L" r' + ~drV(r) ¢, (0, r) (2.5) 

From Levinson's Theorem we know that 

where MI is the number of bound states of (2.1) with 
an aular momentum i. For example, if MI = 0 we ge t 

r 01 ':: k' + ' . Whereas if M I= 1 we ge t 01= 1T + ck'+' (where 
I c is some constant) for small k. A typical case is shown 
in figure 1, where Mo = 1, and MI=O for i ;:e: 1. So th e 
s-wave phase shift comes into 1T with a linear slope, 

I while all other Ol~ k l + I at small k. 
So in calculating phase shifts, the first thing to de­

cide is the number of bound states M,. This is deter­
f mined by examining the radial part of Sc hrOdinger's 
I equation (2. 1) which we put into dimensionless form 

(2.6 ) 

(2.7) 

IThe parameter A determines the strength of the poten­
tial. Shey and Schwartz [16] have computed the 
number of bound states which exist for each value of A 

l ~nd i. For s-waves (i= 0), they find no bound states 
lexist for A< 1.68, one bound s tate for 1.68<A<6.45, two 
tbound states for 6.45< A< 14.3, etc. For p-waves (i = 1) 
bound states only exist for A> 9.08, and d-wave bound 
states exist for A> 21.8. 

In (2_7) we have written A in terms of the density 
parameter rs for an electron gas. Since me talli c de nsi­
ti es vary be twee n 2 < '-s < 6, then the range of A values 
in me tals is 1.8 < '11. < 3.1. For an elec tron gas of 
metalli c density , the re is one bound s tate for s-s tates, 
and no bound states for a ny other value of angular 
mome ntum i. 

These are the predictions of the Yukawa pote nti al. 
We must decide whether these are reasonable conclu­
s ion s for the problem of interest. For an actual point 
charge in an electron gas, e.g. , a proton, there is 
probably a bound state. For an impurity in a host metal, 
e.g., Al atoms in Mg, there is probably not a real bound 
state. This is because the atomic core of the impurity 
cuts off the attractive potential in the region where it is 
the stronges t; for example, see Ashcroft's remark s 
about the cancellati on influe nce of the atomic cores 
[8]. 

In the x-ray proble m the re is ce rtainly an atomic 
core. Yet there is also certainly a bound s tate in the 
potential. This bound s tate is the x-ray level itself. That 
is, if an electron scatterin g from the potential of the 
hole did not think a bound state ex isted in the potential, 
then it would have no inc lin ation to recombine with th e 
hole in the final e mission process. Since th e e mi ssion 
can occur, a bound sta te does exis t which must be 
reflected on th e phase s hifts_ 

The cancelJation of the potential in atomic core is 
caused by the necessity of th e cond uction electron 
wave function to be orthogonal to all of the core states. 
In the x-ray problem, one core electron is absent so that 
the cancellation requirements are less s tringe nt. 

The foregoin g discussion shows that any phase shifts 
calculated from a simple Yukawa potenti al are onl y 
going to be qualitatively correct. Yet there is so me in­
terest in what thi s simple model predic ts. OUf method 
of calculation proceeds by solving directl y th e scatter­
ing equation for the reac tion matrix. 

K,(k" k2) = V,(k" k2 ) 

+ 41n r "' k~dk- V,(k l , k3 )K,(k3 , k2 ) 

1T J 0 3 3 k~ - k~ 
(2.8) 

where the itlL component of the potential VI is obtained 
from the Fourier transform V(k l -k2) of VC r) 

V,(k l , k2)=~DT d(}sin OP,(cos O)V(k l -k2 ) 

=~ Q ((k2+k 2 +k~) /2k k-) (2.9) 2k, k2 I I 2 s ' 2 
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when cos e is the angle between k, and k2, and Ql is a 
Legendre function. We will abbreviate the argument of 
the Legendre function to write it as Ql(k" k2). Noyes' 
method is used to evaluate (2.8). We find 

K,(k, k) = V,(k, k)/(l- A,(k)) 

-4m 1'" p 2dp A,(k) = V (k k) ~k·) V,(k, p)/,(k, p) 1T I, () p- - -

/I(k, p)=V,(k , p) 

(2.10) 

(2.11) 

4m ( x p'2dp'JI(k, p') 
+ 1TV,(k, k) Jo pl2_k2 [V,(p, k)VI(k, p') 

-V,(p, p')V,(k , k)] (2.12) 

One obtains f,(k,p) from (2.12), perhaps by iterating 
this equation. This is used in (2.11) to obtain A,( k), and 
thus one has the reaction matrix in (2.10). This is an 
exact result if f,(k,p) is found exactly. The Born Ap· 
proximation res ult is obtained by setting KI(k, k)= 
V1(k, k). 

