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X The fundamental absorption spectrum of a solid yields information about critical points in the opti-
cal density of states. This information can be used to adjust parameters of the band structure. Once the
adjusted band structure is known, the optical properties and the density of states can be generated by
numerical integration. We review in this paper the parametrization techniques used for obtaining band
structures suitable for density of states calculations. The calculated optical constants are compared
with experimental results. The energy derivative of these optical constants is discussed in connection
with results of modulated reflectance measurements. It is also shown that information about density of

5 empty states can be obtained from optical experiments involving excitation from deep core levels to the
conduction band.

A detailed comparison of the calculated one-electron optical line shapes with experiment reveals
deviations which can be interpreted as exciton effects. The accumulating experimental evidence point-
ing in this direction is reviewed together with the existing theory of these effects.

A number of simple models for the complicated interband density of states of an insulator have
been proposed. We review in particular the Penn model, which can be used to account for response
functions at zero frequency, and the parabolic model, which can be used to account for the dispersion of
response functions in the immediate vicinity of the fundamental absorption edge.

Key words: Critical points; density of states; dielectric constant; modulated reflectance; optical

absorption.

1. Optical Properties and One-Electron Density
of States

oscillator strength tensor F¢ is related to the matrix
elements of p through FY=2<f|ple > <e|plf
> wer . The Bloch functions are normalized over unit
volume. Degenerate statistics has been assumed in eq

The optical behavior of semiconductors and insula-
tors in the near infrared, visible, and ultraviolet is
determined by electronic interband transitions. An ad-
ditional intraband or free electron contribution to the
optical properties has to be considered for metals. We
shall discuss here the relationship between the inter-
band contribution and the density of states. The inter-
band contribution to the imaginary part of the dielectric
constant can be written as (in atomic units, 2= 1, m=

(1) and spatial dispersion effects have been neglected.
It is customary to take the slowly varying oscillator
strength out of the integral sign in eq (1) and thus write:
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| . o where F is an average oscillator strength and Ny the
e 4 ei(w) = ff — dSk 1) combined optical density of states.
TO JJos=o |V @ey| Structure in €;(w) (eq (1)) appears in the neighborhood

of critical points, where V, w.;=0. Such critical points

where wy=w.—wy is the difference in energy between
the empty bands (e) and the filled bands (f). The spin
multiplicity must be included explicitly in eq (1). The
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can be localized in a small region of k space or can ex-
tend over large portions of the Brillouin zone over
which filled and empty bands are parallel (sometimes
only nearly parallel). Once the critical points which cor-
respond to observed optical structure are identified in
terms of the band structure through various devious
and sometimes dubious arguments, their energies can
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be used to adjust parameters of semiempirical band
structure calculations.

Four different parametric techniques of calculating
band structures have been used for this purpose: the
empirical pseudopotential method (EPM) [1], the k - p
method [ 2], the Fourier expansion technique (FE) [3],
and the adjustable orthogonalized plane waves method
(AOPW) [4].

Once reasonably reliable band structures are known
it is important to calculate from them the imaginary
part of the dielectric constant €;(w) and to compare it
with experimental results so as to confirm or disprove
the initial tentative assignment of critical points and
thus the accuracy of the band structures. Rich struc-
ture is obtained in both experimental and calculated
spectra and hence a rather stringent test of the accura-
cy of the available theoretical band structure is in prin-
ciple possible.

In order to calculate numerically the integral of eq (1)
it is necessary to sample eigenvalues and eigenfunc-
tions at a large number of points in the Brillouin zone.
The amount of computer time required for solving the
band structure problem with first-principles methods
(OPW, APW, KKR) at a general point of the Brillouin
zone makes such methods impractical for evaluating eq
(1). The parametric methods (EPM, k - p, FE, but not
AOPW) require only the diagonalization of a small
matrix (typically 30 X 30) and hence it is possible to
sample the band structure at about 1000 points with
only a few hours of computer time. Cubic materials, in
particular those with 7y, O, and O point groups, are
simple in this respect: symmetry reduces the sampling
required for the evaluation of eq (1) to only 1/48 of the
Brillouin zone. Hexagonal and tetragonal materials
have relatively larger irreducible zones and hence a
larger number of sampling points is necessary if the
resolution of the calculation is not to suffer. Once the
band structure problem has been solved for all points
of a reasonably tight regular mesh, the bands and
matrix elements at arbitrary points can be obtained by
means of linear or quadratic interpolation.

The method of Gilat and coworkers [5] has become
rather popular for the numerical evaluation of eq (1)
[4,6]. In the case of a cubic material the Brillouin zone
is divided into a cubic mesh and the band structure
problem solved at the center of these cubes (sometimes
a finer mesh is generated by quadratic interpolation
from the coarser mesh [6]). Within each cube of the
mesh the bands are linearily interpolated and approxi-
mated by their tangent planes. The areas of constant
energy plane within each cube correspondingto a given
wer are added after multiplying them by the correspond-

ing oscillator strength and thus the integral of eq (1) is
obtained.

The real part of the dielectric constant €, can be ob-
tained from € by using the Kramers-Kronig relations.
It is also possible to obtain €, and €; simultaneously by
calculating the integral:

Fef(.l)(xf

=15 || ata . ©

with n small and positive. For n = + o the imaginary

part of eq (3) coincides with eq (1). Equation (3) can be -

evaluated with a Monte Carlo technique. Points are
generated at random in k space within the Brillouin
zone and the average value of the integrand for these
points calculated. The process can be interrupted when
reasonable convergence as a function of the number of
random points is achieved [ 7.8] .

We show in figure 1 the results of a calculation of ;
from the k - p band structure of InAs with the method
of Gilat and Raubenheimer [6]. The band structure
problem, including spin-orbit effects, was solved at
about 200 points of the reduced zone (1/48 of the BZ).

