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The num eri ca l so luti on of the Sc h r;;di ll ~e r e q uation for a n elec tron in a de nse a ssembl y of a toms 

(i. e. a so lid o r liquid meta l o r semicondu cto r) ha s m ad e g rea t pro~ ress in th e past ten years. Thi s is not 

me re ly a consequ c nce of g re at e r co mputing powe r; we now ha ve a mu c h be tt e r gra s p of the m a themati 

c al th eo ry of s uc h so lut ion s. 

By 1960 a numbe r of prac ti cal me thods had been de vised fo r the comput ati on of the e le ctron ic 

s truc ture of o rd e red cr ys ta ls, bu t th ese la c ked intuiti ve int e rp re ta ti on. Th e firs t adv a nce was to re wr it e 

the O PW me t hod in te rms of pseudopo te nt ia ls, thu s m a kin g sense of the f ree-c lec t ron t heo ry of me ta ls. 

This de ve lop me nt ha s proved part ic ul a rl y valuable in se m iquan tit at ive and e mpiri ca l in ves ti ga ti o ns of 

Fe rm i s urfaces, tra ns port prope rti es, la tti ce d yna mi cs , co hes io n, el c. , but we ha ve had to wait unt il 

recentl y for a ri go rou s ana lys is of th e c rit e ria for converge nce of th c various t ypes of llI ude l potc nt ial or 

pseudopote nti a l that have been postu la te d. 

Th e nex t s te p was to s how th a t th e KKR (G rce n fun c ti on) mc th od could a lso be exp ressed as a 

pseudopo te nti a l, a nd then to d e mons tra te th a t thi s was a lso a fo rm of APW ex pans ion. Th e re la ti vc 

c omp uta ti una l power of th ese t wo me th od s c a n thus be a na lyzed, a nd ques ti ons a ns we re d conce rnin g 

the fulfillm e nt of th e e mpty la tti ce tes t , the a p pa re nt lac k of uniqu e ness of th e c xpans ion s, th e ad 

vantages of " fo ldin g" matrix e le me nt s from di sta nt po int s of the rec iproca l la tti ce, a nd the introdu cti un 

of co ntributi ons from the inte rs titi a l pote nti a l. 

At thi s s tage, the connecti ons b etween th e band s tru c ture probl e m and the t-ma tri x theo r y of sca t
tering we re unco vered , a nd d-band s we re see n to arise as resona nces of thc muffin -tin we ll s. T he KKR 

ma trix co uld now be rewritt en as a mi xture of pse udo pote nti a l a nd ti ght -b ind ing e le me nts, in ha rm ony 

with the e mpirical model Ha miltoni a n re present ati ons of h ybridised So p a nd d-ba nd s . Th is m ethod not 

onl y pe rm its more rapid co mput ati ons, but s ho ws c lea rl y how th e wid th and pos itio n of s uc h bands 

sh ou ld de pe nd on th e a tomic pote nti a l. 

So me prob le ms still re ma in. Fo r exa mple, present techniques do no t seem adequa te for fir s t-prin c i

pl es ca Ic ul a ti ons on molec ul ar c rys ta ls, wh e re the a ni sotropy of th e int e rst it ia l po te nt ia l (i. e. eas y cha n

ne ls a lo ng bond s, but hi gh hill s be twee n laye rs or c h ain s) is probabl y the domina nt fea ture. 

As fo r di so rd e red s yste ms- we kn ow littl e for ce rt ai n and nothing qu a ntit a tively. T he line ar ch a in 

1lI0dei has been fu ll y s tudi e d but is quit e irrele van t to the three-dimensiona l case. The present theore ti 

cal confus ion is exemplifie d by the e qui concentrati on s ubs titutiona l a lloy in th e ti ght-binding li mit ; 

some formulae give onl y one b a nd, ot he rs a llo w two. Again , the very possibilit y of producing band gaps 

by diffrac tion of free elec tron s in a topologica ll y disorde re d syste m (e.g. amorp hous Ge) ha s not bee n 

de mon s tra te d m athemati ca ll y with a ny ri go r. 

Key words : APW ; band s tructure; de nsity of s ta tes; diso rd e red syste ms; KKR; pseudopotential ; 

t-matrix ; mo lecul a r c rystal s. 

1. Algebra vs. Arithmetic the Electronic De nsity of S ta tes to an unprejudiced 
tribunal? 

I Any scie ntifi c proble m or puzzle can seem interes t
i' ing and s ignificant if o ne ge ts s ufficien tl y involved in it : 
t the diffi c u lty sometimes is to pers uade other people of 
I thi s importan ce . H ow s ho uld we defend our interest in 

Not, surely , in term s of immediate use, but of long 
term understand in g. Electron s being the gl ue of a ll 
" materials", their s tates within cond ensed ma tter are 
of fundame ntal importa nce. No quantita ti ve es tim a te 
of any property of a me tal, se mi co nduc tor , in s ul a tor, 
glass, liquid , mineral , et c., can begin wit hout informa
tion about th ese s tates. In fact, we want all the wa ve 

~ ---
*An in vi ted pa pl'1" prl'sen tt,d a t 111 (' 3d i\'latcrial s I\esea r('h Sy mpos ium . Electronic Den 

sity of Stales, Nove mbe r :3-6 , 1969. Ca i t hc rs bu r~ . .'vld. 
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function s of all the electrons outside of the closed 
shells - a tall order, which cannot be fulfilled by direct 
experiment. The next best thing is the energy spec
trum , or "density of states," although as we shall learn 
in the course of this symposium, that cannot always be 
deduced unambiguously from observed phenomena_ 

Progress in this field therefore depends on sound 
theoretical analysis of the hypothetical possibilities, as 
well as careful experimental investigation of the facts_ 
The calculation of electronic band structure is thus the 
central math emati cal problem of solid state physics_ 
Every "exciting" topic or mysterious phenomenon - su
perconductivity, the Kondo effect, ferromagnetism , 
Fermi s urfaces, the Cunn effect, Josephson tunnelling, 
e t c_,-eventually depends for its computable parame
ters on this mundane task. 

