JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry Vol. 74A, No. 2, March-April 1970

A Theoretical Investigation of the Configurations $(3d + 4s)^4 4p$ in Neutral Vanadium (V1)

C. Roth*

(October 13, 1969)

Experimental levels of the configurations $(3d+4s)^44p$ in VI were compared with corresponding calculated values. On fitting 228 experimental levels by means of 20 free parameters an rms error in the calculated values of 216 cm^{-1} was obtained. All the 438 theoretically predicted levels and g-factors were calculated.

Key words: Configurations in V I; configurations $(3d+4s)^44p$ in V I; configuration interaction: energy levels of VI; first spectrum; g-values VI; parameters; theory; vanadium; VI; Zeeman effect.

1. Introduction

Racah and Shadmi $[1, 2]^1$ investigated theoretically the configurations $(3d+4s)^n$ in the second and third spectra of the iron group. The configurations $3d^{n}4p$ in the second and third spectra of the iron group, the configurations $(3d+4s)^n 4p$ for Sc II, Ti II, V II, Ca I, Sc I and Ti I, as well as the odd configurations of Cu II were investigated by the author $[3-7]^2$.

configurations $(d+s)^4 p$ comprise The 165theoretical terms splitting into 438 levels. In AEL [8], 74 terms splitting into 223 levels are assigned to the configurations $3d^44p + 3d^34s4p$. In addition, 44 odd terms splitting into 119 levels are given without any configuration designation and an additional 36 odd levels are given with no term designations.

The initial values for the interaction parameters³ were taken from the final results of Ti I, [6]:

$$B = 560$$

$$B' = 660$$

$$C = 1,630$$

$$C' = 2,310$$

$$G'_{ds} = 1,650$$

$$F_{2} = 150$$

$$F'_{2} = 280$$
 (1)

 $G_1 = G'_1 = 280$ $G_3 = G'_3 = -20$ $G'_{ns} = 5,800$ $\alpha = \alpha' =$ 50 H = -180J = 1.500K = 3,000 $\zeta_d = \zeta'_d = 100$ $\zeta_p = \zeta'_p = -110$

The initial values of A and A' were calculated from the electrostatic interaction matrices of ⁶G, ⁶F, and ⁶ P. These are given by:

⁴ F(³ P) ⁶G:
$$A' - 15B' - 3G'_{ds} - F'_{2}$$

 $-G'_{ps} - 10G'_{1} - 10G'_{3} + 12\alpha'$
(⁵D) ⁶F $A - 21B - 2F_{2} - 10G_{1} - 20G_{3} + 6\alpha$ |
 $\frac{2\sqrt{5}}{5}(K - J)$
⁴F(³P) ⁶F $\frac{2\sqrt{5}}{5}(K - J) | A' - 15B' - 3G'_{ds}$
 $+ 3F'_{2} - G'_{ps} - 6G'_{1} - 26G'_{3} + 12\alpha$

^{*}An invited paper. Present address: McGill University, Montreal, Canada.

Figures in brackets indicate the literature references at the end of this paper.
 The reader is referred to these papers for an explanation of the method used, notation

and significance of the various parameters. ³ Unprimed quantities refer to the configuration $3d^44p$, primed quantities to $3d^34s4p$ and doubly-primed quantities to $3d^24s^24p$. The numerical values of the parameters and

levels are in cm⁻¹.

$$(^{5}D)^{6}P \begin{bmatrix} A-21B-7F_{2}-35G_{3}+6\alpha \\ & \frac{3\sqrt{5}}{5}(K-J) \\ \frac{3\sqrt{5}}{5}(K-J) \end{bmatrix} A'-3G'_{ds}-7F'_{2}-G'_{ps} \\ & -G'_{1}-21G'_{3}+2\alpha' \end{bmatrix}$$

By using the values of the parameters in (1) and the fact that the trace of a matrix equals the sum of its eigenvalues, we obtain:

$$A' = 23,330 + z \ ^{6} G_{C.G.}$$

$$A + A' = 36,370 + z \ ^{6} F_{C.G.} + y \ ^{6} F_{C.G.} \qquad (2)$$

$$A + A' = 26,520 + z \ ^{6} P_{C.G.} + y \ ^{6} P_{C.G.}$$

By using the values for the centers of gravity of z^{6} G, z^{6} F, y^{6} F, z^{6} P and y^{6} P from AEL [8], and averaging, we obtain:

$$A = 40,185$$

 $A' = 40,050.$ (3)

2. Results

After three iterations, the differences between the values of the parameters obtained in the least-squares calculation and the corresponding values in the diagonalization were very small.

The final values of the parameters obtained are given in table 1 together with their standard errors.

The rather high value of 345 for the rms error can be partly attributed to the fact that the interactions with the configuration $3d^24s^24p$ were not considered, as there are no experimental levels assigned to that configuration. An approximate value for the height of $3d^24s^24p$ can be obtained as follows.

Racah and Shadmi, [1, 9], have shown that if $M(d^n)$, $M'(d^{n-1}s)$ and $M''(d^{n-2}s^2)$ are the centers of gravity of d^n , $d^{n-1}s$ and $d^{n-2}s^2$ respectively, i.e., the weighted averages of the terms of these configurations, then the parameters

$$D' = M'(d^{n-1}s) - M(d^n)$$

and

$$D'' = M''(d^{n-2}s^2) - M'(d^{n-1}s)$$

are linear functions of n with small quadratic corrections for the configurations $(3d+4s)^n$ in the second spectra of the iron group.

TABLE 1. Final parameters for V I $(3d+4s)^44p$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parameter	$3d^44p + 3d^34s4p$	$3d^44p + 3d^34s4p + 3d^24s^24p$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	$39,052 \pm 250$	$39,458 \pm 259$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	$40,666 \pm 283$	$41,022 \pm 272$
B 555 ± 10 579 ± 12 B' 750 ± 6 730 ± 5 B'' $2,008 \pm 26$ $2,084 \pm 23$ C $2,540 \pm 25$ $2,587 \pm 19$ C'' $2,540 \pm 25$ $2,587 \pm 19$ C'' $3,090$ (Arith. Progress.) G'_as $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,495 \pm 48$ $1,584 \pm 33$ G = G'_{ds} $1,584 \pm 23$ $2,292 \pm 8$ G'_1 281 ± 10 229 ± 8 $6,022 \pm 80$ G_1 281 ± 10 229 ± 8 333 (Arith. Progress.) G_3 9 ± 3 13 ± 2 333 (Arith. Progress.) G_3 9 ± 3 13 ± 2 333 (Arith. Progress.) G_3 23 ± 4 13 (Equal) 33 α'' 70 ± 3 54 ± 2 34 (Equal) α''' 70 (Equal) <th< td=""><td>A''</td><td></td><td>$54,416 \pm 757$</td></th<>	A''		$54,416 \pm 757$
B' 750 ± 6 730 ± 5 B''	В	555 ± 10	579 ± 12
B''	B'	750 ± 6	730 ± 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B''		881 (Arith. Progress.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	$2,008 \pm 26$	$2,084 \pm 23$
C''	C'	$2,\!540\pm\!25$	$2,587 \pm 19$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<i>C</i> ″		3,090 (Arith. Progress.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G'_{ds}	$1,495\pm48$	$1,584 \pm 33$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$G = G'_{ds}$		1,584 (Equal)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{2}	194 ± 9	160 ± 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F'_2	275 ± 7	282 ± 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{2}''		404 (Arith. Progress.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tilde{G'_{ns}}$	$5,836 \pm 76$	6.022 ± 80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G_1	281 ± 10	229 ± 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G'_1	296 ± 11	281 ± 8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G_1''		333 (Arith. Progress.)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G_3	9 ± 3	13 ± 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G'_3	23 ± 4	13 (Equal)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$G_{3}'' = G_{3}'$		13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α	70 ± 3	54 ± 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α'	70 (Equal)	54 (Equal)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\alpha'' = \alpha'$		54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	172 ± 8	150 ± 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H' = H		150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J	$1,088 \pm 48$	972 ± 48
K 2,492 ± 42 2,468 K' 3,104 (Fixed Diff.) $\zeta_d = \zeta'_d$ 146 ± 29 141 ± 22 $\zeta''_{\mu} = \zeta'_d$ 124 ± 77 140 ± 78 $\zeta''_{\mu} = \zeta'_{\mu}$ 140 78 rms error 345.3 215.8	J' = J		972
K'	Κ	$2,492 \pm 42$	2,468
$\begin{array}{cccccc} \zeta_{d} = \zeta_{d}' & 146 \pm 29 & 141 \pm 22 \\ \zeta_{d}'' = \zeta_{d}' & \dots & 141 \\ \zeta_{p} = \zeta_{p}' & 124 \pm 77 & 140 \pm 78 \\ \zeta_{p}'' = \zeta_{p}' & \dots & 140 \\ rms \ error & 345.3 & 215.8 \end{array}$	K'		3,104 (Fixed Diff.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta_d = \zeta_d'$	146 ± 29	141 ± 22
$\begin{array}{c} \zeta_p = \zeta'_p & 124 \pm 77 & 140 \pm 78 \\ \zeta''_p = \zeta'_p & \dots & 140 \\ rms \ error & 345.3 & 215.8 \end{array}$	$\zeta_d'' = \zeta_d'$		141
$ \vec{\zeta}_{p}^{"} = \vec{\zeta}_{p}^{'} $ 140 rms error 345.3 215.8	$\zeta_p = \zeta'_p$	124 ± 77	140 ± 78
rms error 345.3 215.8	$\zeta_p'' = \zeta_p'$		140
	rms error	345.3	215.8

Now, in $d^n p$ we must consider *n* interactions d-p, n(n-1)/2 interactions d-d and the L(L+1) correction. From p. 200 TAS [10], the center of gravity of dp is

$$M(dp) = F_0(dp) - (G_1 + 7/2G_3)$$
(4)

From eq (78) RII [11], and by taking into account α , the center of gravity of d^2 is

$$M(d^2) = A + 7/9 \ (C - 2B) + 32/3\alpha.$$
 (5)

The L(L+1) correction has to be considered as the combination of two-particle interactions, $[L(L+1)-6n]\alpha$, and an additive constant $6n\alpha$, [12]. Then by writing

$$M(d^2) = A + 7/9(C - 2B) + 12\alpha - 4/3\alpha$$
(6)

we have

$$M(d^{n}p) = [A + 7/9 (C - 2B) - 4/3\alpha]n(n-1)/2 + 6n\alpha$$

+ n[F₀(dp) - (G₁ + 7/2G₃)]
= A + (7n/18) (n-1) (C - 2B)
+ (2n/3) (10 - n)\alpha - n(G₁ + 7/2G₂), (7)

where we have replaced $[n(n-1)/2]A + nF_0(dp)$ by A. In the configuration $d^{n-1}sp$, we have in addition

(n-1) interactions d-s and the interaction s-p. Then, since

$$M(ds) = F_0(ds) - G'_{ds}/2$$

and

then

$$M(ps) = F_0(ps) - G'_{ps}/2$$

we obtain, from (7)

$$M'(d^{n-1}sp) = A' + 7/18(n-1)(n-2)(C'-2B') + (2/3)(n-1)(11-n)\alpha' - (n-1)(G'_1+7/2G'_3+G'_{ds}/2) - G'_{ps}/2.$$
 (8)

Since for $d^{n-2}s^{2}p$ the interactions d-s and s-p are constant and can thus be incorporated into the height of the configuration, we have from (7)

$$M''(d^{n-2}s^2p) = A'' + (7/18)(n-2)(n-3)(C''-2B'') - (2/3)(n-2)(12-n)\alpha'' - (n-2)(G''_1+7/2G''_3)$$
(9)

Now, by using (1) for the final parameters of Ti I, we obtain from (8) and (9)

 $M'(d^2sp) = A' - 3,950$

 $M''(ds^2p) = A'' - 350$, as A'' incorporates $6\alpha''$.

