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T he fundam e nta l absorption spectrum of a so lid yie lds information about criti cal points in the opti· 
cal density of states. This inform ation can be used to adjust parameters of the band structure. Once the 
adju s ted band s truc ture is known , the opt ical prope rti es and the de nsity of states can be generated by 
num e rica l integration . We revi ew in thi s paper the pa ra metrization techniques used for obtaining band 
structures suitable for de nsity of s tates calculation s. The calculated optical cons tants a re compared 
with experim enta l res ult s. Th e e ne rgy de rivative of these op ti ca l cons tan ts is di sc ussed in connection 

with results of modulated re fl ecta nce meas ure ments. It is a lso shown tha t inform at ion abou t de ns ity of 

e mpty s tates can be obtained fro m optica l experime nt s in vo lving excit ation from dee p core le ve ls to the 

co nduc tion band. 
A de ta il ed co mparison of the calc ulate d one·e lec tron opti ca l line s hapes with experime nt revea ls 

dev ia tions whi ch can be int erpre ted as exciton effects. The acc umulatin g ex pe rime nt al evide nce poin t· 
in g in this d irectio n is reviewed toge the r with the ex is tin g theo ry of these effects . 

A number of simple mode ls for the co mpli cated inte rband de nsit y of s ta tes of a n in s ulator have 

been proposed. We revie w in pa rti cu lar th e Pe nn mode l, whi ch can be used to acco unt for res ponse 
function s a t zero frequen cy, and t he paraboli c model, whi ch can be used to accoun t for the di s pers ion of 
res pon se fun c tion s in th e immedi ate vi c inity of the fundamental absorpti on e dge. 

Key words: C riti ca l po ints; de nsity of sta tes; d ie lec tri c cons tant; modul ated re Aectance; op ti ca l 

abso rption. 

1. Optical Properties and One-Electron Density 
of States 

osc illa tor s tre ngth ten sor F ef is rela ted to th e matrix 
ele ments of p through F e/= 2 < flp le > < el p lf 
> w eI- I. Th e Bloc h fun c ti ons are normalized over unit 

The optical behavior of se mi conductors and ins ula· 
tors in the near infrared , visible, and ultraviolet is 
determined by electronic interband transition s. An ad· 
ditional intraband or free elec tron contributio n to the 
optical properties has to be considered for me tals . We 
shall di scuss here the relationship between the inte r
band contribution and the density of states. The inter· 
band contribution to the imaginary part of the dielec tri c 
constant can be written as (in atomic units, Ii = 1, m = 
I ,e= I): 

(1) 

where w eF we-WI is th e difference in e nergy be tween 
the empty bands (e) and the filled bands (E). The spin 
multiplicity mu s t be included explicitly in eq (1). The 
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volume. Degenera te statis ti cs has bee n ass umed in e q 
(1) and spatial di spersion effects have bee n neglected. 

It is customary to take the slowly varyin g oscillator 
strength out of the integral sign in eq (1) and thu s write: 

(2) 

where F is an average oscillator strength and Net the 
co mbined optical density of states. 

Structure in E;(W) (eq (1)) appears in the neighborhood 
of critical points , where V k Wef= O. Such critical points 
can be localized in a small region of k s pace or can ex· 
tend over large portions of the Brillouin zone over 
which filled and e mpty bands are parallel (sometimes 
only nearly parallel). Once the critical points whi ch cor· 
respond to observed optical structure are ide ntifi ed in 
terms of the band structure through variou s de vious 
and sometimes dubious arguments, their energies can 



be used to adjust parameters of semiempirical band 
structure calculations. 

Four different parametric techniques of calculating 
band structures have been used for this purpose: the 
empirical pseudopotential method (EPM) [1], the k· p 
method [2], the Fourier expansion technique (FE) [3], 
and the adjustable orthogonalized plane waves method 
(AOPW) [4]. 

Once reasonably reliable band structures are known 
it is important to calculate from them the imaginary 
part of the dielectric constant Ei(W) and to compare it 
with experimental results so as to confirm or disprove 
the initial tentative assignment of critical points and 
thus the accuracy of the band structures. Rich struc
ture is obtained in both experimental and calculated 
spectra and hence a rather stringent test of the accura
cy of the available theoretical band structure is in prin
ciple possible. 

In order to calculate numerically the integral of eq (1) 

it is necessary to sample eigenvalues and eigenfunc
tions at a large number of points in the Brillouin zone. 
The amount of computer time required for solving the 
band structure problem with first-principles methods 
(OPW, APW, KKR) at a general point of the Brillouin 
zone makes such methods impractical for evaluating eq 
(1). The parametric methods (EPM, k· p, FE, but not 
AOPW) require only the diagonalization of a small 
matrix (typically 30 X 30) and hence it is possible to 
sample the band structure at about 1000 points with 
only a few hours of computer time. Cubic materials, in 
particular those with Td , 0, and 0" point groups, are 
simple in this respect: symmetry reduces the sampling 
required for the evaluation of eq (1) to only 1/48 of the 
Brillouin zone. Hexagonal and tetragonal materials 
have relatively larger irreducible zones and hence a 
larger number of sampling points is necessary if the 
resolution of the calculation is not to suffer. Once the 
band structure problem has been solved for all points 
of a reasonably tight regular mesh, the bands and 
matrix elements at arbitrary points can be obtained by 
means of linear or quadratic interpolation. 