It is sometimes argued, by the deeply unimaginative 
follower of scientifc fashion , that this problem has been 
solved long ago, and can safely be left to the brute 
strength of more and more powerful computers_ This is 
quite wrong; these elephants must be goaded and 
guided by experienced mahouts , whose skill is to see 
in advance the type of answer that is to be obtained, 
and then to deploy the minimum of force to lever away 
the obstacles_ A ream of computer print-out is useless 
unless it agrees so perfectly with experiment that we 
need never look back and see why and how it went 
wrong_ Our task is to devise techniques for the theoreti
cal mastery of ever more complex systems, which 
requires at every stage that we know exactly what we 
are doing, analytically as well as numerically_ 

This is well illustrated by the recent history of our 
subject. Let me express this in personal terms_ A little 
more than ten years ago, in gathering material for a 
monograph [1] of which one chapter covered this topic, 
I found that many techniques of band structure compu
tation had been proposed and tried out, but that there 
were very few cases where the results had been con
firmed experimentally, or where they gave an insight 
into the actual electronic structure of the materials_ It 
was si mply not obvious , for example, that almost all the 
calculated band structures for metals could have been 
derived from the free electron system by perturbation 
effects at th e zone boundaries, because nobody had 
programmed his computer to print out the data in that 
form_ We knew from the success of the free electron 
modeL that this could not be very far from the truth, 
but we had not the imagination to rewrite the algebra so 
as to see how this must arise within whatever method 
of calculation we might happen to use_ 

In the past decade , of course, computational 
techniques have improved enormously in accuracy and 
power, so that a whole body of expertise is now availa-

ble for application in any particular case [2] - Given the J 
exact one-electron potential of a crystalline solid, we , 
can compute the band structure to almost any desired : 
degree of accuracy_ But the trouble is that we do not al- I 
ways have this potential, complete with all the electron- -1-

electron terms, spin-orbit interaction, core polarization, 
exchange and correlation effects and so on, so that our J 

first-principles computations just miss the answers we 
are seeking_ Without an appeal to the basic algebraic 
principles and governing features of the model, we then 
flounder around, trying to adjust the parameters by trial / 
and errOL Somebody else, using a different "method" -> ' 

may get a different answer: is this due to deep discrep
ancies in the fundamental assumptions, or to errors of 
approximation, or just numerical mistakes? 

2. Pseudism 

Now recall how our minds have been liberated by the 
pseudopotential concept. There is no need to explain 
this to the present audience_ Let us suppose that we 
had tried to express the Bloch function of wave vector _ 
k by a sum of simple plane waves 

IJik = ~ . Q' ei(k+g) r 
g g , (1) 

where g runs through the reciprocal lattice: we should > 
have to solve the infinite set of linear equations 

where r (g- g') is a Fourier component of the periodic 
potential in the lattice and iff is the energy of the state < 
we are after. By rewriting the equations in terms of 
orthogonalized plane waves we can show that the whole 
problem is equivalent to solving a very similar set of -< 
equations 

(3) 

1 
in which the pseudopotential components fml' are much I 

smaller than the original set r (g- g')_ Thus, the whole ; 
problem is equivalent to the perturbation of free elec- I 
tron waves by a weak pseudopotential and can be 
solved by elementary computation_ For a perfect / 
Bravais lattice the value of r (g- g') or of filII' is a func- '1 

tion only of the potential associated with a single atom 
or ion - in the language of x-ray diffraction, it is just the ' ''" 
"atomic form factor" in the formula for diffraction by 1 
an assembly of such objects at the appropriate Bragg 
angle_ The band structures of most ordinary metals, -
and many semiconductors, can be read at a glance_ Not 
only does this provide us with an admirable 
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parametrization of Fermi surfaces, optical spec tra, 
~ et c., in perfect crys tals, but can be extended to include 

almos t all the properti es of thermally excited, im pure 
or di so rd ered mate ri als - electron-phonon interaction s, 

T elec tri cal conductivity of solid and liquid metals, lattice 
dynamics, ph ase s tability of alloys, etc. In mome nts of 
enthusiasm [3,4,5J we may perhaps be forgiven for pre

) tending th at all the problems of the theory of metals are 
c ured by a s trong dose of "pseudism". It is a wonderful 

)- model for zeroth order calculations, and the ideal do-it
i yo urself kit for the enthusiastic amateur. It had th e ef
.-' fect of turning band structure theory from a rule of 
" thumb technology into an elegant science. 
/ Nevertheless, the pseudopotential method is not the 

ultimate solution t o the band struc ture problem. In the 
first place, the program of replacing th e true atomic 

, pote ntial by a localized pseudo potential , independent 
of e nergy and mome ntum , cannot be fulfill ed exactly. 
If, like Herman and his colleagues [6J one is trying to 
make very accurate first principles calculations, 
nothing is gained by rewriting the OPW equations in 
this form. Indeed, there is a danger that the apparent 
simplicity and rapid convergence of the pseudopoten
tial equations may seduce us into further approxima
tions whic h hide important effects; once having lost 
touch with th e exac t equ a tions, we slid e easily into a 

)t sloppy mess where qualitative and quantitative, first 
principles and parame trized, features are inextricably 
confused. 