1

We have indicated in this figure the symmetry of the

critical points (or of the approximate regions of space)
where the structure in €; originates. The experimental
€; spectrum, as obtained from the Kramers-Kronig anal-
ysis of the normal incidence reflectivity [9], is also

shown. The agreement between calculated and experi-

mental spectra is good, with regards to both position
and strength of the observed structure, with the excep-

25 = (Ugvvuzv_uguuf;c)
EZ‘ THEORY
InAs N
20 (Tgy-Tgc) /f\ EXP.
Eitd (I N
u
15 L E'i /{ Lev—Lec
3 r L4va5I/_L4CrL5C
o Eota, / ’(LGV_L:CvLE;C)
OF (oo =Fae) | —|-HA5y - Asc)
|
(Aay, Asy=Age)--
E (T7y=T7c) T
5=y / (I‘I T £/
(Pgy-Tgc) / 8v 7c 1 -
‘ (Aev_Agc) (r'fv"r‘sc) (X7V—X7C)
) 1 | 1 | | |
0o 2.0 4.0 6.0 8.0
ENERGY (eV)
FIGURE 1. [Imaginary part of the dielectric constant of InAs as
calculated from the k- p method (——) [6] and as determined
experimentally () [9]. The group theoretical symmetry assign-

ments were made with the help of the calculated isoenergy plots.
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tion of the position of the E. peak. This is to be at-
tributed to an improper assignment of the E, peak when
the 6 adjustable band structure parameters were deter-
mined. The E, peak had been attributed, following the
tradition, to an X critical point while it is actually due
to an extended region of k space centered around the
U points [8]. It should be a simple matter to readjust

the band structure parameters to lower the energy of

the calculated E, peak by about 0.5 eV; in view of the
large amount of computer time required to recalculate
the energy bands this has not been done. The structure
calculated around 6 eV, due mostly to spin-orbit
splitting of the Lj levels, has not yet been observed
experimentally.

The conventional experimental determination of ¢;
from normal incidence reflection data [9] suffers from
considerable inaccuracy: to the experimental error
produced by possible improper surface treatment and
contamination one has to add the uncertainty in the
high-energy extrapolation of the experimental data
required for the Kramers-Kronig analysis. Some of
these difficulties are avoided by comparing the
calculated reflectivity spectra (obtained from e with
Fresnel’s equation) with the experimental results. This
is done in figure 2 for GaSb: the experimental data [ 10]
have not been Kramers-Kronig analyzed because of the
small range of the energy scale. Two calculated spectra
have been plotted in this figure: one obtained from the
k - p band structure [6] and the other obtained from a
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FIGURE 2. Reflectivity of GaSb calculated from the k- p [6] and
from a pseudopotential band structure [11]. Also, experimental
reflectivity [10].
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non-local pseudopotential calculation with 14 adjusta-
ble parameters [ 11]. The discrepancy between experi-
mental and calculated curves at high energy, a common
feature of many zincblende-type materials [12], has
two origins: the measured reflectivity should be low
because small
wavelengths while the calculated one should be high
because of the finite number of bands included in the
calculation. In this region where €,—1 is small, the con-
tribution to €, of transitions not included should lower
the calculated reflectivity.

During the past few years a lot of activity has been
devoted to the measurement and analysis of differential
reflection spectra obtained with modulation techniques
[13-15]. The wavelength (or photon energy) derivative
spectra [ 14] should permit an accurate analysis of the
line shapes of the spectra of figures 1 and 2. We show
in figure 3 the temperature modulated reflection spec-
trum (thermoreflectance) of GaSb [15]: it has been
shown that for the III =V materials [ 15] this spectrum
is very similar to the photon energy derivative spec-
trum, difficult to obtain experimentally. The cor-
responding photon energy derivative spectrum ob-

of increased diffuse reflectance at

tained from the calculation of figure 2 is also shown in
figure 3. The calculated and experimental shapes of the
Ei, E; + A, peaks show discrepancies of the type at-
tributed in section 2 to exciton interaction. Derivative
spectra for other germanium- and zincblende-type
materials have been calculated by Walter and Cohen
[12] and by Higginbotham [ 16].

The methods to calculate band structures from first
principles, without or with only a few adjustable
parameters (one [17] or three [4]) have recently
achieved considerable success. However the calcula-
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FIGURE 3. Measured thermoreflectance spectrum of GaSb [15]
compared with the energy derivative of the spectrum of figure 2 [16].
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tion of energy bands at one general point of the BZ
requires a lot of time so as to make density of states cal-
culations prohibitive. Moreover, the evaluation of the
matrix elements required for eq (1) is difficult with first
principles techniques. It is nevertheless possible to use
first principles calculations at a few high-symmetry
points of the Brillouin zone to adjust the parameters of
semiempirical band structures from which the large
number of sampling points required for the evaluation
of eq (1) can be obtained with relative ease. The k- p
technique has proved particularly useful in this respect
[2,18,19]. Matrix elements of p can be easily evaluated
from the eigenvectors in the k - p representation. Spin-
orbit interaction can also be easily included. This k - p
procedure has been applied to the relativistic OPW
band structure calculated by Herman and Van Dyke for
gray tin [ 19]. Figure 4 shows the reflectivity of gray tin
calculated by this procedure with the method of Gilat
and Raubenheimer together with experimental results
[20]. Comparison with other experimental results for
the germanium family suggests that the high-energy
end of the measured spectrum is too low, probably due
to surface imperfections in the delicate crystals, grown
from mercury solution, which were used for this experi-
ment.