The method of Gilat and coworkers [5] has become 
rather popular for the numerical evaluation of eq (1) 

[ 4,6]. In the case of a cubic material the Brillouin zone 
is divided into a c ubi c mesh and the band structure 
problem solved at the center of these cubes (sometimes 
a finer mesh is generated by quadratic interpolation 
from the coarser mesh [6]). Within each cube of the 
mesh the bands are linearily interpolated and approxi
mated by their tangent planes. The areas of constant 
energy plane within each cube corresponding to a given 
We! are added after multiplying them by the correspond-

ing oscillator strength and thus the integral of eq (1) is 
obtained. 

The real part of the dielectric constant E,. can be ob
tained from E i by using the Kramers-Kronig relations. 
It is also possible to obtain E,. and E; simultaneously by 
calculating the integral: 

(3) 

(~ 

with YJ small and positive . For YJ ~ + 0 the imaginary 
part of eq (3) coincides with eq (1). Equation (3) can be 
evaluated with a Monte Carlo technique. Points are 
generated at random in k space within the Brillouin 
zone and the average value of the integrand for these 
points calculated. The process can be interrupted when (: 
reasonable convergence as a function of the number of 
random points is achieved [7,8] . 

We show in figure 1 the results of a calculation of Ei 

from the k . p band structure of InAs with the method 
of Gilat and Raubenheimer [6]. The band structure 
problem, including spin-orbit effects, was solved at 
about 200 points of the reduced zone (1/48 of the BZ). 
We have indicated in this figure the symmetry of the 
critical points (or of the approximate regions of space) 
where the structure in Ei originates. The experimental 

t ? 

Ei spectrum, as obtained from the Kram ers-Kronig anal
ysis of the normal incidence reflectivity [9] , is also 
shown. The agreement between calculated and experi- _< 
mental spectra is good, with regards to both position 
and strength of the observed s tructure, with the excep-
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FIGURE 1. Imaginary part of the dielectric constant of InAs as 'I 
calculated from the k· p method (--) [6J and as determined I 
experimentally ( .... J [91· The group theoretical symmetry assign· 
ments were made with the help of the calculated isoenergy plots. 
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tion of the pOS]tlOn of the E2 peak. This is to be at-
i tributed to an improper assignment of the E2 peak when 

the 6 adjustable band s tructure parameters were de ter
mined. The E2 peak had been attributed, followin g the 
tradition, to an X critical point while it is actually due 

> to an extended region of k space centered around the 
U points [8]. It s hould be a si mple matte r to readjust 

> th e band structure parameters to lower the energy of 
the calculated E2 peak by about 0.5 e V; in view of the 
la rge amount of computer time required to recalculate 
th e energy bands this has not been done. The structure 
calc ulated around 6 eV, due mostly to spin-orbit 
splitting of the L3 levels, has not yet been observed 
experime ntally. 

The conventional experime ntal determination of Ei 

from normal incidence reflection data [9] suffers from 
1- cons iderable inaccuracy: to the experimental error 
> produced by possible improper s urface treatme nt and 

contamination one has to add the uncertainty in the 
high-energy ex trapolation of th e experime ntal data 
required for the Kramers-Kronig analysis. Some of 

" these difficulties are avoided by co mparing the 
calculated re fl ec tivity spec tra (obtained from E with 
Fresnel's equation) with the experime ntal results. This 
is done in figure 2 for GaSb: th e experime ntal data [10] 

:=' 
have not been Kramers-Kronig analyzed because of the 
small range of the energy scale. Two calc ulated spectra 
have been plotted in thi s figure: one obtained from the 
k . p band s truc ture [6] and the other obtain ed from a 
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FIGURE: 2. Reflectivit y of CaSb calculated from the k· p [61 and 
from a pswdopotential band structure [1 II· A Iso, experimental 

refl ectivity [1 01. 
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non-local pseudopotential calculation with 14 adjusta
ble param eters [11]. The di screpancy betwee n experi
mental and calculated c urves a t high e nergy, a com mon 
feature of man y zin cble nde-type material s [12] , has 
two on gm s: the measured reflec tivity should be low 
because of in creased diffu se refl ectance at small 
wavelengths while the calculated one should be high 
because of the finite number of bands in cluded in the 
calc ulation . In this region where EI'-1 is small, the con
tribution to E,. of transitions not included should lower 
the calc ulated reflectivity. 

During the past few years a lot of activity has been 
devoted to the measurement and analysis of differential 
reflection spectra obtained with modulation techniques 
[13-15]. The wavelength (or photon energy) derivative 
s pec tra [14] should permit an accurate analysis of the 
lin e shapes of the spec tra of figures 1 and 2. We show 
in figure 3 the temperature modulated reflection spec
trum (thermoreflectance) of GaS b [15]: it has been 
show n that for th e III-V materials [15] thi s spectrum 
is very similar to th e photon e nergy derivative spec
trum, difficult to obtain experim e ntally. Th e cor
respondin g photon energy derivative spectrum ob
tain ed from th e calculati on of figure 2 is also shown in 
figure 3. The calc ulated and experime ntal shapes of the 
E I , EI + ~I peaks show di screpancies of the type at
tributed in sec tion 2 to exciton interaction. Derivative 
spectra for other germa nium- a nd zincblende-type 
materi als have been calculated by Walter and Cohen 
[12] and by Higginbotham [16] . 