> 

> 

> FIGURE 1. The true wave function t/J(") in the true potentiaL 0(,') is 
replaced by the pseudo wove function q,(" ) in the pseudopoten· 
tial w( ,· ). 

This type of confusion is compounded by the non
uniqueness of pseudo potentials. Th e original algebraic 
proof of thi s arbitrariness ca me as something of a sur· 
prise, but it is really quite obvious. We are asked, in ef. 
fect to construct a weak pote ntial that will reproduce 
the effect of a s trong potential on an electron wave of 
give n e nergy impin ging on the atom. The boundary con· 
dition on the pseudo wave fun ction-that it should 
match the true wave fun c tion on the outside-is very 

weak, and amounts to little more than fixing the value 
of a few integrals over the pseudo potential. W e know, 
for exampl e, that the s-wave scatterin g ph ase shift of 
th e true potential will be r eproduced at low energies if 
we c hoose the spatial average of the pseudopotential 
correc tly- and so on. Almost any fun ction containing 
a few adjustable parame ters can be made to fit these 
conditions. Of course the problem of findin g a fixed 
local pseudo potential that will imitate the effects of the 
true potential over a wide range of energy is much more 
diffi c ult, and has not been solved, but that is not what 
we are asked to do. 

Thi s arbitrariness was exploited to the full by Heine 
and Abarenkov [7] who chose the most elementary 
pseudopotential functions so as to simplify the rest of 
the algebra. It was natural to reproduce the core poten· 
tial of a metallic ion with a square well of depth A{(g') , 
which could be continu ed outwards as a simple 
Coulomb potential; or as a screened Co ulomb potential, 
according as one is thinkin g of an isolated free atom or 
of a "pseudo ato m" in a co nde nsed phase (fig. 2). In 
fact , the value of A{(g') for a given angular momentum 
can the n be es timated from the optical term values, 
in the tradition of the qu a ntum defect me thod of Kuhn 
and Van Vleck. 

S uch a " mode l pote nti al" is obviously good physics, 
and can be more or less justifi ed ma themati cally. It 
co pes very elega ntly with one of th e most d iffi cult 
aspects of the whole theory - the self-co nsis te ncy 
proble m for th e valen ce elec trons - abo ut whi c h, for 
reasons of brevity, I s hall say ver y littl e here. According 
to Shaw [8] , the scree ning correc tions can be calc u
la ted acc urately, although it pays to eliminate the 
discontinuity a t the s urface of th e squa re well by treat-
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F IGU RE 2a. Heine·Abarenkov pseudo(Jotential; before screening. 

, .. r 

-RM o 

FI GU RE 2b. After screening (from [5]). 
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ing the radius of this internal flat region as another ad
jus table parameter , depending also on energy and mo
mentum (fi g. 3). 

E 

r---- -- --, 
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F IGUR E 3. S haw pseudofJotential. 

Notice, howe ver , the dangers of overelaboration. An 
arbitrarily defin ed model pote ntial in real space is valu
able only in proportion to its algebraic or geometrical 
simplicity, and will not bear mu ch " improvement" in 
the name of numerical precision or in order to ge t 
better agree ment with experime nt. In the e vent the 
electronic structure de pends on the " form factor" - the 
Fouri er transform of the pse udopotential- whi ch might 
the n jus t as well be derived direc tly from the true 
potenti al by some more powe rful me thod, or whic h we 
could also re present by som e simple e mpirical fun ction 
[9] . 

From a fOTl)1al point of view, the arbitrariness of the 
pseudopotenti al is certainly quite worrying. How can 
the elec tronic band s tructure de pend uniqu ely on the 
periodic lattice potenti al if thi s arbitrary fun ction can 
be interposed in the calcula tion ? Well now, suppose we 
had tri ed to solve the equ a tion s (2) for the Bloc h fun c
tions expanded in simple plane waves . Since these are 
an infinite se t we should have had to proceed by s uc
cessive approximations, jus t as if we are trying to sum 
a seri es term by term. But these equati ons really have 
many solutions of much lower energy than the one we 
are lookin g for , corresponding to all the narrow tight
bound bands a nd an ex pa ns ion in powers of r (g- g ') 
simpl y does not converge for energies in th e valence 
band. W e are trying to s um the Born series for scatter
ing by on e of th e atomic pote ntials, ignoring the fac t 
that it has numerous dee p bound states. The pseu
dopotential tri ck removes all the effects of these bound 
states, and gives us a convergent seri es . It is rathe r like 
wanting to e valuate l/(l+X) when X is about 10: a power 
series in X will not conve rge, but we can easily con· 
struct a new seri es in some new variable y = (X- a), 
say , which can be made to converge in the region of in· 
terest. The actual terms in the series will depend on the 
value of a, which may be any arbitrary number larger 

than about 5 - but the fin al answer will be independent 
of thi s choice. Thus the final value of th e energy as a , 
function of wave vector comes out the same, whatever II 

form of p seudo potential we introdu ce into the equa- < 

tions. 
This sugges ts a possibl e criterion for a " bes t" pse u

dopotential: choose the fo rm of rgg' that causes the se
ri es expansion for the Bloch functions to converge most 
rapidly. There is a rath er elaborate mathematical I 

theory of the Born series, due to Weinberg, which can 
be applied to this proble m [10] and which does di s
criminate in principle between various formulae. Th ese ~

inv es tigations are not, perhaps , of very great prac tical ) 
value to the horny-handed programmer of co mputers, 
but they are healthy in es tabli shing the basic mathe-
matical foundations of the whole techniqu e. --: 