Since the final values, before the uniform treatment (see ref. [6]) of A' and $\overline{A''}$ for Ti I were

A' = 32,260 and A'' = 40,240

$$D''(\mathrm{T}_i) = 11,580. \tag{11}$$

For ScI, in the final results before the uniform treatment:

$$A' = 24,920$$

$$A'' = 25,790$$

$$G'_1 = 330$$

$$G'_3 = 6$$

$$G'_{ds} = 1,930$$

$$G'_{ps} = 5,940.$$
(12)

Then, since A' incorporates $6\alpha'$, we obtain from (8) and (9)

$$M'(dsp) = 20.634$$

$$M''(s^2p) = 25,790. \tag{13}$$

Thus,

$$D''(Sc) = 5,156.$$
 (14)

By assuming that D'' is a linear function of n, we would expect from (11) and (14)

$$D''(\mathbf{V}) = 18,000. \tag{15}$$

Now, from (8) and the values of the parameters in table 1

$$M'(d^3sp) = 37,780. \tag{16}$$

Then, from (15)

$$M''(d^2s^2p) = 55,780. \tag{17}$$

Assuming that the parameters of d^4p , d^3sp and d^2s^2p are in arithmetic progression, we finally obtain

$$A'' = 54,990. \tag{18}$$

Then, a new diagonalization was performed using the values of table 1 for the parameters of $d^4p + d^3sp$. The parameters pertaining to d^2s^2p had the following initial values:

$$A = 54,990$$

$$B'' = 945$$

$$C'' = 3,072$$

$$F''_{2} = 356$$

$$G''_{1} = 311$$

$$G''_{3} = 37$$

$$\alpha'' = 70$$

$$J' (d^{3}sp - d^{2}s^{2}p) = 1,088$$

$$K' (d^{3}sp - d^{2}s^{2}p) = 2,492$$

$$H' (d^{3}sp - d^{2}s^{2}p) = 172$$

$$\zeta''_{a} = \zeta'_{a} = \zeta_{d} = 146$$

$$\zeta''_{a} = \zeta'_{a} = \zeta_{a} = 124.$$

4// 54 000

(19)

$$\begin{array}{l} I'(d^3sp - d^2s^2p) = 1,088 \\ K'(d^3sp - d^2s^2p) = 2,492 \\ I'(d^3sp - d^2s^2p) = 172 \\ \zeta''_d = \zeta'_d = \zeta_d = 146 \\ \zeta''_p = \zeta'_p = \zeta_p = 124. \end{array}$$

A least-squares adjustment of the parameters was carried out in which A'' was fixed, the parameters, B, C, F_2, G_1 , and G_3 were held in arithmetic progression, α , ζ_d , and ζ_p were made equal for the three configurations and the parameters H', J', K', and G were held equal to H, J, K, and G'_{ds} , respectively. The rms error was thus reduced from 345 to 249. In the least squares calculation of the next iteration, all levels inserted were below 43,000 cm⁻¹. Although all the experimental levels inserted into the least squares were assigned to the configurations $d^4p + d^3sp$, the eigenfunctions of some high levels inserted had contributions of up to 20 percent of d^2s^2p . Thus, a variation was attempted in which A" was left to vary freely. The rms error was reduced from 236 to 231, with A''assuming the very reasonable value of $54,424 \pm 741$.

In the least squares calculation of the final iteration of the uniform treatment 77 experimental terms splitting into 228 levels were inserted to yield an rms error of only 216. Levels above 43,000 were not included, as many of them would show very high deviations if inserted into the least-squares. These high deviations are due to the fact that many of the terms above 43,000 either belong to, or are strongly perturbed by the configurations $(3d+4s)^45p$. In table 2, the experimental and calculated values of the levels and g-factors obtained from the least-squares calculation of the final iteration in the uniform treatment, are compared. The calculated values, percentage compositions and gfactors for all the 438 theoretically predicted levels are given. (The 45 levels assigned to $3d^24s^24p$ are included, since A'' was permitted to vary freely). Since G'_{ps} is much larger than G'_{ds} the p-s interaction is stronger than the d-s interaction. Consequently, the terms of d^3sp are coupled as $d^3(v_1S_1L_1)sp^{(1,3)}PSL$ and not $d^3s(S_2L_1)pSL$ as given in AEL.

The final values of the parameters in the uniform treatment (see ref. [6]) are given in table 1.

The main reasons for fixing $\zeta_d = \zeta'_d$ and $\zeta_p = \zeta'_p$ are that the fitted values of the parameters are reasonable, and only small differences occur between ζ_d and ζ'_d as well as ζ_p and ζ'_p , but *very* large standard errors are associated with them. In fact, the latter two parameters had standard errors larger than the actual parameter values. Furthermore, as the results are from a uniform treatment, consideration was also given to the results of keeping ζ'_p and ζ'_d free in Sc I and Ti I. There, the above mentioned effects are even more pronounced.

Below the cutoff height of 43,000 there are 243 odd experimental levels in AEL. The following 15 levels were rejected from the final least squares:

- 1. The level *z* ⁴S at 28621.
- 2. The two levels of w ²G at 36629 and 36828.
- 3. The four levels of $3d^34s(b^3H)p y^4H$ at 37481, 37517, 37566, and 37626.
- 4. The level $x \,{}^2S$ at 40300.
- 5. The level $w^{2}P_{3/2}$ at 40694.
- 6. The two levels of $3d^34s(b \ {}^1\text{G})4pu \ {}^2\text{H}$ at 42079 and 42221.
- 7. The level 2° at 42237.
- 8. The three levels $w {}^{6}D_{5/2, 7/2, 9/2}$ at 42480, 42587, and 42725.

3. Discussion

From the experimental results of Meggers and Russell [13], we note that the term z ⁴S is based only on combinations with the term b ⁴P. Furthermore, as the lowest predicted term ⁴S, i.e., ²P(³P)⁴S is at 34065 and since for all the predicted levels in the neighborhood of 28,600 suitable experimental levels are known, the term z ⁴S was rejected.

In the range 33,500 to 38,500 two terms ²G are predicted. For the first term the main contribution is $(b {}^{3}F){}^{2}G$, whereas the second term is mostly $({}^{3}H){}^{2}G$. However, in the narrower range of 36,600 to 37,300 there are the three experimental terms $d^{4}(b {}^{3}F)p x^{2}G$, $w {}^{2}G$, and $d^{4}(a {}^{3}H)p v {}^{2}G$. The experimental term $v {}^{2}G$ was fitted to the theoretical term with the same assignment. The experimental term $x {}^{2}G$ was then assigned to the other predicted term ${}^{2}G$, since the experimental assignment $(b{}^{3}F){}^{2}G$ coincides with the major contribution of the predicted term, and also because $x {}^{2}G$ is based on combinations with 7 even terms $a {}^{2}F$, $a {}^{2}G$, $b {}^{2}G$, $a {}^{2}H$, $b {}^{2}H$, $a {}^{4}F$, and $b {}^{4}F$, whereas $w {}^{2}G$ has combinations only with $a {}^{2}G$ and $a {}^{2}H$, [13]. Since there is no other predicted term to which the levels of $w {}^{2}G$ could be assigned, $w {}^{2}G$ was rejected.

In AEL, four experimental terms z^4H , y^4H , x^4H , and $w^{4}H$ are given, which should hopefully correspond to the four terms ⁴H which are predicted for the configurations $(d+s)^4$ p. Unfortunately, however, this correspondence is not feasible since the lowest predicted term ${}^{4}H$, ${}^{2}G({}^{3}P){}^{4}H_{C.G.}$ is at 29,750, whereas z⁴H_{C.G.} is at 32,856. In an earlier iteration, a variation was performed in which the four experimental terms ⁴H were assigned to the four theoretically predicted terms ⁴H with the same designations. Then, in the last-squares calculation the average deviations for the levels ²G(³P)⁴H and ²H(³P)³H were 2,269 and 3,244 respectively, and the rms error was 714. Subsequently, no experimental levels were assigned to ${}^{2}G({}^{3}P){}^{4}H$, the experimental levels $d^{3}s(b {}^{3}G)pz {}^{4}H$ were assigned to ${}^{2}H({}^{3}P){}^{4}H$ and to the term $({}^{3}G){}^{4}H$ was assigned the experimental term of the same designation. This left either $y^{4}H$ or $x^{4}H$ to assign to the theoretical term $({}^{3}H){}^{4}H$. The term $x{}^{4}H$ was chosen because:

- 1. it had the same designation as the theoretical term, whereas the designation of y^{4} H is given with a question mark in AEL,
- 2. the theoretical term $({}^{3}\mathrm{H}){}^{4}\mathrm{H}$ is much closer to $x {}^{4}\mathrm{H}$ than to $y {}^{4}\mathrm{H}$,
- 3. the term $x^{4}H$ is based on combinations with 5 even terms, whereas $y^{4}H$ has combinations with 3 even terms.

Since there are no other terms of $(3d+4s)^44p$ to which the levels of y^4 H could conceivably be assigned they were rejected.

In the range 36,000 to 43,000, suitable experimental levels correspond to *all* the predicted levels. The term x ²S is based only on three weak combinations [13], and so it was rejected.

To the theoretical term at 40,000, whose major contribution is ${}^{2}P({}^{3}P){}^{2}P$, is assigned the term $x {}^{2}P$ rather than $w {}^{2}P$ as for the former term both experimental levels are given, whereas the level $w {}^{2}P_{1/2}$ is missing. It should be noted also that the deviation for $x {}^{2}P_{3/2}$ is smaller by about 250 cm⁻¹ than if $w {}^{2}P_{3/2}$ were inserted.

Below 44,000 cm⁻¹, there are 5 predicted terms ²H to which the experimental terms z ²H, y ²H, x ²H, w ²H, and v ²H correspond. Although the levels of u ²H are based on 11 combinations with the 5 even terms a ⁴F, a ²G, a ²H, b ²H, and b ²G [13], this term is superfluous for (3d+4s) ⁴4p (it should be noted that it is not possible to reject v ²H and retain u ²H, since the former is based upon more combinations with even terms than the latter, [13]).

From table 2, it is evident that there is no theoretical level of $(3d+4s)^{4}4p$ to which the experimental level 2° at 42,237 could be assigned.

The three levels $w {}^{6}D_{5/2, 7/2, 9/2}$ most probably should be assigned to ${}^{4}F({}^{3}P)5pw {}^{6}D$.

