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R. M. Waxler and E. N. Farabaugh

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(October 21, 1969)

The eight piezo-optic and eight elasto-optic constants of synthetic, single crystal ruby have been
determined using the cadmium red radiation of 643.8 nanometers (nm). All the constants are found
to be negative in value, or to have very small positive values. The data indicate that changes in the
polarizability of the oxygen ion and changes in the local field are primarily responsible for the ob-
served changes in refractive index. Hydrostatic pressure has been used for the first time as part of
a complete photoelastic investigation, and a new, screw-clamp device for easily attaining high, uniaxial

stress is described.
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1. Introduction

Thermo-optic and piezo-optic data on ruby are of
interest in laser technology because of the large
temperature and stress gradients created in a laser
solid. The induced changes in refractive index play
a large part in the distortion of the wavefront of the
licht generated [1].! Houston et. al., have reported
on the change in refractive index of ruby from —180
to 70 °C [2]. Mandarino [3] has reported on the
birefringence introduced into a ruby crystal by load-
ing along the ¢ axis, and there are some data in the
literature on the photoelastic constants of sapphire
[4, 5, 6, 7]. In view of the widespread use of ruby as
a laser material, it was felt that a complete investiga-
tion of its photoelastic properties was appropriate.

2. Theoretical Considerations

Ruby belongs to the 3m point group of the trigonal
system, and a sterographic projection showing the
symmetry elements of this point group is presented
in figure 1. In the figure, the open triangle represents
the 3 axis, the diad symbols represent 2-fold axes, and
_ the heavy lines indicate mirror planes. The right-
handed coordinate system x;x:x3 used to specify
_ the photoelastic constants [8, 9| together with the
corresponding hexagonal Miller-Bravais indices are
also shown. Measurements made on ruby at 643.8 nm
show that the refractive index of the ordinary ray,
n,=1.76569, and the refractive index of the extraor-
dinary ray, n.=1.75759 [10]. The refractive index
ellipsoid is, therefore, an ellipsoid of revolution where

*Research partially supported by the Advanced Research Projects Agency of the De-
partment of Defense.
' Figures in brackets indicate the literature references at the end of this paper.

the axis of infinite rotation coincides with the unique,
xy axis of the crystal. According to Neumann’s
principle, the point group symmetry of the index
ellipsoid, /mm, must include the 3m symmetry of
the ruby [8].

Curie’s principle states that the symmetry elements
common to the point group of the unstressed crystal
and to the point group of the stress give the point
group of the stressed crystal [8, 11, 12]. Applied
hydrostatic pressure has spherical symmetry, © © m,
and a uniaxial stress has the symmetry /mm. There-
fore, the symmetry elements of the index ellipsoid
of ruby will not be altered if hydrostatic pressure is
applied, or if a uniaxial stress is applied along the
unique, x; axis shown in figure 1. If a uniaxial stress
is applied along x; shown in figure 1, the 2-fold axis
of rotation along the line of stress is the only symmetry
element which will be retained. The refractive index
ellipsoid will become triaxial; one principal radius
will be pinned along the 2-fold axis, and the other two
principal radii will be free to rotate in the xsx; plane.
If a uniaxial stress is imposed along x., again the 2-
fold rotation axis along «x, is the only symmetry ele-
ment that is retained, and one principal direction of
the ellipsoid is fixed in this direction. The other two
principal radii are free to rotate in the mirror plane,
as before, but now they will rotate in the opposite
sense. In general, when a uniaxial stress is applied
along any line lying in the x»x; plane, one principal
radius of the index ellipsoid will coincide with x,,
and the other two radii will lie in the x,x; plane.

Ruby has eight piezo-optic constants, gi1, qi2, q13,
q14, 31, 33, Q41 G4, and eight elasto-optic constants,
Pits Pi2, D13, D14, D31, P33, Pai, Pasa. According to
Pockels theory, when a stress, P; is applied, the in-
duced changes in the relative dielectric imperme-
ability, B (B =n"2) is AB;=q;;P; i, j=1 to 6. Similar
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FIGURE 1. Stereogram of point group 3m.
Xix2X; represent the principal vibration directions of the refractive index ellipsoid.
xyuz is the Miller-Bravais coordinate system.

relations hold between AB;, p;; and the strain com-
ponents. The two sets of constants are related by

(1)
and

6
qij: Epikskj’ (2)

where the ¢’s and s’s are respectively the elastic con-
stants and elastic compliances [8].