3. The Problem of Bound Bands 

The mos t serious limi tati on of the pseudopotenti al 
conce pt is th at it applies only to the so-called "simple" 
metals - those without d -s tates in the valence band. 
There is, of course, a long tradition of re presenting 
suc h states by the tight bindin g method , as a linear 
co mbin ation of a tomic orbitals . The coeffi cie nts a/. in ' 
such combination s then have to satisfy a set of linear ' 
equation s of the form 

where th e index L s tand s for different a ngular momen
tum and magne tic quantum numbers; for example, the 
five values of the component of an gular momentum in 
a band of d-states. The original bound state at WI. is 
broadened into a band by the various overlap integrals ~ 
r l•u (k), which can in principle be evaluated, although 
in practice this is so complicated and inaccurate that 
one treat s them as adjus table parameters. 

It used to be thought that all the s tates in metals 
could be described in thi s way, by bringing in enough 
different atomic orbital s. The picture of states over
lapping and broade ning to make nice valence and con
duction bands illustrates one of the nursery rhymes of 
our subj ect (fi g. 4). Unfortunately , thi s is quite mi slead- , 
ing. What happens is that as the atomic potentials 
overlap, and the barrie rs fall betwee n atomic cells" 
mos t of these atomi c bound-state orbitals disappear. 
The ordinary s and p valence levels of the atoms vanish 
into a nearl y free-electron band whi ch can only be 
described if one includes 'propagating wave fun ctions 
from above the s pec trum of bound states of the 
se parate ions or atom s. 

244 



) 

, I 

) 

> 

( 
> 

p 

s 

r 

FIGURE: 4. Conventional pictare of energy bands from overlap 0/ 
atomic orbitals. 

We thus arrive at an impasse: we can describe ordi· 
nary s - p bands in pseudopote ntial language, and 
d-bands in tight bindin g language, but there seems no 
common tongue , even when th ese band s overlap and 
hybridize as in the tran s ition metals. 

4p 

This difficulty never seems to have worried the ac
tive calculators of band structures: they used two 
tec hniques that ga ve good nume rical results in all 
cases -the augmented plane wave method and the 
Green function method. One of th e main developments 
in ba nd s tru cture theory in th e pas t 5 years has been to 
s how th e mathe matica l co nnection s be tween th ese use
ful techniques and the co nce pts of pse udopote ntial and 
tight-binding. 

The idea of an augmen ted plane wave is quite s i mpJ e. 
At some given energy iff, one solves the Schriidinge r 
equation inside a spherical potential well, of radius 
Rs, say. The solution is a linear combination of products 
or radial functions and spherical harmonics of different 
values of angular momentum. Now determine these 
coeffi cients so that this solution matches on to a plane 
wave of wave vector k outside the sphere. This function 
is s till not an exac t solution of the Schr(idinger eq ua
tion , and has a di scontinuity of s lope at Rs; but we can 
build up our Bloch function by combining a set of 
these with wave vectors k, k + g, etc. just as in (1) 

and then us ing the variational principle for the e nergy. 
The coefficie nts sati sfy a set of eq uation s exac tly like 
the pseudopoten tial eq uation s (3) so that we can find 

s-p band 

(a) 

k (b) 

FIGURE: 5, (a) Conventional LCAO description 0/ formation 0/ metallic conduction band; (b) DescrilJtion in terms 0/ maDin-tin 
potentials. 
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FIGURE 6. An augmented plane wave. 

the energy g' as a function of k by finding the roots of 
the determinant in the usual way. 

The actual formula for r gg,A PW is rather elaborate, so 
I will not write it down; it depends upon k , and also 
upon g' through the first derivatives of the radial solu
tions of the Schrodinger equation at Rs. At first sight 
one might have thought that this could be interpreted 
as an elaborate e nergy- and momentum-dependent form 

factor, derivable from a pseudo potential; but this is not 
the case. The difficulty is that f APW does not vanish in 
the eleme ntary case of an empty lattice -whereas we 
should certainly expect a pseudopotential to be zero 
when we remove the true potential to whic h it is sup
posed to be equivalent. The connection with the tight 
binding formalism appears e ven more obscure, even 
though one can compute perfectly good d-bands by this 
method. 

In des peration, we turn to the KKR method of Korrin
ga and of Kohn and Rostoker. This is called the Green 
function method because it was originally derived in 
that somewhat abstract language, but it really depends 
upon a self-consistency argument; as the Bloch wave 
proceeds through the crystal lattice, and encounters 
the various atomic spheres, it suffers scattering or dif
fraction - but this diffraction must be exactly what is 
needed to reproduce the wave and keep it on the move 
without loss. Again , I will spare you from the algebra, 
and merely report that, as in the APW method, one 
uses the radial solutions of th e Schrodinger equation in 

FIGURE 7 . Scattered waves recombining as plane waves in KKR 
method. 

each atomic sphere and plane waves outside. The 
result is yet another se t of linear equations- this time 
for the coefficients of the mixture of solutions of various 
angular momentum in the sphere: 

In this formula , the energy g' is K2, and TJI ( K) is the 
phase shift that would have been produced by the 
atomic sphere in scattering a plane wave of this energy. J 
The "structure constants" BLu(K,K) depend on the 
energy and momentum of the state being studied, but 
otherwise can be laboriously computed from the geo
metrical structure of the lattice. 