The methods to calcul ate band s tructures from fir st 
principles, without or with only a few adjustable 
parameters (one [17] or three [4]) have recentl y 
achieved considerable success. However the calcula-
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tion of energy bands at one general point of the BZ 
requires a lot of time so as to make density of states cal
culations prohibitive_ Moreover, the evaluation of the 
matrix elements required for eq (1) is difficult with first 
principles techniques_ It is nevertheless possible to use 
first principles calculations at a few high-symmetry 
points of the Brillouin zone to adjust the parameters of 
semiempirical band structures from which the large 
number of sampling points required for the evaluation 
of eq (1) can be obtained with relative ease. The k· P 
technique has proved particularly useful in this respect 
[2 ,18,19J. Matrix ele ments of p can be easily evaluated 
from the eigenvectors in the k · p representation. Spin
orbit interaction can also be easily included. This k . p 
procedure has been applied to the relativistic OPW 
band structure calculated by Herman and Van Dyke for 
gray tin [19J. Figure 4 shows the reflectivity of gray tin 
calculated by this procedure with the method of Gilat 
and Raubenheimer together with experimental results 
[20J. Comparison with other experimental results for 
the germanium family suggests that the high-energy 
end of the measured spectrum is too low, probably due 
to surface imperfections in the delicate crystals, grown 
from mercury solution, which were used for this experi
ment. 

The k . p fitting procedure has also been applied to a 
first principles relativistic APW calculation of the band 
structure of PbTe by Buss and Parada [7J. Figure 5 
shows the reflectivity of PbTe obtained by this method 
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FIGURE 4. Reflectivity of gray tin calculated from afirst principles 
OPW band structure fitt ed with the k · p method [1 9]. Also 
experimental results [20]. 

with a Monte Carlo sampling technique and figure 6 the ,/ 
absorption coefficient, both compared with experimen- \ 
tal data [7,21,22J. In both cases the semiquantitative 
agreement between experimental and calculated data 
is remarkably good in view of the absence of the ad
justable parameters. The calculated reflectivity is , at 
high energies, considerably higher than the experimen- < 
tal one, as discussed earlier for other materials. The E, 
peak of the experimental reflectivity spectrum appears 
split in the calculated spectrum, possibly because of in
accuracies in the first-principles band structure. The 
calculated E\ structure appears due mostly to transi- / 
tions along the ~ direction. The experimental Et ~'. 

structure has been assigned [23] to the lowest gap -< 

along ~. The calc ulated E2 peak corresponds to an ex
tended region of the BZ without definite symmetry, as 
inferred from electroreference measurements [23]. 
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We have so far di sc ussed optical constants for cubic 
mate rial s. While calculations for materials with lower 
symmetry require more computer time, one has the 
extra re ward of being able to predict the experimentall y 
observed an isotropy. Figure 7 shows the two principal 

;> components of Ei for trigonal Se as calculated by San
> droc k [24] from the pseudopotential band structure. 

The similarity be tween calculated and experi me ntal 
results [25] , also shown in figure 7, is especially re

> markable in vi ew of the method used to determine the 
l pse udopotential parameters: they were determined 

from the pseudopote ntial parameters required to fit the 
opti cal structure of ZnSe. Only a small adjustment was 
performed so as to bring the calculated fundame ntal 
gap (1.4 e V) into agreement with the experim ental one 
(2.0 e V). The di elec tri c co ns tant of antimony (trigonal) 

" for the ordinary and the extraordinary ray has also been 
( calculated by a similar procedure [26]. 

Th e reasonable agreeme nt obtained between experi
mental and calc ulated optical cons tants sugges ts the 
use of the corresponding band s tru cture to determine 
the individual de nsity of states D(w): the main work, 
that of diagonalizing the Hamiltonian at a large number 
of points, has already been done. The programs 

r required to calculate individual de nsity of states are 
very similar to th ose used for the e valuation of eq (1): 

l 

t 

We! must be replaced by th e single band energies and 
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F IGURE 7. Inwginary part of the dielectric constant of trigonal 
selenium for both principal directions of polarization of the electric 
fi eld vector E as calculated from the pseudopotentiaJ band struc
ture (histograms ) [24 ] and as determined experimentally [25 1. 

F e! must be removed. As an example we show in figure 
8 the individual dens ity of states of the 3 highest 
valence bands (s ix including s pin) and the 3 lowest con
du ction bands of gray tin [19] . Direct information 
abo ut the individual de nsity of s tates can be obtained 
by a number of me thods di scussed in this conference. 
We me ntion , in parti c ular, optical tec hniqu es involving 
tran sitions from deep core levels to the conduc tion 
band or from the valence band to temporarily e mpty 
core levels (soft x-ray emission) [27]. If the sometimes 
questionable assumption of constant matrix elements 
is made, the corresponding spectra represent the con
duction (for absorption spectra) and the valence (for 
emission spectra) density of s tates because of the small 
width of the core bands. We show in figure 9 the densi-
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FI GURE 8. Individual densit y of states for gray tin , obtained /rom 
the OPW-k· p band structure [/ 9]. The top of the valence band is 
at a ev' The lowest valence band is not included. 
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ty of states of the conduction band of Ge calculated by 
Herman, et aL. [4] and the corresponding density of 
states for GaSb as obtained by the k· p method [6]. 
The densities of states for both materials are very simi· 
lar because of the similarity of their band structures. 
We also show in figure 9 the quantity EiW2 obtained by 
Feuerbacher et al. [28] for Ge in the region of the M4 ,5 