Note that it is natural to write A,( k) as a power series 
in the interaction strength A.= 2/ ksaliin (2.7) 

x 

A,(k) = L A. lIl g\m)(k/k s ) (2.13) 
11/ = 1 

Each successive power of A. corres ponds to another 
iteration of the equation (2.12) which determines 
f,(k,p). For example , the first term is 

(1)(1) - ks J X ~ Q (k )2 
g, , - 1TQ,(k ,k) () p2-k2 I ,p (2.14) 

For l = 0 we can evaluate the integral and express the 
integral as a summation. 

o.())() - ks ~ (_)1 [ I' 
"0 k - 2kQo(k , k) ~ ---;:;- 2p sm (cpl) 

- sm (2lcp)] 

p= [l +4k2/k~] - ' /2 

cp = tan - ' (2k/ks) 

Qo(k , k) = t ln 0 + 4k2/k2) s 

(2.15) 

This form is convenient for numerical computation. In 
figure 1 is s hown the s-wave phase shift calculated by 
approximatingAo by the first term in (2.13) 

Qo(k , k) 

Also shown in figure 1 are the phase shifts 0, and 02. 

7r PHASE SHIFTS 3.0 
rs ~ 4.0 

'" z 
::: 
c .. 
'" 
'" t;: 80 
iii 
w 

'" .. 
ii: 

1.0 

'. 

o 2.0 3.0 
k I k F 

FIGURE 1. The phase shifts 15, calculated by a Yukawa potential. 
This potential represents a coulomb interaction of unit charge, ' 
with Fermi·Thomas screening. The phas e shift 15 2 is calculated in I 
the Born Approximation, while 15 0 and 15, have corrections for 
multiple scattering. 

the p·wave phase shift , and this correction has been 
added into the calculation of the curve labeled 0). This 
only changes the Born Approximation result by 10 per­
cent. The L = 2 phase shift is the Born Approximation 
result. The multiple scattering terms are small except 
for the s-wave. 

In the x-ray transition, the singular effects occur at 
the Fermi surface, so we are int erested in the phase 
shifts evaluated at kj . Figure 2 shows the critical ex· 

1.5r--,----,---,-----, 

1.0 

0.0f---------"""" 

-05 2.0 3.0 4.0 

rs 
5.0 6.0 

FIGURE 2. The variation with electron density rs of the exponents ao 'l 
and a ,. These depend upon the phase shifts evaluated at the F errni 
surface. Also shown is the renormalizntion parameter E and the I 
Friedel sum rate result Z. The value of Z is rigorously unity, and 

We also calculated the first correction term g,(t)(k) to our deviations from that value indicate the errors in the calculation. 1 
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pone nts 0'0 and O'J, in (1.3) plotted versus electron 
densit y '-s. Valu es of at for L ~ 2 are essentially equal to 
-E. Also s hown are th e values of the Friedel sum Z 
and th e Anderson ex pone nt E , where 

Z = 2 f (2l+ 1) (15,/77) 
1.= 0 

E= 2 f (2L+ 1) (15t/77) 2 

1= 0 

The Friedel sum rule should rigorously be given by 
). z = 1. Our de viation - 20 percent from the exact res ult 
of z = 1 provides an estimate of the error in the calcula· 
tion. 

Another estimate of the accuracy and convergence 
of the calculationa l method is obtained by seein g how 
well it estimates th e position of bound s tates. As k~ 0 

) we ge t 

. ( 2k/ks ) 
1,m ooCk) = ta n- 1 I-A (0) 
{; - o 0 

A bound sta te is predicted if Ao > 1. We find that 

g~)I )( O ) = 1/2 

g~2)( 0) = ln (4 /3) - ]/4 

If we just use the first term in the expansion (2. 13) so 
Ao(O)= '11./2 then the criteria Ao(O) > 1 means A> 2. Thi s 
is an error of 16 perce nt from the actual crite ria 
A> 1.68. But using two terms gives A/2+ A2(ln 

; 4/3 -1/4» 1 or "ft. > 1. 765. So a considerable improve­
f me nt in accuracy is obtained by including the second 

term in (2.13). So we conclude that the series (2.13) con­
verges rapidly for the range of"ft. values of interest. 

III. Matrix Elements 

The change of the matrix element with energy has 
been disc ussed before and is known to be a large effect 
[7,8,9]. We have calculated the change in matrix ele ­

i me nt near the first critical point in a bcc solid for an x­
ray transition from a Is core level. W e used a simple 

:> 
two band model in each 1/12 of the Brillouin Zone [17] , 

) so that the energies and eige nstates are 

> ,',±( )=N {I CP _E"' ll /2e i k ' r + Vc 1(P,.-E±ll /2ei"'(k-Cl} 
'l'1r r " 0" Ir -IVc I 0 , {;. 

The matrix elements were calculated assuming that the 
core was a delta fun ction, and no attempt was made to 
orthogonalize the conduction s tates to the core. Thus, 
after averaging over polarizations, the matrix elements 
are 

< 2) ±-.!N2{k21 CP -E"'I+'I - G)21 CP p" -3 k' 0 " ,,~ ( 0 1r 

-Eil±2k· (k - G)Vd 

In figure 3 we show the density of states peE), and also 
the absorption strength 

In thi s figure, e nergy has been normalized to Eo = 
h2G2/8m so that '6'= E/Eo and v = Vc/Eo . The choice 1) 

= 0.2 is close to Ham 's value for Li (v = 0.23). Indeed, 
th e present calculation was done with Li in mind , sin ce 
th e lack of core orthogo nalization should not matter 
here. 
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FIGURE 3. The density of states peE ) and absorption strength A (E) 
for a bee solid sueh as Li . The energy seale is listed in units 
Eo= ,,2C2I1o IBm, and v= VllolEo. The absorption strength A(E) is 
defined as the integral of the x-ray matrix element < p' > averaged 
over the energy band. 