This does not look very much like either of our previ
ous formulae. Indeed , from the pseudopotential point ) 
of view it looks quite wrong, for when we a pply the 
empty lattice tes t we make YJI tend to zero , which 
causes co t TJI to blow up. In fact these equations need <

to be turned upside down if we are to understand them 
physically [Ill The algebra is again a bit heavy, and 
depends essentially on some of the analytic properties 
of the structure constants, each of which is in fact a 
sum over reciprocal lattice vec tors of products of spher
ical harmonics and Bessel fun ctions etc. Th e result is 
a set of algebraic equations of the form of (3), with the 
following expression for the " matrix elements of the 
pseudopotential" : 

r KKR __ 47rN (2/+1 ) ,jl(l k-g IR.)j,(l k-g ' IR.,) p (cose , ) 
, - L I tan TJ l 1 . ( R ) 12 I gg 

gg K }I K s 
(6) 

where 

(7) 
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------------------ - "--

l In thi formula , jl a nd TJI are spheri cal Bessel fun ction s, 
and PI (cos()!I!1') is the ordinary Legendre polynomialfor 

i th e angle bet wee n vectors k - g and k - g'. 

r Thi s formula is highly ins tructive, for a number of 
reasons. 

I (i) Consider an empty lattice , for which TJI = O. 
) Then TJ'I will also vanish, and with it tan TJ'I. 

> 

) 

l 
I 

> 

> 

Thus fUll' is a genuine pse udopotential , whic h 
goes to zero with the true potential. 

(ii) When TJI is small , the difference between, say 
tan TJ 'I and sin TJ I exp (iTJ/) is negligible. Ignor
in g th e ratios of sph erical Bessel functions, filii' 

loo ks just like a sca ttering amplitude for th e ef
fec t of our given potential on a s ingle plane 
wave. This is good physics: the crys tal is made 
up of an assembly of objects, each of which scat
ters th e Bloch wave into itself. 

(iii) A strong potential, with man y dee p bound 
sta tes may, ne verth eless, have quite s mall phase 
shifts, so may be have lik e a weak pse udopote n
ti al. Thus, the princ iple of subtracting away th e 
d ivergences due to the bound s tates a mou nts to 
simply re prese ntin g eac h phase shift as the 
smalles t possible angle, modulo (7T). This is a 
well· known properly of phase s hifts. 

(i v) As shown by Lloyd [12], thi s form of matrix 
ele me nt can be derived from a simple model 
pote nti al. We merely put a delta fun ction singu· 
larity of potential over the s urface of the s phere 
of radius R. , of stren gth to match the phase shift 
TJI outside, for each value of l. 

(v) The connec tion with the APW formula was 
discovered by Morgan [13]. Suppose we write 
r A I'n' (0) for th e values of the APW matrix ele· 
ments in an e mpty la tti ce. Then 

fAl'W = P,KR + fAI'W(O). (8) 

The APW matrix elements have th ese extra parts to 
the m, which do not really contribute to the band struc· 

). ture, and which do not vanish for any value of L, even 
for empty space. On e can even derive f APW from a 
model potential [12] , but this is mu ch more com

/' pli cated in form th an th e one for fKKlI and does not 
vani sh in empty space. 

FI GU RE 8. PseudofJotential for I'HII. 

Th ese properties of thi s new form of pse ud o potential 
s ugges t that it should be mu c h easier th an th e APW 
method to use in practice for s imple me tals, where we 
need only introduce small phase shifts for a fe w va lu es 
of angular mome nta. We may also use th e co mputa
tional device of "folding" the determin a nt for large 
values of g- g ', as if we were treatin g the diffrac tion 
from distant zone boundaries as a small perturbat ion 
[14]. This form is also said to be the bes t for co nve r
gence of the Born series in the Weinberg sense [10] , 
whatever that may imply. But the whole question ofthe 
relative computational effi ciency of these methods and 
th eir minor variants is quite complicated; all I would 
say here is that the effort of comparing them is made 
much more fruitful when we understand the basic 
algebraic connec tions. 

On e furth er myste ry needs c lar ifi cation. Le t us recall 
that the basic algebraic e quation s (3) are for th e pur
pose of di sco verin g the coeffi c ie nts f3u in so me expan
sion of th e wave func tion in th e appropriate plane 
waves. Thus, if we had bee n using f ··I/ '1I" in these equ a
tion s, we s hould have bee n writing 

~Jk = L:; f3 gcpA I'1I' (k + g) 

where cpAI 'W (k + g) is augmen ted plan e wave having 
the form exp {i( k +g)· r } outside of th e a tomic sphere. 
Now it turn s oui. [13] that the KKR equa tions also sup
pose th at th e wave function has been expanded in a ug
me nted plan e waves - but since th e ma trix eleme nts (8) 
are different in th ese equations the coeffici ents f3u will 
be different. In other words, the Bloch function t/J I;, 
which is s upposed to be a uniqu e solution to our band 
structure proble m, has two entirely differe nt represe n
ta tions in terms of the sa me se t of basic fun c tions. 