edge. The origin of energies has been shifted so as to 
make a comparison with the conduction density of 
states possible: EiW2 should be proportional to D(w) 

under the assumption of constant matrix elements of p. 
While the rich structure of the calculated density of 
states is not seen in the EiW2 curve, this curve is 
reproduced quite well if the density of states is 
broadened so as to remove the fine structure. The 
required lifetime broadening of about 1 eV is not un· 
reasonable for the M4 ,5 transitions. Using eq (2) with Nd 
replaced by the conduction density of states we obtain 
an average osc illator strength at the maximum of EiW2F 
= 0.15. This oscillator strength corresponds to the 20 
4d electrons per unit cell and hence it should be divided 
by 20 to obtain the average oscillator strength per d
band. If one reasons that the transitions from 10 of the 
20' d bands to a given conduction band are forbidden 
because of the spin flip involved while transitions from 
5 of these 10 bands are forbidden or nearly forbidden by 
parity, one finds for the average o~cillator strength of 
each one of the 5 allowed bands F = 0.03 , which cor
responds to a matrix element of p = 0.13 (in atomic 
units): this value is quite reasonable in view of the fact 
that the typical valence-conduction matrix element is 
0.6. The small value of thi s matrix element explains 
why the d core electrons are negligible in the k . P 
analysis of the valence and conduction masses. 

2. Exciton Effects 

We have devoted section 1 to a comparison of experi

spectra are explained by the one-electron theory. The 
exciton interaction is responsible, at most , for small 
details concerning the observed line shapes. It is 
generally accepted [31,32] that the exciton interaction 
suppresses structure in the neighborhood of M3 critical 
points: the Coulomb attraction with negative reduced 
masses is equivalent to a repulsion with positive 
masses. Such a repulsion smooths out critical point 
structure: no M3 critical point has been conclusively 
identified in the experimental spectra. The El and El + 
~, critical points of figures 1-3 are of the M, variety. 
Hence the line shape of the corresponding Ei spectrum < 

should be characterized by a steep low-energy side and 
a broader high-energy side. Figure 10 shows the shape 
of the E, peak observed at low temperature by Marple 
and Ehrenreich [33] and by Cardona [34]. In order to 
avoid effects due to the overlap of the El and the E, + 
~, peaks it has been assumed that they have exactly the 
same shape but shifted by 0.55 eV. The contribution of 
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FIGURE 10. Contribution of the EI gap to E; in CdTe as measured 
at low temperatures by Marple and Ehrenreich [33] and by Cardona 
[34]. Also calculation by Kane [32) using the adiabatic approxima-
tion. 

mental optical spectra with calculations based on the only El has been extracted from the measured Ei 

one-electron band structure. Exciton effects, i. e. the spectrum and displayed in figure 10. It is clear from 
final state Coulomb interaction between the excited this figure that the E, peak is steeper at high energies 
electron and the hole left behind, are known to modify than at low energies, against the expectations for an Ml 
substantially the fundamental edge of semiconductors peak. Also in figure 10 we show the results of a calcula- l 
and insulators [29]. Exciton-modified interband spec- tion by Kane [32] of the effect of Coulomb interaction 
tra seem also to occur in metals at interband edges on the E, line shape for CdTe, using the effective mass 
which have the final state on the Fermi surface [30]. approximation. The solution of the effective mass 
Experimental evidence for these effects is reported at Hamiltonian with non-positive-definite mass is made 
this conference in the paper by Kunz et al. easier by the fact that the negative mass (along the A 

We shall now discuss the question of exciton effects direction) has a magnitude much larger (about ten 
above the fundamental edge of insulators and semicon- times) than the two equal positive masses. It is possible 
ductors with special emphasis on the zincblende fami- to use the adiabatic approximation [31], i. e., to solve 
iy. A, mentioned in ,ection 1 the ",0" featme, of the.c

25
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third coordinate as a parameter and then solve the 
adiabatic equation for the third coordinate. Th e agree· 
ment be twee n the calculated and the experimental line 
s hapes of fi gure 10 is excellent. 

Attempts have been made to calculate the dielectric 
\, cons tant includin g exciton interactions at an arbitrary 

point of k space, independently of the stringent restric-
> tions of the effective mass approximation [35,36] . Such 

calc ulation is possible if one truncates the Coulomb in
terac tion between electron and hole Wannier packe ts 
to extend to a finite number of neighboring cells. The 

( extre me and simplest case of a a·function (Koster
I Slater) interaction can be solved by hand [31,35] and 
I gives around an MJ critical point the shapes of EI' and Ei 

s hown in figure 11: for an Mi critical point the Koster
Slater interaction mixes the Mi one·electron line shape l with the Mi+ l • The hi gh energy side of the Ei peak 

. becomes steeper , in agreement with fi gure 10. The line 
shape observed for the E I- E, + ~I peaks in the reflec-
tivity spectrum is composed almost additively of the Ei 
and EI' line s hape: a t the energies of these peaks dR/dEi 
and dR/dEl' are almost equal. We also s how in figure 11 
the lin e shapes expected for the reflec tivity spec tra of 
the EI-E I + ~I peaks and for the corres ponding dif-

r ferential spectra (dR/dw). We s how in figure 12 the 
photon e nergy derivative spectrum of these peaks in 

) HgT e [37] : the o bserved line shapes di sagree with 
those expected from the one-electron th eory (equal 
positive and negative peaks) but agree with those pre
dicted in the presence of a Koster-Slater interaction 

( (fig. 11). Similar results have been found for other 
l zincblende-type materials [ 37] . 