3. Experimental Procedure

The general experimental approach is to stress the
specimen either by uniaxial loading or applied hydro-
static pressure and then to measure the absolute
changes in optical path length or the changes in optical
path difference. By choosing different crystallographic
directions for loading and different directions for light
beam propagation, sufficient simultaneous equations
can be obtained to evaluate all of q;; and Py

3.1. Preparation of Specimens

The single crystal ruby was obtained commercially
in the form of a boule about 20 ¢m long and 3 cm in
diameter. This was a Czochralski grown crystal where
the optic axis made an angle of 60° with the axis of
the boule. Spectrophotometric analysis indicated that
the Cr:O; content was 0.050 percent by weight.

Plates about 0.6 cm thick were cut with a diamond
saw from an inclusion free region of the boule so that
their surfaces contained the x»x; plane. These plates

were then ground on a surtace grinder and polished
on a lead lap using 4 to 8 wm diamond paste. The speci-
mens, in the form of rectangular prisms, were cut from
the plates, and the newly cut surfaces of the prisms,
excluding the ends were then ground and polished.
Dimensions of the 6 prisms used for the measure-
ments are given in table 1. The specimens all had a
thickness parallel to x; and lengths parallel respec-
tively to x», x3, M and M’ (see table 1). Using the mor-
phological unit cell of ruby, the orientation of all speci-
mens was accomplished by means of the Laue
back-reflection x-ray technique. It should be pointed
out that it is possible to distinguish between opposite
ends of the 2-fold axes, and this distinction is impor-
tant because the sign of the piezo-optic constants,
g1s and q41 depends on which end of an axis is con-
sidered as being positive. In the present study, the
convention used by Wachtman in his investigation of +
the elastic constants of corundum was followed [9].
In photoelastic studies, it is important that the dis-
tribution of stress be uniform in the specimen. This
condition is automatically satisfied when hydrostatic
pressure is applied. In applying uniaxial compression,
care must be taken that the length which is also the
direction of stress in the specimen be at least three
times the breadth or the thickness, and that the meas-
urements be confined to the middle portion of the
specimen [13, 14]. It can be seen in table 1 that two of
the prisms do not quite meet these specifications.
However, when loading in compression, steel caps
were placed on the ends of the specimens so that, in
each case, the prism length was adequate (see sec. 3.3).

3.2. Optical Measurements

The prisms were ground and polished so that local-
ized Fizeau-type optical interference fringes could be
observed between opposite faces. Measurement of
the shift in these fringes with applied stress was used
to determine the absolute change in optical path length.
This technique was used both for uniaxial loading [13]
and applied hydrostatic pressure [15, 6]. The fringes
were viewed in reflection using collimated cadmium
red light of 643.8 nm at normal incidence. Use was
made of a Pulfrich-type viewer which has been greatly

TABLE 1. Dimensions of rectangular prisms

Length Breadth Thickness
Prism No.

mm Parallel to | mm Parallel to | mm Parallel to

1 27.010 X3 9.880 X2 8.747 X

2 17.850 X3 6.510 X2 6.388 X

& 31.387 Xo 5.905 X 5.482 X

4 27.851 X 5.894 Xz 5.580 X

5 24.461 x> 5.908 X3 5.710 X

6 31.463 M« 5.885 M’ 5.648 X

7 17.172 M 235330 M 5.665 X

“M indicates the direction equally inclined to x, and x; and lying in the x.x; plane.
"M’ indicates the direction equally inclined to —x. and x; and lying in the x.x; plane.
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improved by Saunders [16], and, in each experiment,
a sheet of polaroid was employed to isolate changes
along each of the two principal vibration directions in
the crystal.

The change in optical path difference induced by
uniaxial loading was also measured. In this case, the
specimen was placed in a 45 degree position between
crossed nicol prisms, and the relative retardation was
measured with a Soleil-Babinet compensator [13].