This is permissible, because in fact we are only co m
bining APW's to sati sfy the Schrodinger equation 
outside the spheres ; the part within each sphere is au
tomatically determined by its adjustment to the boun
dary condition [15] . It is well known that a periodic 
fun ction defined over only part of the unit cell can be 

Muffin tin 
well 

Interstitial 
region 

FIGURE 9. Flinctioll defined as Bloch wave in interstitial region may 
have arbitrary forrn in Inliffin-tin well. 
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represented by many Fourier expansions , depending on 
what properties it is allowed to have in the excluded re
gion. The APW and KKR expansion s both re present ~Jk 
correctly - yet they are not made up of exactly the same 
combinations of s imple plane waves in the inters titial 
regions. Thi s point is perhaps worth e mphasizing 
because in either case we have a very explicit re presen
ta tion of the wave function of the Bloch state, in a form 
that is quite convenient for calculations of electron
electron interactions, self-consistency of potentials , 
and optical, x-ray , photoemission, and positron
annihila tion matrix elements, etc. 

It has some times been held against the APW & KKR 
methods that they can only be used for a "muffin-tin 
potential" - i.e. for a periodic lattice of spherically 
symmetric wells with "empty space" in between. But 
this is not an absolute restriction. Suppose there really 
is a significant non cons tant potential 'Yi in the intersti
tial region. Then we can take this into account by ad
ding to ryy' the corresponding Fourier component 

'Yi (g - g' ) of thi s potential- made explicit by being 
given a constant value across the mouths of the muffin
tin wells [16]. Thus, the level which I call the "muffin
tin zero" [17] c uts across the equipote ntial s urfaces, 
producing muffin-tin wells with bound states, which are 
eliminated by a pseudopotential device, and ranges of 
weak potential hills through which the valence elec
trons easily tunnel, and which can be represented 
adequately by their Fourier transforms. If we go 
further, and s uppose that this inters titial potential had 
been produced by the superposition of screen ed Cou
lomb potentials, or charge clouds , carried by the in
dividual atoms, then we can imagine 'Yi a nalysed into 
these sph erically symmetrical constituents arranged in 
a lattice, and reassign these to the corresponding muf
fin-tin wells, whose dee p potentials have by now been 
replaced by a model potential or pse udo potential. In 
other words , we arrive back precisely at the sort of 
analysis implied by figure 2 or fi gure 3: the effect of the 
atoms on the electrons is equivalent to diffraction by an 

T'\(l(\ 
(0) 

o Vi (g_gl) 

°AA~ rgg, 

FIGURE 10. Lattice potential (a) dissected into an interstitial 
potential and muffin-tin wells. 

(a) i!i!il(
(b) -~I~I~ I ( 
k)~ 
(d)~" 

(e) 

FIGURE 11. Overlapping patentials (a), summed to make lattice 
potential (b) , dissected inta an interstitial potential and muffin
tin weLls (c) , redef ined as pseudopotentiais and overlapping ex
ternal ports (d) , and recombined as pseudo-atom potentials (e). 

assembly of screened model potentials, whose outer 
fields may, within reason, be superposed without hin
drance. Thus we could use rl\I\R + 'Yi as the form factor 
in any calculation where model potentials are em
ployed, e.g. res istivity of liquid metals, lattice dy
namics, etc. 

This final demonstration of the equivalence of all 
three methods of band structure - OPW , APW and 
KKR - in the case of simple metals and semiconductors 
is very satisfactory, but I am now worried about one 

; 

<-

general point. Suppose we have a very anisotropic lat
ti ce -for example , the chain structure of Te, or the 
layer structure of graphite. The separation of the poten
tial into muffin-tin wells and an inters titial potential 
must be done a t a level below the lowes t barriers 
between the atoms - for example, at the level of the 
potential half way between neighbors along a chain. But 
this may leave very high hills in the interstitial potential ,. 
between the chains or layers - and the unwillingn ess of 
the electron to tunnel through such hills may not be 
well expressed by an expansion in plane waves in this 
region. P erhaps this is not a serious point after all ; but 
I mention it to show that we are now gaining confidence 
to attack the electronic structure of more complex 
molecular crystals, a field which has up to now been 
dominated by an army of theoretical chemists wielding 
innumerable linear combinations of atomic orbitals - a 

248 



) 

FIG URE 12. Potent ials in a crys tal of long chain molecules: electron s 
occupy the valleys containing muffin-tin wells, separated by 
high potential hills. 

weapon whose fund a me ntal effi cacy I now take leave 

>to doubt. 

4. Resonance Bands 

> 
What about d-band s, which can be computed numer--

icall y by the APW and KKR method , but whose empiri
> caJ descripti on has usually been handled by th e tight 

binding formula ? The answer to this ques tion is per
haps one of the most elegant res ults of the recent 

> theory. Let us proceed from, say (5), the original KKR 
equations, which are not unlike the tight-binding equa
tions (4), in that the index L , labellin g the unknown 
coeffi cients, refers to various spheri cal harmonics, or 

I 
( 

, , , , , , , , 
I , , 

components of angular mome ntum_ We might ask, for 
exam pIe, wh at would ha ppen to the phase shift YJ I (K) if 
the e nergy happe ned to co incide exac tl y with a bound 
state ?fl. of the atomic potentiaL T o answer thi s ques
tion in general , we should need to s tud y th e theor y of 
scatterin g in the unphysicaJ regions wh ere ?f lies below 
the muffin-tin zero, makin g K pure imaginary ; but it 
turns ou t that a factor like ?fL - ?f the n appears in 
cot YJ I( K) just as we might expect. Now look at our 
formula (6) for the KKR pseudopotential in the recip
rocal lattice representation: if cot YJ'I were to vanish , 
at any energy, then tan YJ' I would become infinite , and 
everything would go wrong_ Thus, if YJ ' I should ever go 
through 7r/2 the band structure would be seriously 
affected_ 