The following changes in designation were performed:

AEL $z \, {}^2S_{1/2} \longrightarrow {}^2P({}^3P) \, {}^4P_{1/2}$ 1. AEL $d^{3}s(\bar{b}^{3}G)pz^{4}H \longrightarrow {}^{2}H({}^{3}P)z^{4}H$ 2. $^{2}P(^{3}P)^{2}D \longleftrightarrow A^{2}D(^{3}P)^{4}F_{3/2,5/2}$ 3. $(A^{3}P)^{4}S \longleftrightarrow {}^{4}P({}^{3}P)^{4}S$ 4. $\overrightarrow{AEL} \stackrel{d}{a} (a \ {}^{3}P) px \ {}^{4}P \xrightarrow{\sim} A^{2}D({}^{3}P)x \ {}^{4}P$ $AEL \ d^{4}(b \ {}^{3}F) pw \ {}^{2}F \longleftrightarrow A^{2}D({}^{3}P)w \ {}^{2}F$ 5. 6. $(A^{3}P) \stackrel{4}{\rightarrow} D \longleftrightarrow (A^{3}F) \stackrel{4}{\rightarrow} D$ 7. 8. $AEL d^3s(a {}^5P)pw {}^4P \longrightarrow (A^3P)w {}^4P$ 9. A ²D(³P)u ²D_{5/2} \longleftrightarrow (³G)v ²F_{5/2} $\begin{array}{l} \operatorname{AEL} d^3s(b\,{}^1\mathrm{G})pt\,{}^2\mathrm{G} \longrightarrow (\mathrm{A}\,{}^3\mathrm{F})t\,{}^2\mathrm{G} \\ \operatorname{AEL} d^3s(a\,{}^1\mathrm{H})pv\,{}^2\mathrm{H} \longrightarrow {}^2\mathrm{G}({}^1\mathrm{P})v\,{}^2\mathrm{H} \end{array}$ 10. 11. AEL $d^3s(b^{-1}D)pu^{-2}F \longrightarrow (^{3}D)u^{-2}F$ 12. AEL $d^3s(a \ {}^1P)pv \ {}^2P \longrightarrow ({}^3D)v \ {}^2P$ 13.

The lowest theoretically predicted term ²S is at 32,342. Thus, only one of the two experimental terms $z^{2}S$ or $y^{2}S$ can be assigned to it. The term $y^{2}S$ was chosen because:

- 1. its deviation is smaller by about 170 than if $z \, {}^2S$ were chosen,
- the combinations of y²S are only with doublets, whereas z²S is based on combinations also with a ⁴D and a ⁶D,
- 3. the experimental g-factor of y^2S fits better to the theoretical g-factor of the lowest predicted term ²S.

In the range 31,000 to 33,000 there is now left vacant the theoretical term ⁴P whose main contribution is ²P(³P)⁴P, and the sole unassigned term is z ²S. Since z ²S is based on combinations with a ²P, b ²P, a ⁴D, and a ⁶D, and since it fits quite well in value and g-factor to the theoretical level ²P(³P)⁴P_{1/2}, we performed the first change above.

The reasons for changing the assignment of z^{4} H were considered previously.

As mentioned already by Meggers and Russell [13], the configuration assignments of many odd doublets and quartets are doubtful. The exchanges 4–8 and 10–12 illustrate this point, as in all cases the contributions in the eigenfunctions of the experimental assignments are very small.

By means of the exchange 9, the calculated splittings of the terms v²F and u²D correspond more closely to the experimental splittings for these two terms.

With regard to the change 13, it should be noted that there is strong mixing between the eigenfunctions of the terms $({}^{3}D)^{2}P$ and ${}^{2}P({}^{3}P)^{2}P$.

Although the number of changes in assignment performed is not as large as may be expected on the basis of the complexity of this spectrum and the difficulties involved in determining the configuration assignments prior to a theoretical investigation, below 43,000 there are 22 experimental terms in AEL without configuration designations. Of these, the terms z^2S , w^2G , and w^2P were rejected, whereas for the other 19 terms the calculated configuration assignments are specified in table 2.

The level 1° has combinations with $a {}^{4}P$, $a {}^{4}D$, $b {}^{4}D$, $a {}^{4}F$, and $f {}^{6}P$ with J equal to 1/2, 3/2, and 5/2. The theoretical terms ${}^{2}P({}^{3}P){}^{4}S$ and ${}^{2}P({}^{3}P){}^{2}S$ are predicted at around 34,000 and neither term has as yet any assigned corresponding experimental term. Since the deviation obtained on fitting the level 1° to ${}^{2}P({}^{3}P){}^{4}S$ is only -46 (for ${}^{2}P({}^{3}P){}^{2}S$ it would be about -450) and since the level 1° has combinations with even levels of J equal to 5/2 and the sextet $f {}^{6}P$, we assigned it to the theoretical term ${}^{2}P({}^{3}P){}^{4}S$. Below 43,000 cm⁻¹ the following theoretical terms had no experimental counterparts:

1.	${}^{2}G({}^{3}P){}^{4}H$	29,583 - 29,942
2.	$^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{P}$	31,467 - 31,669
3.	${}^{2}P({}^{3}P){}^{2}S$	34,476
4.	${}^{2}\mathrm{H}({}^{3}\mathrm{P}){}^{4}\mathrm{I}$	34,950 - 35,223
5.	${ m A}^2{ m D}(^3{ m P})^2{ m P}+{}^2{ m P}(^3{ m P})^2{ m P}$	35,484 - 35,749.

Most of the experimental and calculated g-factors correspond quite closely. However, there are some exceptions due to unsuitably calculated eigenvectors. For example, the experimental g-factor of $u \, {}^{4}F_{3/2}$ is 0.54. However, as the theoretical eigenfunction contains 13 percent of ⁴S with g-factor of 2.00, the calculated g-factor is 0.803. Similarly, the experimental g-factor of x^4 S is 2.00, but as the theoretical eigenfunction contains contributions of ${}^{2}D_{3/2}$ and ${}^{4}D_{3/2}$ with g-factors of 0.800 and 1.200, respectively, the calculated g-factor of x^4 S is 1.539. On the other hand, since the theoretical g-factors for ${}^{2}S_{1/2}$ and $^2\mathrm{P}_{1/2}$ are 2.000 and 0.667 respectively, and the experimental g-factors for $w\,^2\mathrm{S}_{1/2}$ and $w\,^2\mathrm{P}_{1/2}$ are 1.50 and 1.14, it is evident that the experimental mixing between these two levels is very strong. However, the theoretical eigenfunctions are almost pure ²S and ²P and hence the calculated g-factors are 2.020 and 0.672, respectively.

4. Table Entries

In the column "NAME" the calculated designation of the term is given. Whenever the terms of the parent d^n have different seniorities these are denoted by the letters A and B, the lower calculated term being designated by A. Whenever a calculated term has a corresponding experimental term the small letters z,y,x... are used as in AEL. The terms of d^3sp are denoted by $d^3v_1S_1L_1(sp^{1,3}P)SL$. The terms of d^4p are differentiated from those of d^2s^2p by using a star for the latter terms.

The entries in the columns "J", "OBS. LEVEL cm^{-1} ", "CALC. LEVEL cm^{-1} " "OBS. g-FACT." and "CALC. g-FACT." are self evident. In the column "PERCENTAGE" for each calculated level either the three highest contributions or all those contributions exceeding 5 percent are given.

Whenever the experimental and calculated term designations differ, the experimental designation is entered in the column "AEL", using the notation of C. E. Moore [8]. In many instances the exchanges involve complete terms rather than isolated levels. Unless specified otherwise the entries in the column "AEL" pertain to exchanges in terms. The column "O-C" gives the difference between the observed and calculated values of the levels.

The entries are in the order of increasing energy of the calculated terms.

The work described in this paper was supported in part by the National Bureau of Standards, Washington, D.C.

Name		Percentage	AEL		Obs. level	Calc. level	0-C	Obs.	Calc.
i tumo	5	r er centrage	Config.	Desig.	(cm ⁻¹)	(cm^{-1})		factor	factor
⁴ F(³ P) ⁶ G	3/2	100	$3d^34s(a {}^5\mathrm{F})4p$	<i>z</i> ⁶ G	16,361	16,354	7	0.00	0.000
	5/2	100			16,450	16,426	24	0.78	0.857
	7/2	100	2		16,573	16,527	46	1.10	1.143
	9/2	100			16,729	16,655	74	1.22	1.273
	11/2	100			16,917	16,810	107	1.26	1.343
	13/2	100			17,136	16,992	144	1.43	1.385
${}^{4}F({}^{3}P){}^{6}D$	1/2	$90+8 (^{5}D)^{6}D$	$3d^34s(a {}^5\mathrm{F})4p$	<i>z</i> ⁶ D	18,086	18,075	11	3.20	3.331
	3/2	$89 + 8 ({}^{5}D) {}^{6}D$			18,126	18,117	9	1.76	1.865
	5/2	$89 + 8 (^{5}D) ^{6}D$			18,198	18,187	11	1.58	1.656
	7/2	$89 + 8 ({}^{5}D) {}^{6}D$			18,302	18,287	15	1.56	1.586
	9/2	$89 + 8 ({}^{5}D) {}^{6}D$			18,438	18,417	21	1.55	1.555
${}^{4}F({}^{3}P){}^{6}F$	1/2	95	$3d^{3}4s(a^{5}F)4p$	<i>z</i> ⁶ F	18,120	18,174	-54	-0.44	-0.665
	3/2	95			18,174	18,218	-44	1.14	1.068
	5/2	95			18,259	18,291	-32	1.28	1.315
	7/2	95			18,372	18,392	-20	1.28	1.398
	9/2	95			18,513	18,519	-6	1.38	1.435
	11/2	96			18,680	18,673	7	1.42	1.454
${}^{4}F({}^{3}P){}^{4}D$	1/2	90	$3d^{3}4s(a^{3}\mathrm{F})4p$	<i>z</i> ⁴ D	20,606	20,649	-43	-0.04	0.000
	3/2	90			20,688	20,723	- 35	1.21	1.200
	5/2	90			20,828	20,850	-22	1.35	1.371
	7/2	90			21,033	21,032	1	1.45	1.429
${}^{4}F({}^{3}P){}^{4}G$	5/2	93	$3d^34s(a\ {}^3\mathrm{F})4p$	<i>z</i> ⁴ G	21,841	21,948	-107	0.55	0.572
	7/2	93			21,964	22,049	-85	0.96	0.984
	9/2	93			22,121	22,180	-59	1.16	1.172
	11/2	93			22,314	22,342	- 28	1.24	1.273
${}^4F({}^3P){}^4F$	3/2	94	$3d^{3}4s(a \ {}^{3}F)4p$	z ⁴ F	23,088	23,118	- 30	0.39?	0.404
	5/2	94			23,211	23,209	2	0.98?	1.029
	7/2	95			23,353	23,328	25	1.23	1.238
	9/2	95			23,520	23,476	44	1.31	1.333
${}^4F({}^3P){}^2D$	3/2	89	$3d^{3}4s(a \ ^{3}F)4p$	z ² D	23,609	23,997	- 388	0.76	0.796
	5/2	89			23,935	24,285	- 350	1.32?	1.200
$(^5\mathrm{D})^6\mathrm{P}$	3/2	$71 + 29^4 P(^3P)^6 P$,		24,648	24,611	37	2.34	2.398
	5/2	$71 + 29^4 P(^3P)^6 P$			24,728	24,683	45	1.85	1.884
	7/2	$71 + 29^4 P(^3P)^6 P$			24,839	24,783	56	1.67	1.714
$(^{5}\mathrm{D})^{6}\mathrm{F}$	1/2	95			24,789	24,725	64	-0.58	-0.662
	3/2	95			24,830	24,770	60	1.02	1.067
	5/2	95			24,899	24,844	55	1.23	1.314
	7/2	96			24,993	24,947	46	1.37	1.397
	9/2	96			25,112	25,076	36	1.41	1.434
	11/2	96			25,254	25,331	23	1.41	1.454