3. Simplified Models for the Density of States 

As seen in sec ti on 1 the optical density of states, and 
:> thus the dielec tri c constant, is a complicated function 

of frequency and its calculation requires lengthy nu
merical computation. For some purposes, however, it 
can be approximat ed by simple functions. In the vicini-

~ ty of a critical point of the Mi vari ety, for instance, the 
singular behavior of the dielectric cons tant can be ap

~ proximated by : 

ECC i l'+ ' (w - W y ) 1/2 + co nstant (4) 

lif exciton effec ts are neglec ted. Exciton interaction can 
be included, within the Koster-Slater model, by mul
tiplying eq (4) by a phase fac tor eicJ> with 4> small and 

> positive. 
As shown in figure 1, Ei for the zincblende-type 

materials has a strong peak (E2) in the neighborhood of 

ONE ELECT RON 

( 

KOS TER-SLATER 
EXCITO N 

F IGU RE 11 . Modification in €,. and €; introduced by the Koster
Slater excitoll illteraction ill th.e neighborhood of all M, critical 
point . Also, effect on the reflectivity under the assumption of an 
equal contribution of LI.E ,. and t1€; to the reflectivity line shope. 
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FIGURE 12. Photon energy derivative spectrum of the reflectivity of 
HgTe in the neighborhood of the E, andE, + t1, structure [37]. 

which most of the optical density of states is concen
trated. The corresponding transitions occur over a large 
region of the BZ , close to its boundaries. In order to 
represent this fact, Penn [38] suggested the model of 
a non-physical spherical BZ with an isotropic gap at its 
boundaries. The complex energy bands of the material 
are then replaced by those of a free electron with an 
isotropic gas Wg at the boundary of a spheri cal BZ. This 
gap should occur in the vicinity of the E2 optical s truc
ture . While this model represents rather poorly the rich 
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structure of Ei (fig. 1), it is expected that it should give 
a good picture of E,· at zero frequency. The reshuffling 
of density of states involved in the case of the isotropic 
model should not affect E,.(W = 0) very much because of 
the large energy denominators which appear in eq (3) 

for W = 0: the lowest gap wo, usually much smaller than 
W" , accounts only for a very small fraction of the optical 
density of states. Penn obtained with this model the 
static dielectric constant for a finite wavevector q. The 
result can be approximated by the analytic expression 
[38]: 

( )' ) { }_.) WI) - W'" q ? -dw = o, q) = l+ - § 1+-- § 1/-
Wy Wy k", 

(5) 

with 

In eq (5) Wp is the plasma frequency obtained for the 
density of valence electrons and w'" and k", the cor
responding free electron Fermi energy and wave 
number. The dimensionless quantity § is usually close 
to one. 

Figure 13 shows eq (5) for Si compared with the exact 
results of the Penn model [39]. These results are obvi
ously independent of the direction of q. A s mall depen
dence on this direction is found from a comple te pseu
dopotential calculation by N ara [40] (see also fig. 13). 
The function E(O,q) is of interest for the treatment of 
dielectric screening. 
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FIGURE 13. Static dielectric constant E( 0 , q ) obtained by Srinivasan 

[39 1 for Si with the Penn model compared with the interpolation 
formula of eq (5) and with the results of a pseudopotential calcu
lationbyNara [40Jforq along (lll). 

Equation (5) yields for q = 0 the electronic contribu
tion to the static dielectric constant: 

( )" ()" Wp - Wp -
Eo=l+ § - = 1+ -

Wy Wy 
(6) 

The experimental values of Eo agree reasonably well 
with the results of eq (6) using for Wg the energy of the 
E2 peak [34]. Equation 6 has gained recent interest as 
the basis of Phillips and Van Vechten's theory of 
covalent bonding [41,42,43]. These authors use eq (6) 
and the experimental values of Eo to define the average ; 
gap Wy. With this gap and the corresponding gap of the 
isoelectronic group IV material they can interpret a 
wide range of properties such as crystal structure [42] , 
binding energy [43] , energies of interband critical 
points [41], non-linear susceptibilities [44J , etc. As an 
example we discuss the hydrostatic pressure (i. e. 
volume) dependence of Eo for germanium and silicon. 
According to Van Vechten [41], Wy for C, Ge, Si, and 
a-Sn is proportional to (ao) - 2, 5 where ao is the lattice 
constant. If one makes the assumption that this law 
gives also the change in Wy with lattice constant for a 
given material when hydrostatic stress is applied one 
can calculate the volume dependence of Eo [41]. 
Neglec ting the one in eq (6), a valid approximation for 
Ge and Si, one finds: 

.ldEo=2(dln Wp 

Eo dV dV 
din W y ) 

dV 

= 2 [0.83 - 0.50] = 0.66 (7) 

Equation (7) explains the sign and the small magnitude 
observed for (I/Eo)(dEo/dV). The experimental values of 
this quantity are 1.0 for Ge and 0.6 for Si [41,45]. 