The curve for v= 0.2 in figure 3(b) has the expected 
shape for Li [18]. Because the wave function is p-like 
at the lower critical point g' = 0.8, the transition is a l­
lowed and the absorption strength has the same shape 
as the density of states in figure 3a. The de nsity of 
states structure at '6'= 1.2 is washed out in A(g') because 
at the critical point the transition is s-like and largely 
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forbidden. The curve for v = - 0.2 has the same density 
of s tates , but now the upper critical point is p-like and 
A(~ has the same structure as p(~ ne ar 1.2. Neither 
the curve v = 0.2 nor v = - 0.2 has any striking resem­
blance to the density of states [18]. 

IV. Discussion 

Exciton effects should influence nearly all parts of 
the absorption s pectra. The singular behavior at the ab­
sorption or e mi ssion edge is just one prominent feature. 
Another res ult of final state interactions is that oscilla­
tor strength is moved from one frequency range to 
another. Often these shifts are small and can be 
neglecte d. Yet in most ca ses the true magnitude of 
these effects are unknown, because the relevant 
theoretical calculations are too compli cated to do 
reali s tically. 

The calculation of exciton effects is a formidable task 
whi ch has not been performed properly. Of course 
Wannie r exci tons have bee n studie d in de tail. Some 
model calculations exis t near criti cal point e dges - the 
hyperboli c excitons [19 ,20 ,21] . But th e main optical ab­
sorption strength comes from s tates throughout the 
Brillouin Zone [5] , and all of these states are included 
in the final state interac tions. 

So before x-ray absorption and e mission measure ­
me nts can be used to provide information on the densi­
ty of states, two sizable corrections need to be made. 
One of these is the exciton effect, and the other is the 
change in the matrix ele ment with energy. 

V. Acknowledgments 

I wish to thank N. Ashcroft, L. Parrott, and M. 
Stoneham for informative discussions. 

VI. References 
[1] Dresselhaus, G. , and Dresselhaus, M. S., Phys. Rev. 160,649 

(1967). 
[2] Ehrenreich, H., and Beefe rman, L., (private comm uncation). 
[3] Spicer, W. E. , Phys. Rev. 154, 385 (1967). 
[4] Fong, C. Y. , Saslow , W. , and Cohen, M. L., Phys. Rev. 168,992 

(1968); Park , K , and Stafford, R. G., Phys. Rev. Lette rs 22 , 
1426 (1969). 

[5] Dresselhaus, G., Sol. State Comm. 7,419 (1969); Mueller , F. M. , r 
and Phillips, J. C., Phys. Rev. 157 ,600 (1967). 

[6] Tombouliam, D. H., Handbuch der P hysik , Vol. 30 , (Springer· 
Verlag, Berlin , 1957),246-304. 

[7] Harrison, W. A., Soft X·Ray Band Spectra, edited by D. J. 
Fabin (Academic Press, New York, 1968), p. 227. 

[8] Ashcroft, N. W. , ibid , p. 249. 
[9] Rooke, G. A., ibid , p. 3. 

[l0] Mahan, G. D. , Phys. Rev. 163,612 (1967). 
[11] Anderson, P. W., Ph ys. Rev. Letters 18, 1049 0967). 
[12] Nozieres, P. , and DeDominicis, C. T. , Phys. Rev. 178 , 1097 

(1969). 
[13] Ausman , G. A., and Glick, A., Phys. Rev. 
[14J Langer, J. S., and Vosko , S. H., J. Ph ys. Chem. Solid s 12 , 196 

(1960). 
[15] Goldberger, M. L. , and Watson , K M. , Collision Theory (J. 

Wiley and Sons, New York, 1964), p. 232. 
[16] Sc hey, H. M. , and Schwartz , ] . L. , Phys. Rev. 139, Bi428 (1965). 
[17] Foo, E-Ni, and Hopfield , J. J. , Phys. Rev. 173 , 635 (1968). 
[18] Shaw, R. W. , Smith , K , a nd Sm ith , N. V., Phys. Rev. 178, 985 

(1969). 
[l9] Duke, C. 8. , and Segall, B. , Phys. Rev. Letters 17,19 (1966). 
[20] Hermanson, ] ., Phys. Rev. Letters 18,170 (1967). 
[21] Kane, E. 0 ., Phys. Rev. 180, 852 (1969). 

(Paper 74A2-598) 

272 


	jresv74An2p_267
	jresv74An2p_268
	jresv74An2p_269
	jresv74An2p_270
	jresv74An2p_271
	jresv74An2p_272