TABLE 2. Observed and calculated levels of V I $(3d+4s)^{4}4p$

AEL Obs. Calc. Obs. Calc. level level 0-C Name J Percentage g-factor g-factor Config. Desig. (cm^{-1}) (cm^{-1}) (5D)4P 1/289 25.067 -2962.542.66924,771 3/289 24,915 25,206 -2911.71 1.733 5/289 25.13125.424 -2931.59 1.599 ${}^{4}\mathrm{F}({}^{3}\mathrm{P}){}^{2}\mathrm{G}$ 7/293 $3d^{3}4s(a \ {}^{3}F)4p$ z^2G 26.022 25.954 68 0.92 0.891 9/290 26,345 26,165 180 1.13 1.121 (5D)4D 1/2 $65 + 30^{4}F(^{1}P)^{4}D$ 26,183 26,013 170 -0.060.000 $65 + 29^{4}F(^{1}P)^{4}D$ 3/226,249 26.073 176 1.17 1.196 $65 + 28^{4}F(^{1}P)^{4}D$ 5/226.353 26,167 186 1.34 1.364 7/2 $63 + 274F(^{1}P)^{4}D$ 26,480 26,281 199 1.39 1.419 (5D)4F 3/2 $76 \pm 174F(^{1}P)^{4}F$ 25.931 26.179-2480.420.412 5/2 $73 + 16^{4}F(^{1}P)^{4}F$ 26,004 26.245 0.98 -2411.051 7/2 $67 + 15^{4}F(^{1}P)^{4}F$ 26,122 26,328 -2061.151.269 9/2 $64 + 14^{4}F(^{1}P)^{4}F + 11(^{5}D)^{6}D$ 26,172 26,420 -2481.231.353 (5D)6D 1/2 $82 + 10^{4} F(^{3}P)^{6}D$ 26,397 26,327 3.253.326 70 3/2 $82 + 10^{4} F(^{3}P)^{6}D$ 26,438 26.367 71 1.86 1.860 5/2 $81 + 10^4 F(^3P)^6D$ 26,506 26,437 1.643 69 1.59 7/2 $78 + 10^{4} F(^{3}P)^{6}D$ 26,605 26.545 1.564 60 1.58 9/2 $72 + 10({}^{5}D){}^{4}F + 9{}^{4}F({}^{3}P){}^{6}D$ 26,738 26,697 1.501.52641 ${}^{4}F({}^{3}P){}^{2}F$ 5/297 $3d^{3}4s(a^{3}F)4p$ $z {}^{2}F$ 27,188 27,100 88 1.01?0.857 7/297 27,471 27,345 126 1.01 1.143 4P(3P)6D 91 1/2x 6D $3d^{3}4s(a^{5}P)4p$ 28.314 28.327 -133.233.330 91 3/228,369 28,369 1.82 1.866 0 5/291 28,462 28,440 22 1.58 1.657 7/291 28,596 28,542 54 1.521.587 9/291 28,768 28,676 92 1.47 1.555 $^{4}P(^{3}P)^{6}P$ 3/2 $71 + 29(^{5}D)^{6}P$ 3d34s(a 5P)4p v 6P 29,203 29,009 194 2.32 2.3995/2 $71 + 29(^{5}D)^{6}P$ 29.296 29,086 210 1.76 1.885 7/2 $71 + 29(^{5}D)^{6}P$ 29,418 29,185 233 1.621.714 ${}^{2}G({}^{3}P){}^{4}H$ 7/2 $87 + 10^{2} H(^{3}P)^{4}H$ 29.583 0.667 9/2 $87 + 10^{2} H(^{3}P)^{4}H$ 29,677 0.970 11/2 $87 + 10^{2} H(^{3}P)^{4} H$ 29,796 1.13313/2 $88 + 10^{2} H(^{3}P)^{4}H$ 29,942 1.231 ${}^{4}P({}^{3}P){}^{4}P$ 1/2 $80 + 9A^{2}D(^{3}P)^{4}P$ $3d^{3}4s(c^{3}P)4p$ y 4P 30,022 30,095 -732.672.664 3/2 $82 + 8A^{2}D(^{3}P)^{4}P$ 30.095 30,148 -531.74 1.7335/2 $83 + 7 A^2 D(^3P)^4 P$ 30,121 30,172 -511.605 1.67 ²G(³P)⁴G 5/2 $65 + 30^4 F(^1P)^4G$ 3d34s(b3G)4p y^4G 30,636 30,453 183 0.530.572 7/2 $68 + 27^4 F(^1P)^4 G$ 30,528 0.984 30,694 166 0.93 9/2 $70 + 25^{4}F(^{1}P)^{4}G$ 30.772 30,622 150 1.13 1.17111/2 $73 + 22^{4}F(^{1}P)^{4}G$ 30,864 30,732 132 1.211.272 z 6S $^{4}P(^{3}P)^{6}S$ 5/296 3d34s(a 5P)4p 30,833 31.018 -1851.985 ²G(³P)⁴F 3/2 $79 + 7 A^2 D(^3P)^4 F$ 3d34s(b3G)4p $x \, {}^{4}\mathrm{F}$ 31.200 31.393 -1930.38 0.401 5/2 $80 + 7 A^2 D(^3P)^4 F$ 31,229 31,412 -1831.01 1.029 7/2 $80 + 6 A^2 D(^3P)^4 F$ 31,268 31,441 -1731.211.238 9/2 $81 + 6A^2D(^3P)^4F$ 31,318 31,481 -1631.321.333

TABLE 2. Observed	and	calculated	levels	of V	7 I (3d	$(+4s)^44p$ – Continued
-------------------	-----	------------	--------	------	---------	-------------------------

Name		Percentage	AEL		Obs. level	Calc. level	0-0	Obs.	Calc.
		T ereeninge	Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		factor	factor
² P(³ P) ⁴ P	1/2 3/2 5/2	$\begin{array}{c} 63+10 {\rm A}^2 {\rm D} (^3 {\rm P})^4 {\rm P} \\ 62+11 {\rm A}^2 {\rm D} (^3 {\rm P})^4 {\rm P} \\ 61+13 {\rm A}^2 {\rm D} (^3 {\rm P})^4 {\rm P} \end{array}$		z ² S	31,786	$\begin{array}{c} 31,385\\ 31,467\\ 31,669\end{array}$	401	2.30	2.661 1.731 1.607
4F(1P)4G	5/2 7/2 9/2 11/2	$\begin{array}{l} 62+23^2G(^3P)^4G\\ 64+20^2G(^3P)^4G\\ 66+18^2G(^3P)^4G\\ 69+15^2G(^3P)^4G \end{array}$	3d ³ 4s(a ⁵ F)4p	<i>x</i> ⁴ G	31,398 31,541 31,722 31,937	31,518 31,616 31,743 31,902	-120 - 75 - 21 35	$\begin{array}{c} 0.53 \\ 0.95 \\ 1.12 \\ 1.20 \end{array}$	$\begin{array}{c} 0.572 \\ 0.984 \\ 1.171 \\ 1.272 \end{array}$
² P(³ P) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{l} 56+16^4 P(^3P)^4 D \\ 58+16^4 P(^3P)^4 D \\ 59+14^4 P(^3P)^4 D \\ 60+12^4 P(^3P)^4 D \end{array}$		x ⁴ D	32,349 32,456 32,660 32,891	32,093 32,191 32,340 32,523	256 265 320 368	$0.08 \\ 1.17 \\ 1.29 \\ 1.35$	$0.003 \\ 1.200 \\ 1.370 \\ 1.427$
$(A^{3}P)^{2}S$	1/2	$33 + 34^{2}P(^{3}P)^{2}S + 10^{4}P(^{3}P)^{2}P$		$y {}^2S$	31,962	32,342	-380	2.21	1.734
⁴ F(¹ P) ⁴ F	3/2 5/2 7/2 9/2	$\begin{array}{c} 61+20({}^5\mathrm{D}){}^4\mathrm{F}\\ 61+19({}^5\mathrm{D}){}^4\mathrm{F}\\ 61+19({}^5\mathrm{D}){}^4\mathrm{F}\\ 61+19({}^5\mathrm{D}){}^4\mathrm{F} \end{array}$	3d ³ 4s(a ⁵ F)4p	w ⁴ F	32,738 32,847 32,989 33,155	32,587 32,679 32,805 32,963	151 168 184 192	$0.52 \\ 1.01 \\ 1.18 \\ 1.30$	0.402 1.029 1.238 1.333
$^{2}\mathrm{H}(^{3}\mathrm{P})^{4}\mathrm{H}$	7/2 9/2 11/2 13/2	$\begin{array}{l} 62+22(^{3}\mathrm{H})^{4}\mathrm{H}\\ 64+23(^{3}\mathrm{H})^{4}\mathrm{H}\\ 68+25(^{3}\mathrm{H})^{4}\mathrm{H}\\ 69+25(^{3}\mathrm{H})^{4}\mathrm{H} \end{array}$	3 <i>d</i> ³ 4s(b ³ G)4p	<i>z</i> ⁴ H	32,692 32,788 32,898 32,964	32,739 32,818 32,908 32,965	-47 - 30 - 10 - 1	$0.68 \\ 0.98 \\ 1.11 \\ 1.21$	$0.689 \\ 0.980 \\ 1.133 \\ 1.231$
${}^{4}\mathrm{P}({}^{3}\mathrm{P}){}^{2}\mathrm{P}$	$ \begin{array}{c c} 1/2 \\ 3/2 \end{array} $	$\begin{array}{c} 53+15(A^{3}P)^{2}P+8^{2}P(^{3}P)^{2}S\\ 64+18(A^{3}P)^{2}P \end{array}$		z ²P	32,725 32,768	32,828 32,824	$-103 \\ -56$	0.73? 1.22	$0.899 \\ 1.329$
$^2G(^3P)^2G$	7/2 9/2	$\begin{array}{c} 81+6^2 H(^3P)^4 H \\ 84+5^2 H(^3P)^4 H \end{array}$		y ²G	$33,360 \\ 33,307$	33,377 33,307	$-17 \\ 0$	0.91 1.03	0.871 1.099
$^{2}\mathrm{G}(^{3}\mathrm{P})^{2}\mathrm{H}$	9/2 11/2	$\begin{array}{c} 85+8^2 H (^3 P)^2 H \\ 87+8^2 H (^3 P)^2 H \end{array}$		<i>z</i> ² H	33,640 33,695	33,546 33,588	94 107	$\begin{array}{c} 0.92 \\ 1.09 \end{array}$	$0.910 \\ 1.090$
$^2G(^3P)^2F$	5/2 7/2	$\begin{array}{l} 79+8{\rm A^2D(^3P)^2F} \\ 76+8{\rm A^2D(^3P)^2F} \end{array}$		<i>y</i> ² F	$33,538 \\ 33,481$	33,758 33,698	-230 - 217	$0.85 \\ 1.11$	$0.864 \\ 1.152$
4P(3P)4D	1/2 3/2 5/2 7/2	$ \begin{array}{c} 68 + 14^2 P(^3P)^4D \\ 57 + 12^2 P(^3P)^4D \\ 63 + 13^2 P(^3P)^4D \\ 68 + 12^2 P(^3P)^4D \end{array} $	3d ³ 4s(c ³ P)4p	<i>w</i> ⁴ D	33,967 33,976 34,066 34,128	33,946 33,923 33,935 33,965	21 53 131 163	$0.09 \\ 0.80 \\ 1.30 \\ 1.35$	0.003 1.136 1.353 1.416
$^{2}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{S}$	3/2	$70 + 6^4 P(^3P)^4 S$		10	34,019	34,065	-46		1.802
² P(³ P) ² D	3/2	$\begin{vmatrix} 26 + 16A^2D(^{3}P)^2D \\ + 16A^2D(^{3}P)^4F \\ 38 + 24A^2D(^{3}P)^2D \end{vmatrix}$		<i>v</i> ⁴ F	34,030	34,060	-30 -21	0.86	0.965
	0/2	$+ 14A^2D(^3P)^4F$		UI	54,100	54,109	21	1.02.	1.117
$^{2}P(^{3}P)^{2}S$	1/2	$64 + 25(A^{3}P)^{2}S$			1	34,476		1	1.985
A ² D(³ P) ⁴ F	$ \begin{array}{c c} 3/2 \\ 5/2 \\ 7/2 \\ 9/2 \end{array} $	$ \begin{array}{c} 62 + 8^2 P (^3 P)^2 D \\ 66 + 7^2 P (^3 P)^2 D + 7 (^3 G)^4 F \\ 81 + 9 (^3 G)^4 F \\ 82 + 9 (^3 G)^4 F \end{array} $		y ² D y ² D v ⁴ F	34,429 34,487 34,375 34,530	34,480 34,509 34,547 34,668		$\begin{array}{c} 0.73 \\ 1.18 \\ 1.21 \\ 1.41 \end{array}$	$0.507 \\ 1.066 \\ 1.241 \\ 1.333$
⁴ F(¹ P) ⁴ D	$ \begin{array}{c c} 1/2 \\ 3/2 \\ 5/2 \\ 7/2 \end{array} $	$\left \begin{array}{c} 24+18 (A^3 P)^4 D+16^2 P (^3 P)^4 D\\ 25+16 (A^3 P)^4 D+16^2 P (^3 P)^4 D\\ 27+17 (A^3 P)^4 D+15^2 P (^3 P)^4 D\\ 28+15 (A^3 P)^4 D+15^2 P (^3 P)^4 D\end{array}\right.$	3d ³ 4s(a ⁵ F)4p	<i>v</i> ⁴ D	$\begin{array}{c c} 34,477\\ 34,537\\ 34,620\\ 34,747\end{array}$	34,710 34,785 34,911 35,082	-233 -248 -291 -335	$\begin{array}{c} 0.00 \\ 1.05 \\ 1.28 \\ 1.35 \end{array}$	$\begin{array}{c} 0.004 \\ 1.197 \\ 1.369 \\ 1.427 \end{array}$