Since in each experiment, the change in optical path
length or induced optical path difference was meas-
ured, it was necessary to know the change in thickness
of the specimen in order to calculate the changes in
‘refractive index. For this purpose, the elastic constants
of corundum determined by Wachtman were em-
- ployed [9]. The elastic constants of corundum are the
».same as those of ruby within the experimental error

[17].
3.3. Stressing Apparatus and Techniques

For the present problem, three different stressing
apparatus were employed: (a) a hydrostatic pressure
vessel, (b) a dead weight compression apparatus, and
(c) a rectangular frame screw clamp.

a. Hydrostatic Pressure Vessel

For attaining hydrostatic pressures up to 1000
bars a pressure vessel equipped with glass windows
was used [15]. The specimen was immersed in a
highly transparent mineral oil, and hydrostatic pres-
sure was generated by compressing the oil. In order
to increase the visibility of the fringes, the specimen
was fully coated with aluminum on the rear reflecting
surface, and given a partial coating on the front sur-
face. The shift of the Fizeau-type fringes past a fixed
reference mark was observed visually using Saunders’
viewer [16]. This technique was used to find the change
in refractive index with hydrostatic pressure of the
ordinary and extraordinary ray of ruby.

b. Dead Weight Compression Apparatus

A loading frame was used where a yoke with sus-
pended weights brings a piston to bear on the speci-
men [14]. To insure uniformity of loading, steel caps
were fabricated to fit over each end of the specimen.
A small depression was machined in both the center
of the cap and the center of the piston to accommodate
a steel ball at the point of contact. Six calibrated 50-1b
weights were used so that the total load was 300 lbs.
~ The dead weight compression apparatus was always
used in conjunction with the Soleil-Babinet compen-
sator to determine changes in the relative retardation
with a sensitivity of 1X10-7. The pressures attained
were of the order of 200 bars yielding data to three
_ significant figures.

c. Rectangular Frame Screw Clamp

A special clamp was made for the purpose of easily
attaining compressive stresses up to 10,000 bars.
This is shown in figure 2. The screw clamp was used

FIGURE 2. Rectangular frame screw clamp with specimen in place.
in conjunction with Saunders’ viewing apparatus
[16] to observe the shift in Fizeau-type interference
fringes with load. With this technique, it is possible
to note a shift of 0.1 fringe which is equivalent to a
change of about 1X10-° in refractive index. It was
desirable to attain stresses high enough to induce a
reasonably large and measurable shift of Fizeau
fringes. Calculations indicated that reliable data on
changes of refractive index in the fourth and fifth
decimal place could be obtained by stressing to about
1,500 bars.

It can be seen in figure 2 that the thrust in the clamp
is obtained from a screw which threads in to one end
of the block. The screw is 1 inch in diameter, has 20
threads per inch and is built with a thrust bearing at
the front so that the specimen is torque free. To insure
uniformity of load on the specimen, the technique of
using steel caps with steel balls to transmit the stress
was employed here as in the dead weight loading
apparatus.

In conducting the experiments, the specimen was
first placed in the dead weight loading apparatus and
the relationship between load and induced double
refraction was determined. For ruby, there is evidence
to indicate that this relationship is linear to pressures
much greater than 200 bars [6]. Having established
this linear relationship, the specimen served as its
own stress gage when placed in the screw clamp.
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The stress was measured by noting the change in the
double refraction of the specimen as it was com-
pressed. The absolute change in optical path length
for a principal vibration direction was measured by
noting the shift in the Fizeau fringes as this stress
was released. Using this technique, repeated measure-
ments agreed to within 0.1 of a Fizeau fringe.

In the foregoing, a known amount of double-refrac-
tion was introduced into the specimen in the following
manner. Ordinarily, one pattern of Fizeau fringes
could be seen when the E-vector of the polaroid was
parallel to the direction of stress, and a second pattern
was observable when the E-vector was perpendicular
to the stress direction. These two patterns could be
made to coincide by adjusting the compressive stress
so that the difference in path length between the two
vibration directions was some integral number of
whole wavelengths. By removing the polaroid from
the optical train and slowly turning the screw, the ob-
served pattern of fringes could be made, alternately,
to appear and disappear. The fringes disappeared

when the optical path length between the two principal
vibration directions was an odd number of half wave-
lengths. By adjusting to a position of complete fringe
extinction, two different settings of the screw could
be selected so that, in the interval between, a known
number of whole wavelengths of optical path difference
had been introduced into the specimen.