The k - p fitting procedure has also been applied to a
first principles relativistic APW calculation of the band
structure of PbTe by Buss and Parada [7]. Figure 5
shows the reflectivity of PbTe obtained by this method

0.6

o
3

03

t

Lt it ot
20

bttt
30 4.0
ENERGY (eV)

FIGURE 4. Reflectivity of gray tin calculated from a first principles
OPW band structure fitted with the k-p method [19]. Also
experimental results [20].
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with a Monte Carlo sampling technique and figure 6 the
absorption coefficient, both compared with experimen-
tal data [7,21,22]. In both cases the semiquantitative
agreement between experimental and calculated data
is remarkably good in view of the absence of the ad-
justable parameters. The calculated reflectivity is, at
high energies, considerably higher than the experimen-
tal one, as discussed earlier for other materials. The E,
peak of the experimental reflectivity spectrum appears
split in the calculated spectrum, possibly because of in-
accuracies in the first-principles band structure. The
calculated E; structure appears due mostly to transi-
tions along the X direction. The experimental E,
structure has been assigned [23] to the lowest gap
along 3. The calculated E, peak corresponds to an ex-
tended region of the BZ without definite symmetry, as
inferred from electroreference measurements [23].
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FIGURE 5. Reflectivity of PbTe calculated from the APW-k - p band

structure [7], compared with experimental results [21].
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FIGURE 6. Absorption coefficient PbTe calculated from the APW-

k - p band structure, compared with experimental results [21,22).
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We have so far discussed optical constants for cubic
materials. While calculations for materials with lower
symmetry require more computer time, one has the
extra reward of being able to predict the experimentally
observed anisotropy. Figure 7 shows the two principal
components of €; for trigonal Se as calculated by San-
drock [24] from the pseudopotential band structure.
The similarity between calculated and experimental
results [25], also shown in figure 7, is especially re-
markable in view of the method used to determine the
pseudopotential parameters: they were determined
from the pseudopotential parameters required to fit the
optical structure of ZnSe. Only a small adjustment was
performed so as to bring the calculated fundamental
gap (1.4 eV) into agreement with the experimental one
(2.0 eV). The dielectric constant of antimony (trigonal)

F¢ must be removed. As an example we show in figure
8 the individual density of states of the 3 highest
valence bands (six including spin) and the 3 lowest con-
duction bands of gray tin [19]. Direct information
about the individual density of states can be obtained
by a number of methods discussed in this conference.
We mention, in particular, optical techniques involving
transitions from deep core levels to the conduction
band or from the valence band to temporarily empty
core levels (soft x-ray emission) [27]. If the sometimes
questionable assumption of constant matrix elements
is made, the corresponding spectra represent the con-
duction (for absorption spectra) and the valence (for
emission spectra) density of states because of the small
width of the core bands. We show in figure 9 the densi-

for the ordinary and the extraordinary ray has also been — e — - i
o - VALENCE BANDS ~|=-CONDUCTION BANDS-~
calculated by a similar procedure [ 26]. 10
The reasonable agreement obtained between experi-
mental and calculated optical constants suggests the =
use of the corresponding band structure to determine S
. .« . . . o
the individual density of states D(w): the main work, <
that of diagonalizing the Hamiltonian at a large number =
. N
of points, has already been done. The programs 2 05
required to calculate individual density of states are °
.. . »
very similar to those used for the evaluation of eq (1): =
wer must be replaced by the single band energies and 3
o
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FIGURE 8. [Individual density of states for gray tin. obtained from
the OPW-k - p band structure [19). The top of the valence band is
25]= at 0 eV. The lowest valence band is not included.
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FIGURE 7. [Imaginary part of the dielectric constant of trigonal FIGURE 9. Conduction density of states calculate for Ge (4] and for

GaSb [6] together with the function €;w” obtained from experimental
data in the vacuum uv (28] (the horizontal scale for the €;w* curve
has been shifted by 29.5 V).
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selenium for both principal directions of polarization of the electric
field vector E as calculated from the pseudopotential band struc-
ture (histograms) [24] and as determined experimentally [25].



ty of states of the conduction band of Ge calculated by
Herman, et al. [4] and the corresponding density of
states for GaSbh as obtained by the k- p method [6].
The densities of states for both materials are very simi-
lar because of the similarity of their band structures.
We also show in figure 9 the quantity €;w? obtained by
Feuerbacher et al. [28] for Ge in the region of the My ;
edge. The origin of energies has been shifted so as to
make a comparison with the conduction density of
states possible: €;w? should be proportional to D(w)
under the assumption of constant matrix elements of p.
While the rich structure of the calculated density of
states is not seen in the €w? curve, this curve is
reproduced quite well if the density of states is
broadened so as to remove the fine structure. The
required lifetime broadening of about 1 eV is not un-
reasonable for the My 5 transitions. Using eq (2) with Ng4
replaced by the conduction density of states we obtain
an average oscillator strength at the maximum of €;0*F
=0.15. This oscillator strength corresponds to the 20
4d electrons per unit cell and hence it should be divided
by 20 to obtain the average oscillator strength per d-
band. If one reasons that the transitions from 10 of the
20°d bands to a given conduction band are forbidden
because of the spin flip involved while transitions from
5 of these 10 bands are forbidden or nearly forbidden by
parity, one finds for the average oscillator strength of
each one of the 5 allowed bands F=0.03, which cor-
responds to a matrix element of p = 0.13 (in atomic
units): this value is quite reasonable in view of the fact
that the typical valence-conduction matrix element is
0.6. The small value of this matrix element explains
why the d core electrons are negligible in the k - p
analysis of the valence and conduction masses.

2. Exciton Effects

We have devoted section 1 to a comparison of experi-
mental optical spectra with calculations based on the
one-electron band structure. Exciton effects, i.e. the
final state Coulomb interaction between the excited
electron and the hole left behind, are known to modify
substantially the fundamental edge of semiconductors
and insulators [29]. Exciton-modified interband spec-
tra seem also to occur in metals at interband edges
which have the final state on the Fermi surface [30].
Experimental evidence for these effects is reported at
this conference in the paper by Kunz et al.