TABLE 2.	Observed and	calculated	levels of	fV1 (3c	$(d + 4s)^4 4r$	- Continued
----------	--------------	------------	-----------	---------	-----------------	-------------

Name		Percentage	AEL		Obs.	Calc.	0-0	Obs.	Calc.
			Config.	Desig.	(cm^{-1})	(cm ⁻¹)		factor	factor
$^{2}H(^{3}P)^{4}I \\$	9/2 11/2 13/2 15/2	98 99 100 100				34,950 35,019 35,109 35,223			$\begin{array}{c} 0.730 \\ 0.966 \\ 1.108 \\ 1.200 \end{array}$
${\rm A}^{2}{\rm D}(^{3}{\rm P})^{4}{\rm D}$	1/2 3/2 5/2 7/2	$\begin{array}{c} 58+16^4F(^1P)^4D\\ 58+15^4F(^1P)^4D\\ 63+16^4F(^1P)^4D\\ 67+16^4F(^1P)^4D \end{array}$		u 4 D	35,013 35,092 35,225 35,379	35,120 35,172 35,283 35,399	$-107 \\ -80 \\ -58 \\ -20$	$1.12 \\ 1.32 \\ 1.33$	$0.022 \\ 1.208 \\ 1.371 \\ 1.428$
$A^2D(^3P)^2P$	$\frac{1/2}{3/2}$	$\begin{array}{c} 40+34^2P(^{3}P)^2P\\ 41+34^2P(^{3}P)^2P \end{array}$				$35,749 \\ 35,484$			$\begin{array}{c} 0.662 \\ 1.328 \end{array}$
$(^{3}\mathrm{G})^{2}\mathrm{G}$	7/2 9/2	$\begin{array}{c} 13+21(A^{3}F)^{2}G+13^{2}G(^{3}P)^{2}G\\ 19+31(A^{3}F)^{2}G+19^{2}G(^{3}P)^{2}G \end{array}$	$3d^4(b^3\mathrm{F})4p$	<i>x</i> ² G	$36,461 \\ 36,539$	36,656 36,728	-195 - 189	$0.85 \\ 1.05$	$\begin{array}{c} 1.001 \\ 1.103 \end{array}$
$(A^3F)^2F$	5/2 7/2	$\begin{array}{c} 26+25^2G(^3P)^2F+22A^2D(^3P)^2F\\ 24+22^2G(^3P)^2F+19A^2D(^3P)^2F \end{array}$		<i>x</i> ² F	$36,766 \\ 36,926$	$36,656 \\ 36,822$	$\frac{110}{104}$	$\begin{array}{c} 0.89\\ 1.05 \end{array}$	$0.857 \\ 1.001$
$^{4}\mathrm{P}(^{3}\mathrm{P})^{2}\mathrm{D}$	3/2 5/2	$\begin{array}{c} 38+17 (A^3P)^2 D+14 (A^3F)^2 D \\ 36+14 (A^3P)^2 D+13 (A^3F) ^2 D \end{array}$		x ² D	36,416 36,701	36,769 36,818	-353 - 117	$0.89 \\ 1.13$	$0.867 \\ 1.237$
$^{2}H(^{3}P)^{4}G \\$	5/2 7/2 9/2 11/2	$\begin{array}{l} 42+19(A^{3}F)^{4}G+14\left(^{3}G\right) ^{4}G\\ 27+11(A^{3}F)^{4}G+8(^{3}G)^{4}G\\ 46+14(A^{3}F)^{4}G+13(^{3}G)^{4}G\\ 54+15(A^{3}F)^{4}G+15(^{3}G)^{4}G \end{array}$	3d34s(b3H)4p	w ⁴ G	36,763 36,823 36,898 36,938	36,752 36,749 36,830 36,867	11 74 68 71	$1.06 \\ 1.17 \\ 1.26$	$0.619 \\ 1.003 \\ 1.160 \\ 1.272$
$A^2D(^3P)^4P$	1/2 3/2 5/2	$\begin{array}{l} 69+18^{2}P(^{3}P)^{4}P\\ 44+24^{4}P(^{3}P)^{4}S+11^{2}P(^{3}P)^{4}P\\ 59+15^{2}P(^{3}P)^{4}P \end{array}$	$3d^4(a^3\mathrm{P})4p$	x 4P	36,695 36,815 36,612	36,862 36,689 36,773	-167 126 -161	$2.51 \\ 1.77 \\ 1.54$	2.629 1.800 1.513
$(A^{3}P)^{2}P$	1/2 3/2	$\begin{array}{l} 31(A^{3}P)^{2}P+32A^{2}D(^{3}P)^{2}P\\ 29(A^{3}P)^{2}P+31A^{2}D(^{3}P)^{2}P\end{array}$			36,478 36,580	36,888 37,090	-410 -510	$\begin{array}{c} 0.74 \\ 1.17 \end{array}$	$0.683 \\ 1.313$
² H(3P) ² H	9/2 11/2	$67 + 9({}^{3}\mathrm{H}){}^{2}\mathrm{H}$ $74 + 10({}^{3}\mathrm{H}){}^{2}\mathrm{H}$		y ²H	37,181 37,211	36,936 36,888	245 323	$\begin{array}{c} 0.73 \\ 1.08 \end{array}$	$0.925 \\ 1.090$
$^{4}\mathrm{P}(^{3}\mathrm{P})^{4}\mathrm{S}$	3/2	$41 + 25 A^2 D(^{3}P)^{4}P$	$3d^4(a \ ^3\mathrm{P})4p$	y 4S	36,408	36,966	-558	1.85	1.881
$(^{3}H)^{2}G$	7/2 9/2	$\begin{array}{l} 60+11^2 H(^3P)^2 G\\ 52+20(^3H)^4 I+11^2 H(^3P)^2 G \end{array}$		v ² G	37,175 37,362	37,088 37,223	87 139	$\begin{array}{c} 0.99 \\ 1.05 \end{array}$	$\begin{array}{c} 0.915 \\ 1.031 \end{array}$
(³ H) ⁴ I	9/2 11/2 13/2 15/2	76 + 14(³ H) ² G 98 99 100			37,285 37,316 37,404 37,518	37,124 37,192 37,301 37,431	161 124 103 87	0.87 0.96 1.08 1.15	0.814 0.969 1.109 1.200
(A ³ P) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{c} 46+14^{4}F(^{1}P)^{4}D\\ 46+14^{4}F(^{1}P)^{4}D\\ 45+13^{4}F(^{1}P)^{4}D\\ 44+15^{4}F(^{1}P)^{4}D \end{array}$	3d4(b3F)4p	t ⁴ D	37,757 37,835 37,960 38,116	37,298 37,386 37,532 37,734	459 449 428 382	0.01 1.18 1.33 1.35	$\begin{array}{c} 0.017 \\ 1.198 \\ 1.368 \\ 1.425 \end{array}$
$A^2D(^3P)^2F$	5/2 7/2	$\begin{array}{l} 34+16 (A^{3}F)^{2}F+13^{2}G(^{3}P)^{2}F\\ 37+20 (A^{3}F)^{2}F+13^{2}G(^{3}P)^{2}F \end{array}$	$3d^4(b\ {}^3\mathrm{F})4p$	w ² F	37,343 37,475	37,532 37,632	- 189 - 157	$\begin{array}{c} 0.84 \\ 1.08 \end{array}$	0.863 1.129
$(A^3F)^2D$	3/2 5/2	$30 + 27^4 P(^3P)^2 D + 22^2 P(^3P)^2 D$ $35 + 26^4 P(^3P)^2 D + 23^2 P(^3P)^2 D$			37,458 37,753	37,502 37,744	$-44 \\ 9$	0.80 1.18	$0.804 \\ 1.197$
$(^{3}H)^{2}I$	11/2 13/2	$\begin{array}{l} 45+44^2 H({}^3P){}^2I\\ 42+46^2 H({}^3P){}^2I \end{array}$			37,530 37,606	37,730 37,787	-200 - 181	$0.94 \\ 1.06$	0.927 1.077