According to eq (6) the average gap Wg determines 
the electronic dielectric constant for W = o. As the c 

lowest gap Wo is approached (wo ~ Wy usually), E,. I 

exhibits strong dispersion. This dispersion is due , in the 
spirit of eq (3), to the density of states in the vicinity of 
woo For the purpose of calculating the dispersion of E,. 
immediately below wo, the density of states can be ap- ' 
proximated by that of parabolic bands with a reduced 
mass equal to the reduced mass f.L at woo These bands 
are assumed to extend to infinity in k space: the 
unphysical contribution to Er for I k I ~ 00 should be 
small for W ~ Wo, because of the large energy denomina
tors of eq (3). We thy.s obtain for a cubic material the 
following contribution of the Wo gap to the scalar dielec
tric constant below Wo (under the assumption of a con
stant matrix element of p equal to P ) [46]: 
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~E,. = 2(2fL)3/2 wg/2 i P i2f(wlwo) = C~f(wlwo) 
with 

f(x) = 2- (l +x) 1/2_ (I-X) 1/2. 
(8) 

Equation (8) represents quite well the behavior of Er 

\ immediately below Wo for the lead chalcogenides [47] 
and a number of other semiconductors [48]. As an ex
ample we show in figure 14 the observed dispersion of 
E,. below Wo at room temperature [49] together with a fit 
based on eq (8) [48]. For the sake of completeness we 
have included in the fittiftg equations not only the effect 
of Wo (Eo) but also that of its spin-orbit-split mate Eo + ~o 
(also represented by an expression similar to eq (8)), the 
dispersion due to the EI and EI + ~I gaps, and that due 
to the main Wg gap assuming Wg == E2 • Thus the fitting 
eq uation with three adjustable parameters C~, C;, C~ 
is [48]: 

;> 

where: 

Wos=Wo+~o, 

x:! 
h(xd=l +i· 

W 
Xos==-, 

W as 

W 
XIS=-, 

WI., 

W 
x·,=-

- W" 

The fitting values of C~ (6.602) and C; (2.791) are in 
qualitative agreement with those calculated from the 
band parameters [48]. 

The parabolic model density of states can also be 
used to interpret the strong dispersion in the piezo
birefringence observed near the lowest direct gap of 

;, 
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FIGUHE 14. Experimental results for E,· in GaAs below the funda· 
mental edge at room temperature [491 (circles) and fitted curve 
based on a model density of states. 
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FIGURE 15. Piezobire}i-ingence in CaAs for an extensive stress along 
(J 00) (room temperature). The circles are experimental points. The 

solid line is a fit based on the model of eq (5) [481. 

Ce, CaAs [48J, and other IIl- V semiconductors 
[50,51]: uniaxial stress splits th e top valence band 
s tate ([8) and a birefringence in the contribution of Eo 
to Er results because of the se lec tion rules for transi
tion s from the split bands. The main contribution to 
this piezobirefringence is expected to be proportional 
to f'(x), which diverges like (w- wo) - 1/2 for W ---c> woo 
Such behavior can be see n in th e experim e ntal results 
(circles) of figure 15 obtained for CaAs a t room tem
perature. Includ ed in this fi gu re is the corresponding 

fit based on the model of eq (9) [481. 
The long wavelength, non-dispersive co ntribution to 

the piezobirefringence of fi gure 15 can be int erpre ted, 
at leas t qualitatively, in terms of the Penn model of eqs 
(6) and (7). Equation (7) yields two contri bution s to the 
c hange in Er one due to the chan ge in plasma frequency 
(i. e. carrier de ns ity) with stress and th e other due to 
the c hange in the isotropic gap. The first co ntribution 
should not exist for a pure shear stress. For a hydro
static stress the second contribution can be written in 
tensor form as : 

1 
-- ~E'o= 5e 
Eo 

(10) 

where e is the strain tensor. We postulate that eq (8) 
remains valid for pure sheer stress. This crude 
generalization has a clear physical meaning in terms of 
the Penn model. The spherical BZ becomes ellipsoidal 
under a sheer stress and the energy gap at an arbitrary 
point of the BZ boundary kv becomes anisotropic. The 
gap at kv is assumed to beco me large r as kv beco mes 
larger (kF is the distance be tween atomic plan es per-
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pendicular to kl'). Equation (8) gives the right sign for 
the long wavelength contribution to the piezobirefrin
gence of figure 15 but a magnitude about five times 
larger. The agreement becomes better if the contribu
tion of the Eo edge to the long wavelength piezobirefrin· 
gence, of opposite sign to that predicted by eq (10), is 
subtracted from the experimental results. 

4. Third Order Susceptibility and Model 
Density of States 

It has been recently suggested [52] that the third 
order susceptibi}jty of Ge, Si , and GaAs at long 
wavelengths is related to the Franz·Keldysh effect (i. e. 
the intraband coupling by the field) of interband critical 
points [53]. We discuss now the Franz-Keldysh con· 
tribution of the Wg , Eo, and EI gaps to X~~)II' 

4.1. Average Gap Wy 

In the spirit of Penn's model [38] we represent the 
long· wavelength dielectric constant by eq (6) with 
.'F = 1. The corresponding imaginary part of the dielec· 
tric constant is, for W > Wg [47]: 

(11) 
with 

The Franz-Keldysh effect for the one-dimensional abo 
sorption edge of eq (11) can be expressed in terms of 
the Airy functions Ai and Bi [54]. One must mention, 
however, that the isotropic gap problem in the presence 
of an electric field would only be completely equivalent 
to the one·dimensional problem if the field experienced 
by every electron were along the direction of the cor
responding k. The fact that the field ~ is the same for 
all electrons, regardless of k, can be taken into account 

by us ing an average field: 

(12) 

where f3 is the angle between k and '6'. The long

wavelength expression for X~~)II thus is [54]: 

(13) 

where the one·dimensional electro·optic function GI ('>7) 
is given by [54]: 

GI (->7) = 21TAi(y/)Bi(y/) -H(y/)y/- 1/2 

(14) , 

In eq (14) H (y/) is the unit step function and fL . the re
duced mass of the Penn model, given by J.-t= wll2kl') - 2. 
The Fermi momentum of the valence electrons 
is related to the plasma frequency Wp through 
k[<'3 = (3/4)1TWp2. 