4. Results and Discussion

The method of calculating the photoelastic constants
from the observed change in optical path length has
been amply treated by Narasimhamurty [18] and
Vedam [19, 13], and will not be given here. The paper
by Narasimhamurty on the photoelastic constants of
a-quartz is particularly pertinent to the present work -
because a-quartz and ruby both belong to the seventh 4
Laue-symmetry group and the number of photoelastic
constants is the same for both groups. The experi-
mental results are presented in table 2, where the ob-
served path retardation, &,, has been reported in

TABLE 2. Optical path retardation in ruby
Prism Direction of Direction of Nature of Measured value of .
No. stress observation observation Expression for path retardation, 8, path retardation,
89, cm?/dyn X 10'3
1 X3 X Relative l/2(n;‘q33—nf_fq13) —s13(n3—ns) —1.475
9) 59 %1 Absolute (P) n3qss —2nasiy = 2
2 X3 X Absolute (N) n3qiz—2nss1s 1.97
3 X2 X Relative 1/2(n3q11—n3gs1) —si2(n2—ns) —1.469
4 X2 X1 Absolute (P) n3qi—2nss, — 95
4 Xo %1 Absolyte (N) n3qs31—2n3s;» 2.85
8 X2 X3 Relative l/an (g1 —qi2) —1.582
5 Xo X3 Absolute (P) n‘;qn —2ns813 —1.55
5 X2 X3 Absolute (N) n3qi>—2n1513 1.62
6 M M Relative 1/87133(%1+(113_q:4+q:u+(I33+2¢h4_2q“) —1.654
- 1/4'71::(412“?‘013'*‘(114)
—1/4(n23—ny) (s11+ 2813+ 533 — S44)
6 M M’ Absolute (P) 1/4n3, (g1 + qi13— q14+ @31+ g33+ 2qas—2q41) —.08
- 1/2”23(511 + 2513+ 533_544)
6 M M Absolute (N) 1/2n3(g12+ q13+q14) 3.22
—1/2n1(s11+ 2513+ 33— S44)
7 M’ M Relative l/8n§3(q”+q13+q14+q31+q33+2q44+ 2(]41) —1.974
_1/4n?(QI2+l]13_(I14)
—1/4(n2s—n1) (s11+ 2513+ 533 — S44)
7 M' M Absolute (P) 1/4-n33((111+(113+q“+q:n+1133+21144+21]41) —.39
—1/2n35 (s1,+2s13+ S33— S4a)
7 M’ M Absolute (N) 1/2”?(Q|2+Q|3_Q|4) 3.55
—1/2n:(s11+2s13+ 33— S44)
2 Hydrostatic X1 Absolute n (2931 +q33) —2n3(s11+s12+ 813) 0163
pressure
(for vibrations parallel to the optic axis)
2 Hydrostatic 21 Absolute n3(gii+ g2+ qiz) —2na(sutsit si3) —6.62
pressure
(for vibrations perpendicular to the optic
axis)
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centimeters per centimeter thickness of the specimen

per unit stress of 1 dyn/ecm? The measured values of
do reported in the last column represent the combined
effect of change in refractive index and dimensional
change. It should be noted that the relative values
of 8 hold for a licht beam traversing the specimen

~only once, and the absolute values pertain for a

double passage of the specimen [18, 19]. The (P)
and the (N) indicate measurements made with the
principal vibration directions, parallel and perpen-
dicular, respectively, to the direction of applied stress.
For the different directions of loading and light propaga-
tion, theoretical expressions for &, are presented in the

_next to last column.

Although the principal vibration directions are free

to rotate in the x.x; plane when stress is applied

along x», preliminary calculations indicated that this

rotation was extremely small, on the order of 0.02

circular degrees. This slight rotation was neglected,
and data obtained from prisms No. 3 and 4 (see table 2)
were treated as if there were no rotation at all.

Values of the s; were taken from Wachtman’s
paper [9] and inserted into the equations of table 2.
Of the resulting 17 simultaneous equations, a com-
puterized least-squares fit was made and the resulting

- qij are reported in table 3. The standard deviation of

each ¢; was 0.02X10-1 c¢m?/dyn or less. The pj
were then computed from eq (1) and the results are
given in table 3.