TABLE 2. Observed and calculated levels of V I $(3d+4s)^44p$ – Continued

Name J		Percentage	AEL		Obs. level	Calc. level	0-С	Obs. g-	Calc. g-
			Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		factor	factor
(A3F)4G (3H)4H	5/2 7/2 9/2 11/2 7/2 9/2 11/2 13/2	$\begin{array}{l} 62+30^2 H(^3P)^4 G\\ 57+26^2 H(^3P)^4 G\\ 57+24^2 H(^3P)^4 G\\ 58+23^2 H(^3P)^4 G\\ 46+27(^3G)^4 H+13^2 H(^3P)^4 H\\ 43+24(^3G)^4 H+12^2 H(^3P)^4 H\\ 45+23(^3G)^4 H+12^2 H(^3P)^4 H\\ 52+27(^3G)^4 H+12^2 H(^3P)^4 H\\ \end{array}$			37,499 37,556 37,644 37,765 38,246 38,324 38,405 38,405	37,801 37,831 37,894 37,995 38,064 38,144 38,229 38,311	$ \begin{array}{r} -302 \\ -275 \\ -250 \\ -230 \\ 182 \\ 180 \\ 176 \\ 172 \end{array} $	$\begin{array}{c} 0.60 \\ 1.02 \\ 1.15 \\ 1.22 \\ 0.67 \\ 0.93 \\ 1.11 \\ 1.22 \end{array}$	0.574 0.957 1.147 1.254 0.696 0.988 1.140 1.229
$(^{3}H)^{2}H$	9/2 11/2	$\begin{array}{l} 55+17^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{H}\\ 54+18^{2}\mathrm{H}(^{3}\mathrm{P})^{2}\mathrm{H}\end{array}$			38,124 38,221	38,213 38,299	- 89 - 78	0.88 1.10	0.914 1.095
$^{2}H(^{3}P)^{2}G \\$	7/2 9/2	$\frac{78+9^2F(^3P)^2G}{78+9^2F(^3P)^2G}$		<i>u</i> ² G	38,611 38,530	38,676 38,618	-65 - 88	0.88? 0.99	$0.890 \\ 1.111$
$^{2}H(^{3}P)^{2}I \\$	11/2 13/2	$\begin{array}{l} 53+46(^{3}H)^{2}I\\ 50+49(^{3}H)^{2}I \end{array}$			39,009 39,081	38,687 38,748	322 333	0.92 1.06	$0.924 \\ 1.078$
$(A^{3}P)^{4}S$	3/2	$40 + 14(A^{3}P)^{4}P + 13^{4}P(^{3}P)^{4}S$	3d34s(c 3P)4p	<i>x</i> ⁴ S	39,847	39,279	568	2.00	1.539
(A ³ F) ⁴ F	3/2 5/2 7/2 9/2	$\begin{array}{l} 47+13(A^3P)^4S\\ 67+9^2F(^3P)^4F\\ 66+9^2F(^3P)^4F\\ 66+9^2F(^3P)^4F\\ \end{array}$			39,267 39,300 39,342 39,391	39,280 39,329 39,357 39,389	-13 -29 -15 2	$0.54 \\ 1.00 \\ 1.21 \\ 1.30$	$0.803 \\ 1.027 \\ 1.234 \\ 1.330$
(A3P)4P	1/2 3/2 5/2	$\begin{array}{l} 72+16^2P(^3P)^4P\\ 43+16(A^3P)^4S+9^2P(^3P)^4P\\ 52+11^2P(^3P)^4P \end{array}$	3d ³ 4s(a ⁵ P)4p	<i>w</i> ⁴ P	39,237 39,249 39,423	39,413 39,625 39,605	-176 -376 -182	2.57 1.60 1.52	$2.655 \\ 1.615 \\ 1.496$
$(A^{3}P)^{2}D$	3/2 5/2	$\begin{array}{l} 40+17 (A^3F)^2 D \\ 40+16 (A^3F)^2 D \end{array}$			39,884 40,119	39,556 39,934	328 185	$\begin{array}{c} 0.92 \\ 1.14 \end{array}$	$0.987 \\ 1.155$
$A^2D(^3P)^2D$	3/2 5/2	$37 + 21^2 P(^3P)^2 D$ $43 + 27^2 P(^3P)^2 D$	3 <i>d</i> ³ 4 <i>s</i> (<i>a</i> ¹ P)4 <i>p</i>	u ² D v ² F	40,225 40,154	39,957 39,849	268 305	0.70	$0.967 \\ 1.276$
$^{2}\mathrm{P}(^{3}\mathrm{P})^{2}\mathrm{P}$	1/2 3/2	$\begin{array}{l} 51+21{\rm A}^2{\rm D}(^3{\rm P})^2{\rm P}\\ 35+14{\rm A}^2{\rm D}(^3{\rm P})^2{\rm P}\\ +13{\rm A}^2{\rm D}(^3{\rm P})^2{\rm D} \end{array}$		x ² P	40,329 40,437	39,893 40,076	436 361	1.52	$0.673 \\ 1.167$
(³ H) ⁴ G	5/2 7/2 9/2 11/2	$\begin{array}{l} 32+21(^3{\rm G})^4{\rm G}+9^2{\rm H}(^3{\rm P})^4{\rm G}\\ 38+25(^3{\rm G})^4{\rm G}+11^2{\rm H}(^3{\rm P})^4{\rm G}\\ 42+27(^3{\rm G})^4{\rm G}+12^2{\rm H}(^3{\rm P})^4{\rm G}\\ 42+28(^3{\rm G})^4{\rm G}+13^2{\rm H}(^3{\rm P})^4{\rm G} \end{array}$			39,962 40,001 40,039 42,064	39,999 40,031 40,064 40,070	-37 -30 -25 -6	$0.53 \\ 0.99 \\ 1.19 \\ 1.23$	$\begin{array}{c} 0.686 \\ 0.995 \\ 1.170 \\ 1.270 \end{array}$
(A ³ F) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{l} 63+18(A^{3}P)^{4}D\\ 59+18(A^{3}P)^{4}D\\ 46+16(A^{3}P)^{4}D\\ 44+18(A^{3}P)^{4}D \end{array}$	3d4(a 3P)4p	s 4D	39,878 39,935 40,000 40,126	40,066 40,111 40,190 40,228	-188 -176 -190 -102	$0.01 \\ 1.10 \\ 1.33 \\ 1.38$	$\begin{array}{c} 0.011 \\ 1.189 \\ 1.277 \\ 1.330 \end{array}$
$({}^{3}G){}^{2}F$	5/2 7/2	$\begin{array}{l} 40+12(A^{3}F)^{4}D+12A^{2}D(^{3}P)^{2}F\\ 44+14(A^{3}F)^{4}D+13A^{2}D(^{3}P)^{2}F\end{array}$	$3d^34s(a \ ^1\mathrm{P})4p$	<i>u</i> ² D <i>v</i> ² F	40,326 40,587	40,250 40,286	76 301	$\begin{array}{c} 1.12\\ 1.01 \end{array}$	0.912 1.183
(³ G) ⁴ H	7/2` 9/2 11/2 13/2	$\begin{array}{l} 59+22 ({}^{3}H){}^{4}H+7{}^{2}H ({}^{3}P){}^{4}H\\ 66+24 ({}^{3}H){}^{4}H+8{}^{2}H ({}^{3}P){}^{4}H\\ 67+23 ({}^{3}H){}^{4}H+8{}^{2}H ({}^{3}P){}^{4}H\\ 70+23 ({}^{3}H){}^{4}H+7{}^{2}H ({}^{3}P){}^{4}H\end{array}$			40,315 40,379 40,452 40,536	40,270 40,328 40,411 40,508	45 51 41 28	0.65 0.92 1.08 1.22	$\begin{array}{c} 0.718 \\ 0.974 \\ 1.134 \\ 1.230 \end{array}$
$(A^{3}F)^{2}G$	7/2 9/2	$\begin{array}{c} 44 + 30({}^3\mathrm{G}){}^2\mathrm{G} \\ 42 + 30({}^3\mathrm{G}){}^2\mathrm{G} \end{array}$	$3d^34s(b \ ^1\mathrm{G})4p$	<i>t</i> ² G	41,437 41,539	41,043 41,137	394 402	$\begin{array}{c} 0.90 \\ 1.04 \end{array}$	$0.890 \\ 1.106$