The limit for ?if --70 in eq (14) is easily found using 
the asymptotic expansions of Ai (y/) and Bi ('ry) for 
y/--7+oo [55]. By subsequently performing the limit 
for W--70 one finds: 

(15) 

Or, for ease of evaluation, with X~~)II in e.s.u., and the 

energies in e V: 

We list in table I the values of Wg,~) and Eo - 1 for 
Ge , Si and GaAs. The values of X(3) calculated with eq 

1111 

(16) are then listed in table II. This table shows agree
ment in sign and magnitude between the values of X(:3) 

IlIl 

predicted from Wg and the experimental ones. An in- ' 
crease in the polarizability with field (X(3) > 0) is to be 

1111 

expected for the Franz-Keldysh effect since the in-
traband coupling by the electric field produces a 
decrease in the energy gap. 

We shall consider now the contribution to X(3) of the 1111 
interband coupling by the electric field across the 
isotropic gap %. This coupling produces an increase in 
energy gap, and thus its contribution to xBL is nega
tive. This contribution to Xl~)11 is readily found from eq 
(6): 

=_ 3(En-l) (31T) 2/ :3 w1:l 
51T 4 w~ (17) 

In eq (17) we have made use of the second-order pertur· 
bation expression: 

dWg 1 < vlrlc > 12 

d(fP ) = 2 Wg 

2k2 
-'-' 

uV (18) 
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Equation (18) is in agree men t with the results of ref. 
[44]. Comparison of thi s eq uation with eq (15) shows 
that the magnitude of the interband contribution to Xml 
differs from that of the intraband contribution by a fac
tor of order wr/ (Wy in atomic units). It is therefore al-

(> most two orders of magnitude smaller and hence 

~ negligible. 

4.2. Lowest Gap Eo 

l 
We use for the contribution of an isotropic Mo critical 

/' point to the r eal part of the dielectri c constant the 
result of eq (8). A calculation s imilar to that performed 

, above yields for an Mo critical point the followin g Franz
Keldysh contribution to X\:~)ll [52]: 

:> 

'J I / ') .J 

A (:1) - 006P-fLO-( 1 185(W) -LlXllll-' --,,-.,- + . - + . 
w~- W u 

. .) (19) 

or , transformin g IlXm I to e .s .u. and Wo to e V (P 2 and fLo 
are left in atomic units for ease of co mputation): 

We have included in eqs (19) a nd (20) the fir st term in 
the di sper sion of IlXWII sin ce it may be possible to ob
serve it experime ntally in s mall band gap materials. 
This di spersion is give n exac tl y by the function: 

W 2 (( W ) - 2 . .', ( W ) - 2. 5 ) 
w~ 1 + Wo + 1 - W o - 2W;;-2 .. ; (21) 

Equation (21) is not immediately valid for the Eo edge 
because of the degeneracy of the vale nce band. How
ever , one can apply it to the Eo edge if one neglects the 
field coupling between degene rate valence bands and 

~ uses appropriate average values of p2 and fLo. Each one 
"7 of the three valence bands can be assumed to have a 

mass equal to three times the conduction band mass 
and a corresponding ma trix element equal to tp2 [48]. 
He nce eq (20) must be used with the matrix element p 2 
and /-to =;fm e if the three valence bands are to be in
cluded. The s pin-orbit splitting Ilo of the valence band 

/ is ta ke n into account, if Ilo ~ Eo, by replacing W o by its 

average value Eo + ~o. Since p 2 is almost the same for 

all materials of the germanium family, we can replace 
it by a typi cal valu e = 0.4 (in atomic units). The values 

of /-to and Wo = Eo + ~o for Ce, Si and CaAs are li sted in 

table I. Using these numbers, eq (20) yields th e values 
of x\~L (w = 0) listed in table II . While thi s co ntribution 

TABLE 1. Values of the parameters required for the evaluation 
of the Franz-Keldysh contributions to X<,'~)II ' Frequ.encies in 

e V, 30 in Bohr radii, 1-'-0 in units of the free electron. mass. 
p' has been. taken equal to 0.4 for all materials. 