We shall now discuss the question of exciton effects
above the fundamental edge of insulators and semicon-
ductors with special emphasis on the zincblende fami-
ly. As mentioned in section 1 the gross features of these

spectra are explained by the one-electron theory. The
exciton interaction is responsible, at most, for small
details concerning the observed line shapes. It is
generally accepted [31,32] that the exciton interaction
suppresses structure in the neighborhood of Mj; critical
points: the Coulomb attraction with negative reduced
masses is equivalent to a repulsion with positive
masses. Such a repulsion smooths out critical point
structure: no M critical point has been conclusively
identified in the experimental spectra. The E; and E; +
A, critical points of figures 1 —3 are of the M, variety.
Hence the line shape of the corresponding €; spectrum
should be characterized by a steep low-energy side and
a broader high-energy side. Figure 10 shows the shape
of the E; peak observed at low temperature by Marple
and Ehrenreich [33] and by Cardona [34]. In order to
avoid effects due to the overlap of the E; and the E; +
A, peaks it has been assumed that they have exactly the
same shape but shifted by 0.55 eV. The contribution of
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FI1GURE 10. Contribution of the E; gap to € in CdTe as measured
at low temperatures by Marple and Ehrenreich [33] and by Cardona
[34]. Also calculation by Kane [32] using the adiabatic approxima-
tion.

only E; has been extracted from the measured e;
spectrum and displayed in figure 10. It is clear from
this figure that the E; peak is steeper at high energies
than at low energies, against the expectations for an M,
peak. Also in figure 10 we show the results of a calcula-
tion by Kane [32] of the effect of Coulomb interaction
on the E; line shape for CdTe, using the effective mass
approximation. The solution of the effective mass
Hamiltonian with non-positive-definite mass is made
easier by the fact that the negative mass (along the A
direction) has a magnitude much larger (about ten
times) than the two equal positive masses. It is possible
to use the adiabatic approximation [31], i.e., to solve
the two-dimensional hydrogen atom problem with the
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third coordinate as a parameter and then solve the
adiabatic equation for the third coordinate. The agree-
ment between the calculated and the experimental line
shapes of figure 10 is excellent.

Attempts have been made to calculate the dielectric
constant including exciton interactions at an arbitrary
point of k space, independently of the stringent restric-
tions of the effective mass approximation [35,36]. Such
calculation is possible if one truncates the Coulomb in-
teraction between electron and hole Wannier packets
to extend to a finite number of neighboring cells. The
extreme and simplest case of a &-function (Koster-
Slater) interaction can be solved by hand [31,35] and
gives around an M; critical point the shapes of €, and ¢;
shown in figure 11: for an M; critical point the Koster-
Slater interaction mixes the M; one-electron line shape
with the M;,;. The high energy side of the € peak
becomes steeper, in agreement with figure 10. The line
shape observed for the E;, —E; + A, peaks in the reflec-
tivity spectrum is composed almost additively of the €;
and €, line shape: at the energies of these peaks dR/de;
and dR/de, are almost equal. We also show in figure 11
the line shapes expected for the reflectivity spectra of
the E,—E,; + A, peaks and for the corresponding dif-
ferential spectra (dR/dw). We show in figure 12 the
photon energy derivative spectrum of these peaks in
HeTe [37]: the observed line shapes disagree with
those expected from the one-electron theory (equal
positive and negative peaks) but agree with those pre-
dicted in the presence of a Koster-Slater interaction
(Ag. 11). Similar results have been found for other
zincblende-type materials [ 37].

3. Simplified Models for the Density of States

As seen in section 1 the optical density of states, and
thus the dielectric constant, is a complicated function
of frequency and its calculation requires lengthy nu-
merical computation. For some purposes, however, it
can be approximated by simple functions. In the vicini-
ty of a critical point of the M; variety, for instance, the
singular behavior of the dielectric constant can be ap-
proximated by:

exjr+1(w—wy)*+ constant (4)

if exciton effects are neglected. Exciton interaction can
be included, within the Koster-Slater model, by mul-
tiplying eq (4) by a phase factor e’® with ¢ small and
positive.

As shown in figure 1, € for the zincblende-type
materials has a strong peak (E.) in the neighborhood of
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FIGURE 11.  Modification in €, and €; introduced by the Koster-
Slater exciton interaction in the neighborhood of an M, critical
point. Also, effect on the reflectivity under the assumption of an

equal contribution of A€, and Ae; to the reflectivity line shape.
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FIGURE 12. Photon energy derivative spectrum of the reflectivity of

HgTe in the neighborhood of the E\ and E, + A, structure [37].

which most of the optical density of states is concen-
trated. The corresponding transitions occur over a large
region of the BZ, close to its boundaries. In order to
represent this fact, Penn [38] suggested the model of
a non-physical spherical BZ with an isotropic gap at its
boundaries. The complex energy bands of the material
are then replaced by those of a free electron with an
isotropic gas wy at the boundary of a spherical BZ. This
gap should occur in the vicinity of the E, optical struc-
ture. While this model represents rather poorly the rich
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structure of €; (fig. 1), it is expected that it should give
a good picture of €, at zero frequency. The reshuffling
of density of states involved in the case of the isotropic
model should not affect €,(w = 0) very much because of
the large energy denominators which appear in eq (3)
for w = o: the lowest gap w,, usually much smaller than
wy, accounts only for a very small fraction of the optical
density of states. Penn obtained with this model the
static dielectric constant for a finite wavevector . The

result can be approximated by the analytic expression
[38]:

e(w=o, q) =]+<&>~5’7{1+ﬂlg‘7”2 }__ (5)

Wy Wy kr
_oy Loy
4‘wl~'+ 3 (U)F‘)

In eq (5) w, is the plasma frequency obtained for the
density of valence electrons and w, and k, the cor-

)

with ZF=1l

responding free electron Fermi energy and wave
number. The dimensionless quantity .# is usually close
to one.

Figure 13 shows eq (5) for Si compared with the exact
results of the Penn model [39]. These results are obvi-
ously independent of the direction of q. A small depen-
dence on this direction is found from a complete pseu-
dopotential calculation by Nara [40] (see also fig. 13).
The function €(o,q) is of interest for the treatment of
dielectric screening.
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121 Along [lll]
i ——-Penn's Interpolation
Formula
101
€(0,q) |
% SILICON
G_
LA
2] =
0 T T T T T T T T T,
01 0.3 0.5 0.7 09 1
q/Kr
FIGURE 13. Static dielectric constant (o, q) obtained by Srinivasan

[39] for Si with the Penn model compared with the interpolation
formula of eq (5) and with the results of a pseudopotential calcu-
lation by Nara [40] for q along (111).