TABLE 2. Observed and calculated levels of V 1 $(3d+4s)^4\,4p-Continued$

150

Name	J	Percentage	AEL		Obs. level	Calc.	0-0	Obs.	Calc.
			Config.	Desig.	(cm^{-1})	(cm^{-1})	0 0	factor	factor
$(^{3}G)^{2}H$	9/2 11/2	$66 + 11^{2}G(^{3}P)^{2}H$ 71 + 10 ² C(^{3}P)^{2}H		$w^{2}\mathrm{H}$	40,981	41,232	-251 -279	0.99	0.914
$(^{3}D)^{2}F$	5/2 7/2	$\begin{array}{l} 41+19(A^{3}F)^{2}F+12(^{3}F)^{2}F^{*}\\ 43+13(A^{3}F)^{2}F+11(^{3}F)^{2}F^{*} \end{array}$	3d ³ 4s(b ¹ D)4p	<i>u</i> ² F	41,950 42,021	41,479 41,526	471 495	0.84 1.11	0.858
$^2G(^1P)^2H$	9/2 11/2	$\begin{array}{l} 43+28({}^{1}\mathrm{I}){}^{2}\mathrm{H} \\ 42+30({}^{1}\mathrm{I}){}^{2}\mathrm{H} \end{array}$	$3d^34s(a \ ^1\mathrm{H})4p$	v ² H	41,501 41,660	$41,653 \\ 41,750$	$-152 \\ -90$	$0.87 \\ 1.05$	$0.916 \\ 1.095$
$(^{3}G)^{4}F$	3/2 5/2 7/2 9/2	$\begin{array}{l} 47+20(^{3}D)^{4}F\\ 25+27(^{3}C)^{4}G+14(^{3}D)^{4}F\\ 26+26(^{3}G)^{4}G+13(^{3}D)^{4}F\\ 27+23(^{3}G)^{4}G+12(^{3}D)^{4}F\\ \end{array}$			$\begin{array}{c} 41,389\\ 41,429\\ 41,492\\ 41,599\end{array}$	41,828 41,705 41,736 41,817	-439 -276 -244 -217	0.42 0.89? 1.15 1.23	$0.406 \\ 0.810 \\ 1.121 \\ 1.260$
$(^{3}D)^{2}P$	1/2 3/2	$\begin{array}{c} 36+28^2P(^3P)^2P\\ 35+30^2P(^3P)^2P \end{array}$	$3d^{3}4s(a \ ^{1}P)4p$	$v^2 \mathbf{P}$	42,481 42,318	41,863 41,783	618 535	$\begin{array}{c} 1.14 \\ 1.34 \end{array}$	$0.672 \\ 1.344$
(³ G) ⁴ G	5/2 7/2 9/2 11/2	$\begin{array}{l} 27+22({}^3\mathrm{G}){}^4\mathrm{F}+17({}^3\mathrm{H}){}^4\mathrm{G}\\ 26+26({}^3\mathrm{G}){}^4\mathrm{F}+13({}^3\mathrm{H}){}^4\mathrm{G}\\ 29+18({}^3\mathrm{G}){}^4\mathrm{F}+18({}^3\mathrm{H}){}^4\mathrm{G}\\ 52+30({}^3\mathrm{H}){}^4\mathrm{G} \end{array}$			41,655 41,758 41,861 41,918	41,870 41,957 42,031 41,954	-215 - 199 - 170 - 36	0.58 1.03 1.20 1.20	0.796 1.102 1.239 1.267
${}^4P({}^1P){}^4P$	1/2 3/2 5/2	$\begin{array}{l} 43+39(^{3}\mathrm{D})^{4}\mathrm{P}\\ 39+38(^{3}\mathrm{D})^{4}\mathrm{P}\\ 38+40(^{3}\mathrm{D})^{4}\mathrm{P} \end{array}$		<i>v</i> ₽	41,752 41,848 42,010	$\begin{array}{c} 42,087\\ 42,135\\ 42,211\end{array}$	-335 - 287 - 201	$2.56 \\ 1.62 \\ 1.48$	2.467 1.652 1.572
${}^{4}P(iP){}^{4}D$	1/2 3/2 5/2 7/2	$\begin{array}{l} 53+17({}^{3}\mathrm{F}){}^{4}\mathrm{D}{}^{*}\\ 49+16({}^{3}\mathrm{F}){}^{4}\mathrm{D}{}^{*}\\ 51+16({}^{3}\mathrm{F}){}^{4}\mathrm{D}{}^{*}\\ 58+18({}^{3}\mathrm{F}){}^{4}\mathrm{D}{}^{*} \end{array}$	3d ³ 4s(a ⁵ P)4p	r ⁴ D	41,928 41,999 42,138 42,246	42,095 42,164 42,240 42,327	-167 - 165 - 102 - 81	$0.04 \\ 1.20 \\ 1.33 \\ 1.36$	0.164 1.267 1.394 1.427
${}^4\mathrm{P}({}^3\mathrm{P}){}^2\mathrm{S}$	1/2	$83 + 10 (A^{3}P)^{2}S$		w ² S	42,362	42,279	83	1.50?	2.020
${}^4P({}^1P){}^4S$	3/2	$70 + 14(A^{3}P)^{4}S$	$3d^34s(a\ {}^5\mathrm{P})4p$	<i>w</i> ⁴ S	42,969	42,879	90	1.94	1.993
$(^{1}I)^{2}K$	13/2 15/2	100 100				43,678 43,800			0.934
$(A^1G)^2F$	5/2 7/2	$\begin{array}{c} 40+28({\rm A}^{3}{\rm F})^{2}{\rm F}\\ 37+25({\rm A}^{3}{\rm F})^{2}{\rm F}\end{array}$				43,857 43,818			0.858
(³ D) ⁴ F	3/2 5/2 7/2 9/2	$\begin{array}{l} 73+18({}^3{\rm G}){}^4{\rm F} \\ 72+18({}^3{\rm G}){}^4{\rm F} \\ 72+18({}^3{\rm G}){}^4{\rm F} \\ 73+19({}^3{\rm G}){}^4{\rm F} \end{array}$				43,921 43,946 43,985 44,033			0.412 1.033 1.238 1.333
$(A^{1}G)^{2}H \\$	9/2 11/2	$\begin{array}{l} 58+10(^{3}\mathrm{H})^{2}\mathrm{H}\\ 40+38(^{1}\mathrm{I})^{2}\mathrm{I} \end{array}$				44,112 44,090			0.959 1.009
$({}^{3}\!F){}^{2}G{}^{*}$	7/2 9/2	$\begin{array}{l} 25+24({}^{3}G){}^{2}G+15{}^{2}H({}^{1}P){}^{2}G\\ 21+19({}^{3}G){}^{2}G+16(A{}^{1}G){}^{2}H \end{array}$				44,173 44,180			$0.923 \\ 1.064$
$(^{3}F)^{2}D^{*}$	3/2 5/2	$\begin{array}{c} 26+18 (A^3P)^2D+17 A^2D (^3P)^2D\\ 24+18 (A^3P)^2D+17 A^2D (^3P)^2D \end{array}$				44,103 44,396			0.799 1.199
$(^{1}I)^{2}I$	11/2 13/2	$\begin{array}{l} 39+37({}^{3}\mathrm{H}){}^{2}\mathrm{H} \\ 78+15{}^{2}\mathrm{H}({}^{1}\mathrm{P}){}^{2}\mathrm{I} \end{array}$				44,263 44,226			1.006 1.077

TABLE 2.	Observed and	calculated	levels of V	$I (3d+4s)^44p -$	Continued
----------	--------------	------------	-------------	-------------------	-----------

Name	J	Percentage	AEI	L	Obs. level	Calc. level	0-C	Obs.	Calc.
			Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)		factor	factor
$(^{3}\mathrm{D})^{2}\mathrm{D}$	3/2	$41 + 32({}^{3}\text{D}){}^{4}\text{D}$ 57 + 16 ² P(1P){}^{2}\text{D} + 8({}^{3}\text{D}){}^{4}\text{D}				44,398	× 1		0.965
(3D)4D	1/2	$57 \pm 164^{2}D(^{3}P)^{4}D$				44 435			0.002
(°D) [•] D	$\frac{1/2}{3/2}$	$(1 + 10A D(1))^{2}D$ $(45 + 28(^{3}D)^{2}D + 9A^{2}D(^{3}P)^{4}D$				44,474			1.028
	5/2	$70 + 12A^2D(^3P)^4D$				44,466			1.355
	7/2	$75 + 13A^2D(^3P)^4D$				44,470			1.425
$({}^{3}F){}^{4}G{}^{*}$	5/2	$49 + 33^{2}F(^{3}P)^{4}G$				44,501			0.575
	7/2	$47 + 35^{2}F(^{3}P)^{4}G$				44,592			0.985
	9/2	$45 + 38^{2}F(^{3}P)^{4}G$				44,706			1.172
	11/2	$42 + 41^{2} F(^{3}P)^{3}G$				44,044			1.272
$(A^1G)^2G$	7/2	$42 + 16^{2} H(^{1}P)^{2}G$				44,919			0.891
	9/2	$36 + 17^{2} H(^{1}P)^{2}G$				44,961			1.112
$(A^1S)^2P$	1/2	$65 + 15 ({}^{3}\text{D}){}^{2}\text{P}$				45,179			0.667
	3/2	$65 + 14(^{3}\text{D})^{2}\text{P}$				45,277			1.333
² F(³ P) ⁴ F	3/2	$83 + 9({}^{3}\text{G}){}^{4}\text{F}$				45,485			0.401
- (-) -	5/2	$82 + 9({}^{3}G){}^{4}F$				45,487			1.027
	7/2	$82 + 9(^{3}G)^{4}F$				45,492			1.236
	9/2	$81 + 9(^{3}G)^{4}F$				45,501			1.329
$(^{3}F)^{2}F^{*}$	5/2	$39 + 28 ({}^{3}\text{D}){}^{2}\text{F}$				45,608			0.859
	7/2	$41 + 29 (^{3}\text{D})^{2}\text{F}$				45,776			1.143
$^2F(^3P)^2D$	3/2	$28 + 34(A^{1}D)^{2}D$				46,078			0.808
	5/2	$26 + 31(A^{1}D)^{2}D$				46,035			1.223
$(^{3}D)^{4}P$	1/2	$48 + 40^{4} P(^{1}P)^{4}P$				46,158			2.622
	3/2	$48 + 41^4 P(^1P)^4 P$				46,148			1.721
	5/2	$44 + 41^{4}P(^{4}P)^{4}P$				40,122			1.375
$^2P(^1P)^2P$	1/2	$29 + 15 A^2 D(^1P)^2 P$				46,478			0.705
	3/2	$26 + 11^{2}F(^{3}P)^{4}D + 14A^{2}D(^{1}P)^{2}P$				46,753			1.317
2E/3D)4D	1/9	90 ± 5/3D\4D				46 775			0.008
$-\mathbf{r}(\mathbf{r})\cdot\mathbf{D}$	$\frac{1/2}{3/2}$	$30 + 3(^{3}D)^{4}D$ $70 + 4(^{3}D)^{4}D$				46,730			1.218
	5/2	$80 + 5(^{3}D)^{4}D$				46,687		×	1.370
	7/2	$79 + 6(^{3}D)^{4}D$				46,613			1.426
$A^2D(^1P)^2F$	5/2	$19 + 28^{2}F(^{3}P)^{4}G + 17(A^{1}D)^{2}F$				46,955			0.722
	7/2	$16 + 19(A^{1}D)^{2}F + 11(A^{1}G)^{2}F$				46,917			1.137
${}^{2}F({}^{3}P){}^{4}G$	5/2	$31 + 18({}^{3}F){}^{4}G^{*} + 14(A^{1}D){}^{2}F$				46,893			0.709
	7/2	$54 + 34({}^{3}F){}^{4}F{}^{*}$				46,968			0.992
	9/2	$54 + 39({}^{3}\mathrm{F}){}^{4}\mathrm{G}{}^{*}$				47,056			1.172
	11/2	$51 + 42({}^{3}\mathrm{F}){}^{4}\mathrm{G}{}^{*}$				47,179			1.273
$^2P(^1P)^2S$	1/2	$55 + 19(^{3}P)^{2}S^{*}$				47,278			1.989
$(^{1}I)^{2}H$	9/2	$19 + 25^2 G(^1P)^2 H + 16^2 H(^1P)^2 H$				47,486			0.938
	11/2	$23 + 31^2 G(^1P)^2 H + 17^2 H(^1P)^2 H$				47,565			1.090
$({}^{3}F){}^{4}F^{*}$	3/2	$75 + 15^{4}F(^{1}P)^{4}F$				47,501			0.406
	5/2	$75 + 14^{4}F(^{1}P)^{4}F$				47.617			1.030