Ce Si CaA s 

W g 4.3 4.8 5.2 

Wp 15.5 17.35 15.5 
f o - 1 11 15 10 

1-'- 0 0.03 0.04 0.05 

Wo 0.9 4 1.5 

~ 10.7 10.3 10.7 
w, 2.2 3.3 3.0 

TABLE 11. Contribution of th e vorious Franz- Keldysh eileCl.s 
di scllssed here 10 x\'ll, and Xm,· III IInit s of 10- 11' e.s.u. Also , 
experimental values of th e bOllnd carrier con trilJlltions to 
xl::, and xW, · 

E" Ell 10' , 
Experi -

contribu - co nt ribu - co ntribu-
ti on tion ti on lll enl 57 

Xl:)) 
1 1\ 1 0.26 0.67 0.20 1.0 

Ce 
XC)) 

UU 0.26 0.67 0.26 1.5 

Xl :!) 
1 111 0.22 0.00 0.2 7 0.06 

Si 
x(:" 
"U 0.22 0.00 0 .. 36 0.08 

X( :lI 
1111 0. 12 0.087 0.045 0. 12 

CaAs 
X l:!) uu 0.1 2 0.087 0.060 0 .10 

is zero for Si and is not excessive in CaAs (it may, there
fore , be assumed as included in the average gap calcu
lation given above), it is dominant in Ce. In first approx
imation it may be added to the average gap calculation: 
excellent agreement with the experimental results is 
then found. 

For InAs, with Wo= 0.5 eV and fL = 0.02 , we find from 
eq (20) IlXWll (w = 0) = 7 . 10- 10 , which is of the order of 
the free-carrier contribution for the samples with the 
lowest electron concentrations measured (N = 2 . 10 16 

cm- 3 ) [57] . This is contrary to the state ment fo und in 
the literature that for these carrie r co ncentra tions in 
InAs XWll is dominated by the free-carrier contribution 
[56,57 ,58]. 
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The interband contribution of Eo to X(3) for W = 0 is 
1111 

easily obtained from the expression (see eq (8)): 

(2fLo P/~ p2 . 
~Er(W=O)= W - ·l / 2 

2 y 
(22) 

If one assumes that the repulsion produced by the field 
affects fLo in the manner predicted by the k . p expres
sion with constant matrix elements of P(fLo ex Wg), the 
corresponding interband contribution to Xml vanishes. 
If, on the other hand , one assumes fLo to be field inde
pendent one also finds a negative contribution to X\1)11 
about two orders of magnitude smaller than the Franz
Keldysh contribution, and hence negligible. 

4.3. EI Critical Points 

The EI optical structure is usually attributed to MI 
critical points along the {Ill} directions. While M1 
critical points are known to yield no contribution to 
Xml [52], there are Mo critical points of the same sym
metry slightly below the M1 critical points. This com
bination of Mo and MI critical_points with a very large 
longitudinal mass, can actually be approximated by 
two-dimensional minima [ 48J . The contribution of one 
of these two-dimensional mlDlma to the long
wavelength dielectric constant is (we assume four, and 
not eight equivalent {Ill} directions): 

~Er (23) 

where ao is the lattice constant and Pz the appropriate 
square matrix element. We have tried to calculate the 
Franz-Keldysh contribution to X(3) of these two-dimen-1111 
sional critical points in a way similar to that used above , 
but we have run into difficulties when evaluating the 
limits of the two-dimensional electro·optic functions for 
YJ ~ + 00. In view of this we have instead evaluated the 
effect of the three-dimensional Mo critical points, with 
the longitudinal effective mass replaced by the value 
required to give at long wavelengths a contribution to 
E,. equal to that in eq (23). 

Under these conditions, and because of the large lon
gitudinal mass, only fields transverse to the critical 
point axis contribute to XmJ' When summing the con
tributions of the four equivalent valleys, it is found that 
the effect becomes anisotropic: the ratio of the third 
order susceptibility for ~ along {Ill} (Xmg), to that for 
'it along {lOO} is 4/3. This argument is independent of 
the specific model chosen for the {Ill} transitions, pro
vided fL II ~ fL -L' It gives the type of anisotropy 

(xmg > Xm I) observed for Ge and Si, but not for GaAs 
[57]. The Franz-Keldysh contribution of EI to X(3) as 

1111 

found by the procedure sketched above, is: 

A (3) -052 p2 UXIIII-' -5 
aowl 

or, with WI in e V and X\~)l1 in e.s. U.: 

~X· (3) = 2 7 . 10- 8 p2 
1111' 5 

aowl 

(ao in Bohr radii and Pz in atomic units.) 

(24) 

(25) 

" 

The matrix element P should have approximately the < 

same value as for the Eo gap. In order to take care of the 
spin-orbit splitting ~I of EI we substitute WI by EI + 
~d2. The approximate values of ao, and WI for Ge, Si .-' 
and GaAs are listed in table 1. The values calculated for 

< 
the Franz-Keldysh contribution to EI to X(3) and y(3) 1III ',{;ga 
are listed in table II. While the calculated anisotropy 
has, for Ge and Si, the sign observed experimentally, its 
magnitude is far too small to explain the experimental 
anisotropy, especially after the Eo and the E" 
contributions are added. There is a possibility that the 
EI contribution of eq (25) may have been underesti
mated. Exciton quenching effects [59,60J , not included 
in our calculation, may increase this contribution. 

We cannot offer even a qualitative explanation of the 
sign of the X(3) anisotropy observed for GaAs. It would 
be interesting to determine, through measurements of 
other III- V or II- VI compounds, whether it is con-

~ 
nected with the lack of inversion symmetry in these 
materials. 

The interband contribution of the L edges can be 
evaluated in a manner analogous to that used for the Eo 
and the Wg gaps. We also find that this contribution is 
negative and, typically, two orders of magnitude below 
the Franz-Keldysh contribution. 
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