Mandarino [3] has reported that (33— ¢q13)=-+0.697
X 10-13 c¢m?/dyn for ruby with 0.11 percent Cr,Oj
Our results indicate a negative value, (g33—q13)
=—10.54 %1013 cm?/dyn.

Where comparison is possible the photoelastic
properties of ruby are found to be close to those of
sapphire. Subjecting ruby prism No. 2 to hydrostatic

TABLE 3. Piezo-optic and elasto-optic constants of ruby
Present work Dixon
qu =59 —
q12 .08 —_
q13 .13 —
q14 = Uy —
q31 .01 -
q33 —.41 -
441 = {0l -
qaa S -
pit —~0.23 ~0.20
P2 — .03 ~ .08
P13 .02 = (1)
P4 .00 —
Pai — .04 ~0
D33 =120 252
Pa .01 -
Pas = 1D .085

All g5 values in units of 10-13 cm2/dyn.
All pjj values are dimensionless.

pressure, it was found that the change in refractive
index was — 1.1 X 10-4/Kilobar for both the ordinary
and extraordinary ray. This agrees within the experi-
mental error with the results of Davis and Vedam on
sapphire [6], where they report that An,= (—1.0
+0.2) X 10-4/Kilobar and An.=(—1.1+0.2) X 104/
kilobar.2

Dixon has reported on some of the strain-optic
constants of sapphire using a method which makes
use of the acoustic scattering of a light beam [4].
Although the method does not permit the determina-
tion of the sign of the constants, the absolute values
are listed in Table III for purposes of comparison
with the present work, and it can be seen that there
is fairly good agreement in the numerical values.

Caddes and Wilkinson have reported on the large
photoelastic anisotropy of sapphire [5]. They have
found the ratio of the elasto-optic constants psy/p s =45,
which is consistent with our results. Our value of p;3
compares favorably with the value, p;3 =0 inferred
by Davis and Vedam by analogy with the strain-optic
constants of MgO [6, 20].

Pockels” phenomenological theory of photoelasticity
assumes that the elastic deformations and not the
stresses are primarily responsible for the changes in
refractive index [21, 13]. It is interesting to note that
for ruby (table 3) pi1, pi2, psi1, and ps3 all show negative
values. Of all the crystals studied thus far, only the
covalent crystals Topaz, MgO and diamond exhibit
negative values for pu(h, k=1, 2, 3). In Topaz it is
found that pyi, ps2, and ps; are all negative in value.
MgO has negative values for both p;; and p;», while
diamond has a negative value for p;; only. All these
crystals are noted for having strong interatomic bonding
[13].

Mueller [22, 13] has developed a physical theory to
explain the changes in the refractive index ellipsoid that
take place when a solid is stressed. In this theory, calcu-
lations are made of the changes in the density, coulomb
field, the lorentz-lorenz field, and the intrinsic polariza-
bility of the scattering centers. The contribution of den-
sity is always positive and in most crystals exceeds the
combined effect of the other three changes so that the
pni are generally positive. The theory has been worked
out for glasses and cubic crystals, but not for crystals
of lower symmetry such as ruby (crystal class 3m)
where the computations become extremely com-
plicated. Although the individual contributions can
not be calculated for ruby, it may be noted that the
combination of the latter three changes outweighs the
contribution due to change in density and, with the
exception of pis, the pui of ruby have negative values.
Even with p;;, the positive numerical value is very
small.

The photoelastic constants of calcite have been de-
termined by Pockels [22, 13], and it is interesting to
compare these data with the results on ruby because
both crystals belong to class 3m. In both crystals the
oxygen atoms are arranged in triangular groups per-

2 These data also agree very well with the earlier measurements of Waxler and Weir on
sapphire [15], when it is recognized that these investigators used Bridgman’s compressi-
bility data.
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pendicular to the optic axis. However calcite has a
true layer lattice, whereas Al,O3; possesses an iso-
sthenic lattice in which the oxygen atoms are almost
in hexagonal close packing. The elastic compliances of
calcite are much greater than those of ruby [13]. This
pronounced difference in the elastic compliances
manifests itself in the photoelastic constants where it
is found that the pj; of calcite are all positive, and the
pni of ruby are predominantly negative.

The authors are indebted to Harry B. Williams of
the National Bureau of Standards for his great help
in the preparation of specimens.
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