Equation (5) yields for g = o the electronic contribu-
tion to the static dielectric constant:

e,,=1+%<ﬂ)'zl+<ﬂ>'

Wy Wy

(6)

The experimental values of €, agree reasonably well
with the results of eq (6) using for w, the energy of the
E, peak [34]. Equation 6 has gained recent interest as
the basis of Phillips and Van Vechten’s theory of
covalent bonding [41,42.,43]. These authors use eq (6)
and the experimental values of €, to define the average
gap w,. With this gap and the corresponding gap of the
isoelectronic group IV material they can interpret a
wide range of properties such as crystal structure [42],
binding energy [43], energies of interband critical
points [41], non-linear susceptibilities [44], etc. As an
example we discuss the hydrostatic pressure (i.e.
volume) dependence of €, for germanium and silicon.
According to Van Vechten [41], w, for C, Ge, Si, and
a—Sn is proportional to (a,) >® where a, is the lattice
constant. If one makes the assumption that this law
gives also the change in w, with lattice constant for a
given material when hydrostatic stress is applied one
can calculate the volume dependence of €, [41].
Neglecting the one in eq (6), a valid approximation for

Ge and Si, one finds:

1de, (d In @, dlIn w,,)
e, dV dv dV

=2[0.83—0.50] =0.66 (7)

Equation (7) explains the sign and the small magnitude
observed for (1/€,)(de,/dV). The experimental values of
this quantity are 1.9 for Ge and 0.6 for Si [41.,45].

According to eq (6) the average gap w, determines
the electronic dielectric constant for = o. As the
lowest gap w, is approached (w, < w, usually), €,
exhibits strong dispersion. This dispersion is due, in the
spirit of eq (3), to the density of states in the vicinity of
wo. For the purpose of calculating the dispersion of e,
immediately below w,, the density of states can be ap-
proximated by that of parabolic bands with a reduced
mass equal to the reduced mass u at w,. These bands
are assumed to extend to infinity in k space: the
unphysical contribution to €, for |k|— % should be
small for < w,, because of the large energy denomina-
tors of eq (3). We thus obtain for a cubic material the
following contribution of the w, gap to the scalar dielec-
tric constant below w, (under the assumption of a con-
stant matrix element of p equal to P) [46]:
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Ae,=2(2n)32w32| P|*f (w/wo) = Ci f (w/wo)

with

(8)
fx)=2—QQ+x)"2—(1—x)!2
Equation (8) represents quite well the behavior of e,
immediately below w, for the lead chalcogenides [47]
and a number of other semiconductors [48]. As an ex-
ample we show in figure 14 the observed dispersion of
€, below w, at room temperature [49] together with a fit
based on eq (8) [ 48]. For the sake of completeness we
have included in the fitting equations not only the effect
of w, (E,) but also that of its spin-orbit-split mate E, + A,
(also represented by an expression similar to eq (8)), the
dispersion due to the E; and E, + A, gaps, and that due
to the main w, gap assuming w, = E,. Thus the fitting
equation with three adjustable parameters C§, C7, C}
is [48]:

3/2
€r(w)=1+ (‘;: {f(xa) +_] < w") f(xm') }

2 wll.\'

')h(x..\-)}+c._:'(1+2x:;:)

1s

+(:,”{h,(x,)+<a“)’

where:
w w
wl!N:wil+A119 Xos = 5 xX1=——
(OFN )
w
wis=wtA, Xis=7 X2=
(O3 Wy
x'_’
1
h(x,)=1 +?.

The fitting values of C§ (6.602) and C' (2.791) are in
qualitative agreement with those calculated from the
band parameters [48].

The parabolic model density of states can also be
used to interpret the strong dispersion in the piezo-
birefringence observed near the lowest direct gap of

GaA
13 - one
12 =
(o]
v
=
job— 1 1 1 | 1 | B
0 0.4 0.8 .2 1.6
eV

FIGURE 14. Experimental results for €, in GaAs below the funda-
mental edge at room temperature (49| (circles) and fitted curve
based on a model density of states.
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FIGURE 15. Piezobirefringence in GaAs for an extensive stress along

(100) (room temperature). The circles are experimental points. The
solid line is a fit based on the model of eq (5) [48].

Ge, GaAs [48], and other III—V semiconductors
[50,51]: uniaxial stress splits the top valence band
state (I's) and a birefringence in the contribution of E,
to €, results because of the selection rules for transi-
tions from the split bands. The main contribution to
this piezobirefringence is expected to be proportional
to f'(x), which diverges like (w—wo) "% for w— w,.
Such behavior can be seen in the experimental results
(circles) of figure 15 obtained for GaAs at room tem-
perature. Included in this figure is the corresponding
fit based on the model of eq (9) [48].

The long wavelength, non-dispersive contribution to
the piezobirefringence of figure 15 can be interpreted,
at least qualitatively, in terms of the Penn model of eqs
(6) and (7). Equation (7) yields two contributions to the
change in €, one due to the change in plasma frequency
(i.e. carrier density) with stress and the other due to
the change in the isotropic gap. The first contribution
should not exist for a pure shear stress. For a hydro-
static stress the second contribution can be written in
tensor form as:

1
—Aey=5e

€0

(10)

where e is the strain tensor. We postulate that eq (8)
remains valid for pure sheer stress. This crude
generalization has a clear physical meaning in terms of
the Penn model. The spherical BZ becomes ellipsoidal
under a sheer stress and the energy gap at an arbitrary
point of the BZ boundary k, becomes anisotropic. The
gap at kp is assumed to become larger as k, becomes
larger (ky is the distance between atomic planes per-
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pendicular to kp). Equation (8) gives the right sign for
the long wavelength contribution to the piezobirefrin-
gence of figure 15 but a magnitude about five times
larger. The agreement becomes better if the contribu-
tion of the E, edge to the long wavelength piezobirefrin-
gence, of opposite sign to that predicted by eq (10), is
subtracted from the experimental results.

4. Third Order Susceptibility and Model
Density of States

It has been recently suggested [52] that the third
order susceptibility of Ge, Si, and GaAs at long
wavelengths is related to the Franz-Keldysh effect (i.e.
the intraband coupling by the field) of interband critical
points [53]. We discuss now the Franz-Keldysh con-
tribution of the wy, E,, and E, gaps to x{3) .