Now this is a familiar situation in the general theory 
of scatterin g by atoms, molec ules or nuclei: the phase 
shift YJI goes through 7r/2 in the pos itive e nergy region 
whenever th ere is a " resonance" of a ngular momen
tum_ Thus, if th e atomic or ionic potential has suc h a 
resonan ce, thi s will give rise to significant band effec ts 
in this neighborhood_ Th ere is a s tand ard th eo ry of s uc h 
phe nom ena, whi c h te ll s us that we may write 

W 
tan YJ I - --

?f - ?fl (9) 

for the phase shift of a resonance of width W cente red 
on the energy ?fl _ It is easy to show, using (6), that this 
has the effect of introd ucing a band of states of about 
thi s width, at about thi s energy, in the nearly-free
electron spectrum [11]. 

This argument can be carried furth er. Starting from 
the KKR formulae and making sys te matic transforma
tions and a pproximations, Hein e [18] showed how one 
could separate out a particular resonance te rm , and 
keep this in the angular momentum represen tation , 
with indices m ,m' for the different components of l, 
while reproducing a typical pseudopotential expression 
in the reci procal la tti ce representation g,g' . The matrix 
of these equati ons can thus be written in the form 

ygm 

------------------------------~------------------------------

* "Illig 

, , , , , , , , , , , 
(10) 
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FI GU RE 13. Resonance band crossing nea rly free band. 

Without th e subm atri ces Yllm e t c., thi s would factorize 
into a nearl y-free-electron , pseudopote ntial matrix, 
such as we mi ght expect to find in a simple metal with 
an s-p band , toge ther with an ordin ary ti ght binding 
matrix , corres ponding to the overlapping a nd mixing of 
the 5 degenerate d-le vels of th e fr ee atom. The coeffi
cients Yum e t c. then describe the hybridization of these 
two sys tems of s tates, which must necessarily occur 
when these bands cross one another. 

As it happens (but not accidentally!) a n e mpirical 
" rnodel Hamiltonian" of just thi s form had already bee n 
proposed for transition and noble metals [19J before it 
was deduced directly from th e KKR equations. We can 
now, therefore, justify thi s type of expression in princi
ple, and even calculate the various coeffi cie nts directly 
from th e atomi c potentiaL In fac t there are now several 
different versions of these equations, of varying compu
tability, convergence and analytical simplicity [20J but 
all essentially equivalent of Hein e 's formula [5 ,I8J . 

This reinterpretation of the tight-binding formalism, 
and its unification with th e other band s tructure 
methods is very pleasing, but to my mind there is a 
greater gain . Let us ask how resonances actually ari se? 
F or an ordinary one-electron potential , we need to think 
of the effects of the centrifugal barrier term l(l+ 1)/r2 in 
the radial Schriidinger equation , which becom es impor
tant for l=2. A bound d-state is r eally constrained to 
avoid the nucle us by thi s " potential" . Now lower the or
dinary po tenti al a t th e outer edges of the a tom: the ef
fec t may be to leave a potential dip within the core, 
where a "vir tu al", long-li ved level could still exis t , even 
though, eventually, it wo uld have to decay as the elec
tron tunn elled out in to free space. Thus, the original 
bound d-sta te has beco me a d-resonance; if the poten
tial barri er is sufficiently thi ck, the resona nce will be 
sharp; it is not surprising that the language of over
lapping bound sta tes applies to the bands produced in 
such cases. 

From thi s picture we can learn a lot about th e gross 
features of the density of sta tes of the metal. We see, 

LCL+I ) /r 2 

F I GU RE 14. How a bound state of the atom becomes a resonance 
level of the muffin-tin weLL (See [/ 7]). 

for exa mple, that although th e little peaks and dips of 
the d-band can be derived from general ti ght-binding 
theory, especially when aided by group theory, the 
width of thi s complex of bands will depe nd c hiefly on 
the width of the resonance, whi ch is governed in turn 
by the potential barri er produced by the centrifugal 
force in the outer part of each muffin-tin welL Again , 
the ac tual position of this band will be de termined 
mainly by the energy of the original d-state from which 
it derives - and thi s is fi xed on a scale relative to, say, 
some deep state of the core. On thi s scale, however , the 
position of the ordinary conduc tion band does not de
pend on any atomic orbitals, but is determined mainly 
by the muffin-tin zero, whi ch can only b e calc ulated 
correctly by taking very careful account of screening, 
correlation energy, overlaps of potential, e t c . W e thus " 
di scover the reason for a well -known difficulty in band 
structure calculations - that the width of the d-band , 
and its position relative to the F ermi level is very sensi
tive to the model , and cannot apparently be calculated 
with the precision we would like. 

n':tJ.~tp.~r:r.:~P!7 d band 

'tMTZ 

F IGURE 15. How the position of the d-band within the conduction 
band depends on the muffin-tin zero (See [J 7]). 
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5. Some Thoughts in Disorder 

Now that we und erstand the electronic structure of 
crystaLline soLds so very well, we are tempted to attack 
diso rdered materials-liquids, alloys, amorphous and 
glassy substances. This campaign has been actively 