4.1. Average Gap w,,

In the spirit of Penn’s model [ 38] we represent the
long-wavelength dielectric constant by eq (6) with
# =1. The corresponding imaginary part of the dielec-
tric constant is, for ® > w, [47]:

e=A(w—wy) "'
4 ., (11)
with A 25 v,

The Franz-Keldysh effect for the one-dimensional ab-
sorption edge of eq (11) can be expressed in terms of
the Airy functions Ai and Bi [54]. One must mention,
however, that the isotropic gap problem in the presence
of an electric field would only be completely equivalent
to the one-dimensional problem if the field experienced
by every electron were along the direction of the cor-
responding k. The fact that the field & is the same for
all electrons, regardless of k, can be taken into account
by using an average field:

(gry =30 B) g3 g

(cos* B) 5 ()

where B is the angle between k and &. The long-

wavelength expression for {3 thus is [54]:

, g+ @)\
X(i';l)n:zo -~ lim &-20°'2 (Gl<w———" 0 a))
Tw"
Z—0
w—0 (13)

where the one-dimensional electro-optic function G;(m)
is given by [54]:

Gy(m) =2mAi(n)Bi(n) —H(n)n 1?2

g.’ 1/3
o= (2u>

In eq (14) H () is the unit step function and u the re-
duced mass of the Penn model, given by u=w,(2ks) 2.
The Fermi momentum of the valence electrons
is related to the plasma frequency w, through
kr? = (3/4)Twy>

The limit for & —0 in eq (14) is easily found using
the asymptotic expansions of Ai (n) and Bi () for

n——+» [55]. By subsequently performing the limit
for @— 0 one finds:

(14)

4/3

) 287 (3 \?3 0}
Xits :2—5?6—7; (Z 77> (es—1) ﬁ

g

(15)

Or, for ease of evaluation, with x'* 'in e.s.u., and the

energies in eV:

4/3
X3, =1.45 101 (£,—1) &

9

(16)

We list in table I the values of wgy, @, and €, — 1 for
Ge, Si and GaAs. The values of x® calculated with eq

1111

(16) are then listed in table II. This table shows agree-
ment in sign and magnitude between the values of X
predicted from w, and the experimental ones. An in-
crease in the polarizability with field (x*), >0) is to be
expected for the Franz-Keldysh effect since the in-
traband coupling by the electric field produces a
decrease in the energy gap.

We shall consider now the contribution to x{%) of the

interband coupling by the electric field across the
isotropic gap ay. This coupling produces an increase in
energy gap, and thus its contribution to x{3), is nega-

tive. This contribution to x*) is readily found from eq
6):

3 1 dw
Ax\3), =—— o— — g
Xi111 577(5 l)w”d(gZ)
_ 3(eg—1) (37 23 g 413
457 W (D)

In eq (17) we have made use of the second-order pertur-
bation expression:

do, | <vlr|e>|? =2kf,

d(&?) Wy oh

(18)
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Equation (18) is in agreement with the results of ref.
[44]. Comparison of this equation with eq (15) shows
that the magnitude of the interband contribution to {3,
differs from that of the intraband contribution by a fac-
tor of order wy? (w, in atomic units). It is therefore al-
most two orders of magnitude smaller and hence

negligible.
4.2. Lowest GapE,

We use for the contribution of an isotropic M, critical
point to the real part of the dielectric constant the
result of eq (8). A calculation similar to that performed
above yields for an M, critical point the following Franz-

Keldysh contribution to x{% [52]:
Y ) ®\?
AX‘l';:I_O'O6wsT(1+1'85 <w—"> Ao o > (19)

or, transforming Ax{¥, to e.s.u. and w, to eV (P* and p,
are left in atomic units for ease of computation):
: Cind?
A, (w)=6-10-1° —

0

><<1+1.85 (3)#. .

o, ) (20)
We have included in eqs (19) and (20) the first term in
the dispersion of Ax{,
serve it experimentally in small band gap materials.

This dispersion is given exactly by the function:

2 <<1+ﬂ)_'“ + (1 —3)7“' ~20,%7) (2D)
(O wWo (o

Equation (21) is not immediately valid for the E, edge
because of the degeneracy of the valence band. How-
ever, one can apply it to the E, edge if one neglects the
field coupling between degenerate valence bands and
uses appropriate average values of P2 and w,. Each one
of the three valence bands can be assumed to have a
mass equal to three times the conduction band mass
and a corresponding matrix element equal to 4p? [48].
Hence eq (20) must be used with the matrix element P2
and w,=3%m, if the three valence bands are to be in-
cluded. The spin-orbit splitting A, of the valence band
is taken into account, if A, < E,, by replacing w, by its

since it may be possible to ob-

LA . ) -
average value E,+ = Since P? is almost the same for

%

all materials of the germanium family, we can replace
it by a typical value = 0.4 (in atomic units). The values

of w, and w,=E,+ % for Ge, Si and GaAs are listed in

table I. Using these numbers, eq (20) yields the values

of X (w=0) listed in table II. While this contribution
TABLE 1. Values of the parameters required for the evaluation

of the Franz-Keldysh contributions to X%, . Frequencies in
eV, a, in Bohr radii, t, in units of the free electron mass.
p? has been taken equal to 0.4 for all materials.

Ge Si GaAs
Wg 4.3 4.8 5.2
®y 1585 17.35 11585
€—1 11 15 10
[T 0.03 0.04 0.05
w, 0.9 4 1.5
a, 10.7 10.3 10.7
% 22 8.8 3.0

TasLe 1L
discussed here to x\3), and x\3).-In units of 10~ e.s.u. Also,
experimental values of the bound carrier contributions to

(3) (3)
Xitl and x{;.