I waged now for about a decade, but I am not sure that it 
), has yielded many great prizes. The major difficulty, of 

course, is that we must abandon Bloch's theorem, 
I which reduces the complexity of the problem in the per
> fect lattice by a divisor of the order of 1023 • Without 
l, crys tal momentum as a good quantum number , we 

flound er about in a mixture of approximate algebra and 
( incomplete intui tion, hoping to find some clearcut con
I cepts that will guide the inter pre tation of co m plicated 

experim ents on messy materials. 
It is true that the s pectrum of the di sorde red linear 

array is now well understood [21] - and turns out to be 
muc h more spiky th a n one would have guessed from 
sim pie stati stical considerations. Some of th ese fea
tures may persist in three-dim ensional sys tem s, but un
fortunately th e mathematical methods used in the one
di mensional case seem ill-adapted to generalization. In 
partic ular, real solid systems have two properti es that 
cannot be s imulated at all by a linea r c hain . In three 
dim e nsions, a localized defec t or impurity can be 
avoided by a detour , so that it does not present an ab
solute barrier to an inc ide nt particle or excitati on. In 
three dim ensions, also we may have "structural di s
order", which is no lon ge r topologically e quivalent to 
any regular lattice, whereas in a linear c hain th e mere 
success ion of atoms prescribes an ordering, however 

> wildly we vary th e properti es of th e individual potential 
wells. 

Let me give two exa mples of s imple cases where our 
1, present theory is inadequate. It is obv ious enough that 
I a di sordered tran sition metal- e.g. liquid iron - should 

have a d-band arising from the d-reso nance, just as in 
> any crystalline phase of about the same atomic volume 

[22J. The mathematical theory of such a band is still 
rather uncertain [23J, but there is no doubt about th e 
physics. Suppose, howe ver, that we make an alloy
e .g_ of Ag and Au - whose constituent atoms have their 
resonan ce at diffe rent energies; how far apart would 

'1 these energies need to be to give us two di s tin c t d
bands, and how would this de pe nd on the relative co n
centrations and relative ordering of the constituents? 
The model ca n be made ex tre mely elementary- equal 
numbers of A and B type atoms, with a single bound s
s tate on each, s ubs tituted at random on a regular lattice 

;> with a cons tant overlap integral V between nearest 
neighbors_ Some hi ghly respected stati stical theories 
which rely upon defining an average propagator in 

such a medium , seem to insist that the bands will be 
drawn out into a continuous broad s pec trum as the two 
levels move apart ; oth ers would allow a s plit to occur 
when the spacing is ra th er larger than th e width of 
either band [24J. I feel sure, myself, that th e la tte r pre
diction is correct, but we have s till a great deal to do be
fore we can calculate the width of each band th e shape 
of the tails into the gap, and the nature of any levels in 
these regions. How far, for example, do these ba nds de
pend upon the possibilities of "percolation", from one 
atom to another of the same type, through large 
distances - a property that depends peculiarly on the 
dim e nsionality of the lattice and the relative concentra
tion s of th e components? 

Another contradiction between mathematical theo
ries and physical intuition occurs in the case of 

_or~ 
A B A B 

FIGUnE 16. Does a mixed crystal have one bound bal1d or two ~ 
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FIGUnE 17. Regions of localized and l1ol1 ·localized states for an 
"equiconcentratioll alloy" . 
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FIGUnE 18. A percolation chain in an equiconcentration alloy. 
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amorphous semiconductors. Let it be granted , for the 
sake of argument, that amorphous Ge and Si are 
"tetrahedral glasses"; each atom has four neighbors, 
arranged more or less in the regular tetrahedral orienta
tion, just as in the regular diamond lattice, but the con
nectivity of the structure has been altered in a random 
way, so that there is no long-range order. From the 
point of view of a chemist, this system is a single 
covalently bond-ed molecule: the saturation of all the 
bonds implies that some energy of excitation is 
required to create a carrier , so we should expect the 
material to be a semi conductor. The substantial gap in 
the optical spectrum of amorphous Ge supports this 
reasonable interpretation. But suppose we were to treat 
this by the conventional pseudopotential procedure , as
signing a model potential to each atom and then calcu
lating the diffraction effect on a free electron gas. In the 
absence of long-range order, there would be no strong 
Bragg reflections from well-defined lattice planes, and 
thus no proper band gaps at the zone boundaries, etc.; 
from the point of view of solid-state theory, this materi
al ought to be a metal. This antinomy needs to be 
resolved if we are to understand the theory of disor
dered systems - or even the theory of the chemical 
bond. There is some evidence - as yet merely qualita
tive [27] - that the diffraction approach can be made 
to give a band gap if one takes into account the higher
order particle correlations. Thus, a glass differs from a 
liquid in that three neighboring atoms may have a 
strong tendency to be oriented so as to make a good 
bond angle; this is a form of short-range order, implying 
a strong constraint on the three-and four-body statisti
cal distributions of atoms. At the same time, the rela
tionship between the localized molecular orbitals of the 
chemical bonds and the delocalized "Bloch states" of 
the crystal or amorphous solid needs to be clarified 
[28]. But these are only two of the numerous unsolved 
problems in this field. 

The above account of the band structure problem is 
obviously very sketchy and incomplete - especially in 
the total neglect of all electron-electron effects. We 
shall obviously learn much more about it as this con
ference proceeds. But I think it is good to look back and 
see what progress has been achieved - and even better 

to look forward to whole Alps of ignorance still to be I 
.! 

surmounted. 
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