Contribution of the various Franz-Keldysh effects

E, E, E, Experi-
contribu- | contribu- | contribu- i (57
tion tion tion el
X 0.26 0.67 0.20 1.0
Ge
X2 0.26 0.67 0.26 1.5
Xt 0.22 0.00 0.27 0.06
Si
XUl 0.22 0.00 0.36 0.08
X5 0.12 0.087 0.045 0.12
GaAs
Xf{‘[’ 0.12 0.087 0.060 0.10

is zero for Si and is not excessive in GaAs (it may, there-
fore, be assumed as included in the average gap calcu-
lation given above), it is dominant in Ge. In first approx-
imation it may be added to the average gap calculation:
excellent agreement with the experimental results is
then found.

For InAs, with w,= 0.5 eV and u=0.02, we find from
eq (20) Ax®,, (w=0)=7-10"1°, which is of the order of
the free-carrier contribution for the samples with the
lowest electron concentrations measured (N=2-10'6
cm~3) [57]. This is contrary to the statement found in
the literature that for these carrier concentrations in
InAs x3), is dominated by the free-carrier contribution

[56,57.58].
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The interband contribution of E, to x{*), for o =0is

easily obtained from the expression (see eq (8)):

3/2 2
Aer(wZO)Iﬁg—pw;"/z 22)

If one assumes that the repulsion produced by the field
affects w, in the manner predicted by the k - p expres-
sion with constant matrix elements of p(uo = wy), the
corresponding interband contribution to x{3) vanishes.
If, on the other hand, one assumes w, to be field inde-
pendent one also finds a negative contribution to x{3),,
about two orders of magnitude smaller than the Franz-

Keldysh contribution, and hence negligible.

4.3. E, Critical Points

The E, optical structure is usually attributed to M,
critical points along the {111} directions. While M;
critical points are known to yield no contribution to
x{¥, [52], there are M, critical points of the same sym-
metry slightly below the M; critical points. This com-
bination of M, and M; critical points with a very large
longitudinal mass, can actually be approximated by
two-dimensional minima [48]. The contribution of one
of these the long-
wavelength dielectric constant is (we assume four, and
not eight equivalent {111} directions):

two-dimensional minima to

_ 4V3u 1 p2

9
a,wy

Ae, (23)

where a, is the lattice constant and P? the appropriate
square matrix element. We have tried to calculate the
Franz-Keldysh contribution to x{?) of these two-dimen-
sional critical points in a way similar to that used above,
but we have run into difficulties when evaluating the
limits of the two-dimensional electro-optic functions for
n— + . In view of this we have instead evaluated the
effect of the three-dimensional M, critical points, with
the longitudinal effective mass replaced by the value
required to give at long wavelengths a contribution to
€- equal to that in eq (23).

Under these conditions, and because of the large lon-
gitudinal mass, only fields transverse to the critical
point axis contribute to x{3 . When summing the con-
tributions of the four equivalent valleys, it is found that
the effect becomes anisotropic: the ratio of the third
order susceptibility for & along {111} (xézéf), to that for
& along {100} is 4/3. This argument is independent of
the specific model chosen for the {111} transitions, pro-
vided w|>pu, . It gives the type of anisotropy

Xk > x¥,,)) observed for Ge and Si, but not for GaAs
[57]. The Franz-Keldysh contribution of E; to X3, as
found by the procedure sketched above, is:

2

. p*
Ax3,,=0.52 pp (24)
or, with @; in eV and x{3) in e.s.u.:
Axih=2.7- 107 2= (25)
11 a»(;(l)'—l’

(a, in Bohr radii and P?in atomic units.)

The matrix element P should have approximately the
same value as for the E, gap. In order to take care of the
spin-orbit splitting A; of E; we substitute w; by E, +
Ay/2. The approximate values of a,, and w; for Ge, Si
and GaAs are listed in table I. The values calculated for
the Franz-Keldysh contribution to E; to x{3, and x{),
are listed in table II. While the calculated anisotropy
has, for Ge and Si, the sign observed experimentally, its
magnitude is far too small to explain the experimental
especially after the E, and the E,
contributions are added. There is a possibility that the
E; contribution of eq (25) may have been underesti-
mated. Exciton quenching effects [59,60] , not included
in our calculation, may increase this contribution.

We cannot offer even a qualitative explanation of the
sign of the x® anisotropy observed for GaAs. It would
be interesting to determine, through measurements of
other III—V or II1—VI compounds, whether it is con-
nected with the lack of inversion symmetry in these
materials.

The interband contribution of the E; edges can be
evaluated in a manner analogous to that used for the E,
and the w, gaps. We also find that this contribution is
negative and, typically, two orders of magnitude below
the Franz-Keldysh contribution.

anisotropy,

5. Acknowledgments

I am indebted to Drs. Buss, Kane, Phillips, Van
Vechten, and Aspnes for sending preprints of their
work, prior to publication and to the staff of DESY for
their hospitality.

6. References

[1] Cohen, M. L., and Bergstresser, T. K., Phys. Rev. 141, 789
(1966).

[2] Cardona, M., and Pollak, F. H., Phys. Rev. 142, 530 (1966).

[3] Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. 160,
649 (1967).

264



[4] Herman, F., Kortum, R. L., Kuglin, C. D., and Shay, J. L., in
“II— VI Semiconducting Compounds,” D. G. Thomas, ed., (W.
A. Benjamin, New York, 1967), p. 503.

[5] Gilat, G., and Dolling, G., Phys. Letters 8, 304 (1964); Gilat. G..
and Raubenheimer, L. J., Phys. Rev. 144, 390 (1966).

[6] Higginbotham, C. W., Pollak, F. H., and Cardona, M.,
Proceedings of the IX International Conference on the Physics
of Semiconductors, Moscow 1968 (Publishing House Nauka,
Leningrad, 1968) p. 57.

[7] Buss, D. D., and Parada, N. J., private communication; see also
article by D. D. Buss and V. E. Shirf in these proceedings.

[8] Kane,E. O., Phys. Rev. 146,558 (1966).

[9] Philipp, H. R., and Ehrenreich, H., Phys. Rev.129, 1550 (1963).

[10] Cardona, M., Z. Physik 161,99 (1961).

[11] Zhang, H.I.,and Callaway, J., Phys. Rev. 181, 1163 (1969).

[12] Walter,].P.,and Cohen, M. L., Phys. Rev., to be published.

[13] Seraphin,B. O., and Bottka, N., Phys. Rev. 145, 628 (1966).

[14] Shaklee, K. L., Rowe, J. E., and Cardona, M., Phys. Rev. 174,
828 (1968).

[15] Matatagui, E., Thompson, A. G., and Cardona, M., Phys. Rev.
176, 950 (1968).

[16] Higginbotham, C. W., Ph. D. Thesis, Brown University, 1969.

[17] Eckelt, P., Madelung, O., and Treusch, J., Phys. Rev. Letters
18,656 (1967).

[18] Brinkman, W., and Goodman, B., Phys. Rev. 149, 597 (1966).

[19] Pollak, F. H., Cardona, M., Higginbotham, C. W., Herman, F.,
and Van Dyke, J. P., Phys. Rev., to be published.

[20] McElroy, P., Ph. D. Thesis, Harvard University, 1968.

[21] Cardona, M., and Greenaway, D. L., Phys. Rev. 133, A1685
(1964,).

[22] Scanlon, W. W., J. Phys. Chem. Solids 8, 423 (1959).

[23] Aspnes, D. E., and Cardona, M., Phys. Rev. 173, 714 (1968).

[24] Sandrock,R., Phys. Rev. 169, 642 (1968).

[25] Tutihasi, S., and Chen, I., Phys. Rev. 158, 623 (1967).

[26] Lin, P. J., and Phillips, J. C., Phys. Rev. 147, 469 (1966).

[27] Wiech, G., in “Soft X-Ray Spectra,” D. J. Fabian, ed.,
(Academic Press, New York, 1968) p. 59.

[28] Feuerbacher, B., Skibowski, M., Godwin, R. P., and Sasaki, T.,
JOSA 58, 1434 (1968).

[29] See for instance R. S. Knox. “Theory of Excitons,” (Academic
Press,N.Y., 1963).

[30] Mahan, G.D., Phys. Rev. Letters 18, 448 (1967).

[31] Velicky. B., and Sak, J., Phys. Status Solidi 16, 147 (1966).

[32] Kane,E. O., Phys. Rev. 180,852 (1969).

[33] Marple, D. T. F., and Ehrenreich, H., Phys. Rev. Letters 8, 87
(1962).

[34] Cardona, M., J. Appl. Phys. 36,2181 (1965).

[35] Inoue, M., Okazaki, M., Toyozawa, Y., Inui, T., and Nanamura,
E., Proc. Phys. Soc. Japan 21, 1850 (1966).

{36] Hermanson, J., Phys. Rev. 150,660 (1966).

[37] Shaklee, K. L., Ph. D. Thesis, Brown University, 1969.

[38] Penn, D., Phys. Rev. 1282093 (1962).

[39] Srinivasan, G., Phys. Rev. 178, 1244 (1969).

[40] Nara, H., J. Phys. Soc. Japan 20,778 (1965).

[41] Van Vechten, J. A., Phys. Rev. 182, 891 (1969). In this
reference a correction factor of the order of unity is added to eq
(6) so as to take the polarizability of the core d electrons into
account.

[42] Phillips, J. C., Phys. Rev. Letters 20,550 (1968).

[43] Phillips, J. C., Covalent Bonding in Molecules and Solids
(University of Chicago Press, Chicago) to be published.

[44] Phillips, J. C., and Van Vechten, J. A., Phys. Rev. 183, 709
(1969); Levine, B. F., Phys. Rev. Letters22, 787 (1968).

[45] Cardona, M., Paul, W., and Brooks, H., J. Phys. Chem. Solids
8,204 (1959).

[46] Korovin, L. I., Soviet Phys. Solid State 1, 1202 (1959).

[47] Cardona, M. in “High Energy Physics, Nuclear Physics, and
Solid State Physics,” I. Saavedra, ed.. (W. A. Benjamin, New
York, 1968).

[48] Higginbotham, C. W., Cardona, M., and Pollak, F. H., Phys.
Rev. 184, 821 (1969).

[49] De Meis, W. M., Technical Report No. HP-15 (ARPA-16). Har-
vard University (1965).

[50] Shileika, A. Yu., Cardona, M., and Pollak, F. H., Solid State
Communications 7, 1113 (1969).

[51] Yu,P. Y., tobe published.

[52] Van Vechten, J. A., and Aspnes. D. E.. Phys. Letters, in press.

[53] Aronov, A. G., and Pikus, G. E., Proceedings of the IX Interna-
tional Conference on the Physics of Semiconductors, Moscow,
1968, (Publishing House Nauka, Leningrad, 1968), p. 390.

[54] Cardona, M., “Modulation Spectroscopy,” F. Seitz, D. Turn-
bull, and H. Ehrenreich, eds., (Academic Press Inc., New York,
N.Y.).

[55] Antonsiewicz, H. A., in “Handbook of Mathematical Func-
tions,” (M. Abramowitz and I. A. Stegun, eds.) (Dover Pub. Inc..
New York, N.Y., 1965) p. 448.

[56] Wolff, P. A., and Pearson, G. A., Phys. Rev. Letters 17, 1015
(1966).

[57] Wynne, J. J., Phys. Rev. 178, 1295 (1969).

[58] Patel, C. K. N., Slusher, R. F., and Fleury, P. A., Phys. Rev.
Letters 17,1011 (1966).

[59] Hamakawa, Y., Germano, F. A., and Handler, P., J. Phys. Soc.
Japan, Suppl. 21,111 (1966).

[60] Shaklee, K. L., Rowe, J. E., and Cardona, M., Phys. Rev. 174,
828 (1968).

(Paper 74A2-597)

265



	jresv74An2p_253
	jresv74An2p_254
	jresv74An2p_255
	jresv74An2p_256
	jresv74An2p_257
	jresv74An2p_258
	jresv74An2p_259
	jresv74An2p_260
	jresv74An2p_261
	jresv74An2p_262
	jresv74An2p_263
	jresv74An2p_264
	jresv74An2p_265
	jresv74An2p_266