TABLE 2. Observed and calculated levels of V I $(3d + 4s)^4 4p$ – Continued

Name	J	Percentage	AEL		Obs. level	Calc. level	О-С	Obs.	Calc. g-
			Config.	Desig.	(cm ⁻¹)	(cm^{-1})		factor	factor
${}^{2}G({}^{1}P){}^{2}G$	7/2 9/2 7/2 9/2	$\begin{array}{c} 71+15^{4}F(^{1}P)^{4}F\\ 63+14^{4}F(^{1}P)^{4}F\\ 32+18\left(A^{1}G\right)^{2}G+10(^{3}G)^{2}G\\ 24+14(A^{1}G)^{2}G+12(^{3}F)^{4}F^{*} \end{array}$				47,771 47,960 47,584 47,780			$1.218 \\ 1.294 \\ 0.910 \\ 1.120$
$^2F(^3P)^2G$	7/2 9/2	$\begin{array}{c} 63+13({}^{1}\mathrm{F}){}^{2}\mathrm{G}\\ 62+15({}^{1}\mathrm{F}){}^{2}\mathrm{G} \end{array}$				$48,054 \\ 48,148$			0.890 1.111
$(A^1D)^2D$	3/2 5/2	$\begin{array}{l} 37+23^2F({}^1P){}^2D+20({}^3F){}^2D^*\\ 36+24^2F({}^1P){}^2D+18({}^3F){}^2D^* \end{array}$				48,125 48,205			$0.795 \\ 1.192$
$(A^{\scriptscriptstyle 1}D)^2F$	5/2 7/2	$\begin{array}{l} 34+19({}^{1}F){}^{2}F+18{}^{2}F({}^{1}P){}^{2}F\\ 30+21({}^{1}F){}^{2}F+21{}^{2}F({}^{1}P){}^{2}F \end{array}$				48,606 48,670			$0.858 \\ 1.142$
$^{2}H(^{1}P)^{2}I \\$	11/2 13/2	$\begin{array}{c} 86+11({}^{1}\mathrm{I}){}^{2}\mathrm{I}\\ 87+11({}^{1}\mathrm{I}){}^{2}\mathrm{I} \end{array}$				49,312 49,440			$0.924 \\ 1.077$
$^2F(^3P)^2F$	5/2 7/2	$\begin{array}{c} 60+15(A^{1}D)^{2}F\\ 56+18(A^{1}D)^{2}F \end{array}$				49,365 49,471			$0.858 \\ 1.143$
$A^2D(^1P)^2P$	1/2 3/2	$\begin{array}{c} 20+21({}^{3}\mathrm{D}){}^{2}\mathrm{P}+15({}^{1}\mathrm{D}){}^{2}\mathrm{P}*\\ 19+19({}^{3}\mathrm{D}){}^{2}\mathrm{P}+15({}^{1}\mathrm{D}){}^{2}\mathrm{P}* \end{array}$				49,563 49,464			0.675 1.331
$^{2}H(^{1}P)^{2}H$	9/2 11/2	$\begin{array}{l} 49+35(^{1}\mathrm{I})^{2}\mathrm{H}\\ 51+33(^{1}\mathrm{I})^{2}\mathrm{H} \end{array}$				49,845 49,881			0.910 1.091
$^2P(^1P)^2D$	3/2 5/2	$38 + 15(^{3}D)^{2}D$ $39 + 15(^{3}D)^{2}D$				49 ,973 50,019			$0.806 \\ 1.194$
$(A^{1}D)^{2}P$	1/2 3/2	$\begin{array}{l} 56+20^2 P({}^1P){}^2P\\ 52+20^2 P({}^1P){}^2P \end{array}$				50,919 51,076			$0.667 \\ 1.328$
$(^{1}F)^{2}F$	5/2 7/2	$\begin{array}{l} 39+20 A^2 D ({}^1 P)^2 F \\ 38+19 A^2 D ({}^1 P)^2 F \end{array}$				51,266 51,209			$0.863 \\ 1.143$
$^2G(^1P)^2F$	5/2 7/2	$\begin{array}{l} 19+17({}^{1}F)^{2}F+10({}^{3}D)^{2}F\\ 19+17({}^{1}F)^{2}F+10({}^{3}F)^{2}F^{*} \end{array}$				51,452 51,611		-	$0.860 \\ 1.145$
(³ F) ⁴ D*	1/2 3/2 5/2 7/2	$\begin{array}{l} 56+19^4P(^1P)^4D\\ 55+18^4P(^1P)^4D\\ 54+18^4P(^1P)^4D\\ 54+17^4P(^1P)^4D\\ \end{array}$	~			51,751 51,796 51,883 52,026			0.001 1.192 1.364 1.425
$({}^{1}F){}^{2}G$	7/2 9/2	$\begin{array}{l} 68+18^2F(^1P)^2G\\ 69+18^2F(^1P)^2G \end{array}$				52,108 52,243			0.890 1.111
$A^2D(^1\!P)^2D$	3/2 5/2	$\begin{array}{l} 19+19({}^3F){}^2D^*+17({}^1F){}^2D\\ 17+20({}^1F){}^2D+20({}^3F){}^2D^* \end{array}$				52,424 52,563			$0.808 \\ 1.203$
$(B^3P)^2D$	3/2 5/2	$\begin{array}{l} 47+30^2F(^1P)^2D\\ 47+30^2F(^1P)^2D \end{array}$				52,684 52,541			0.801 1.202
(B ³ P) ⁴ P	1/2 3/2 5/2	90 90 89				54,607 54,572 54,548			2.661 1.730 1.598
$({}^{1}F){}^{2}D$	3/2	$28 + 26(B^{3}F)^{2}D$ $26 + 27(B^{3}F)^{2}D$				55,068 54,936			$0.773 \\ 1.199$

TABLE 2. Observed and calculated levels of V I $(3d+4s)^44p-Continued$

Name	J	Percentage	AEL		Obs.	Cale.	0.0	Obs.	Calc.
			Config.	Desig.	level (cm ⁻¹)	level (cm ⁻¹)	0-C	g-factor	g-factor
² H(¹ P) ² G	7/2 9/2	$\frac{18 + 23({}^3F){}^2G^* + 16({}^1G){}^2G^*}{19 + 23({}^3F){}^2G^* + 16({}^1G){}^2G^*}$				55,259 55,432			$0.900 \\ 1.118$
$(B^{3}F)^{4}F$	3/2 5/2 7/2 9/2	$\begin{array}{c} 89\\ 82+6(^3F)^4F^*\\ 60+15(B^3P)^4D\\ 83+7(^3F)^4F^* \end{array}$				55,447 55,439 55,423 55,476			$\begin{array}{c} 0.443 \\ 1.054 \\ 1.284 \\ 1.327 \end{array}$
(B ³ P) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{c} 49 + 33(B^{\oplus}){}^{4}\!D \\ 48 + 30(B^{\oplus}F){}^{4}\!D \\ 45 + 29(B^{\oplus}F){}^{4}\!D \\ 36 + 30(B^{\oplus}F){}^{4}\!D \end{array}$				55,580 55,575 55,559 55,524			$0.004 \\ 1.188 \\ 1.343 \\ 1.371$
$^2F(^1P)^2F$	5/2 7/2	$\begin{array}{l} 20+26(B^{3}F)^{2}F+10(^{!}D)^{2}F^{*}\\ 16+21(B^{3}F)^{4}G+19(B^{3}F)^{2}F \end{array}$				55,658 55,804			$0.840 \\ 1.094$
$(B^{3}P)^{2}S$	1/2	$52 + 37(^{3}P)^{2}S^{*}$				55,852			1.997
(B ³ F) ⁴ G	5/2 7/2 9/2 11/2	$ \begin{array}{r} 87 \\ 66 + 15 (B^3 F)^2 F \\ 91 \\ 95 \\ \end{array} $				55,919 55,930 56,005 56,062			$0.596 \\ 1.034 \\ 1.170 \\ 1.273$
(B ³ F) ⁴ D	1/2 3/2 5/2 7/2	$\begin{array}{l} 36+26B^2D(^3P)^4D\\ 37+26B^2D(^3P)^4D\\ 37+25B^2D(^3P)^4D\\ 38+24B^2D(^3P)^4D \end{array}$				56,483 56,474 56,452 56,406			0.001 1.199 1.371 1.428
$(B^{3}F)^{2}F$	5/2 7/2	$\begin{array}{l} 36+22({}^1D)^2F^*+19^2F({}^1P)^2F\\ 35+21({}^1D)^2F^*+20^2F({}^1P)^2F \end{array}$				58,583 57,555			0.867 1.128
$(B^3F)^2D$	3/2 5/2	$\begin{array}{l} 25+20({}^{1}\mathrm{F}){}^{2}\mathrm{D}+14{}^{2}\mathrm{F}({}^{1}\mathrm{P}){}^{2}\mathrm{D}\\ 24+22({}^{1}\mathrm{F}){}^{2}\mathrm{D}+14{}^{2}\mathrm{F}({}^{1}\mathrm{P}){}^{2}\mathrm{D} \end{array}$				57,650 57,726			0.859 1.190
$(B^{3}P)^{4}S$	3/2	$44 + 29(B^{3}P)^{2}P$				57,885			1.626
$^2F(^1P)^2G$	7/2 9/2	$\begin{array}{c} 29+32 (B^3F)^2 G+15({}^3F)^2 G^*\\ 31+40 (B^3F)^2 G\end{array}$				57,854 58,042			0.903 1.111
$(B^{3}P)^{2}P$	1/2 3/2	$\frac{67+23(^{1}D)^{2}P^{*}}{34+42(B^{3}P)^{4}S}$				58,037 57,974			0.669 1.648
$(B^{3}F)^{2}G$	7/2 9/2	$\begin{array}{c} 55+23^2F({}^1P)^2G\\ 45+23^2F({}^1P)^2G \end{array}$				58,145 57,897			0.891 1.111
$(^{1}D)^{2}D^{*}$	3/2 5/2	$54 + 14B^{2}D(^{1}P)^{2}D 46 + 13B^{2}D(^{1}P)^{2}D$				59,061 59,106			0.810 1.172
$(^{1}D)^{2}F^{*}$	5/2 7/2	$\begin{array}{l} 20+19(B{}^1\mathrm{G}){}^2\mathrm{F}+8({}^1\mathrm{D}){}^2\mathrm{D}{}^*\\ 18+19(B{}^1\mathrm{G}){}^2\mathrm{F}\\ +16B{}^2\mathrm{D}({}^3\mathrm{P}){}^4\mathrm{D} \end{array}$				59,350 59,266			1.003 1.255
$B^2D(^3P)^4D$	1/2 3/2 5/2 7/2	$\begin{array}{c} 38+36({}^3\mathrm{P}){}^4\mathrm{D}{}^*+20(\mathrm{B}{}^3\mathrm{F}){}^4\mathrm{D} \\ 38+34({}^3\mathrm{P}){}^4\mathrm{D}{}^*+19(\mathrm{B}{}^3\mathrm{F}){}^4\mathrm{D} \\ 31+25({}^3\mathrm{P}){}^4\mathrm{D}{}^*+18(\mathrm{B}{}^3\mathrm{F}){}^4\mathrm{D} \\ 26+18({}^3\mathrm{P}){}^4\mathrm{D}{}^*+13({}^1\mathrm{D}){}^2\mathrm{F}{}^* \end{array}$				59,237 59,270 59,344 59,450			$\begin{array}{c} 0.001 \\ 1.192 \\ 1.254 \\ 1.316 \end{array}$

TABLE 2. Observed and calculated levels of V $_{\rm I}$ (3d+4s)^44p-Continued

Name	I	Percentage	AEL		Obs. level	Cale.	0-0	Obs.	Calc.
	5		Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)	0-0	factor	factor
$(B^{1}G)^{2}H$	9/2 11/2	$\begin{array}{l} 88+6({}^{1}\mathrm{G}){}^{2}\mathrm{H}^{*}\\ 88+6({}^{1}\mathrm{G}){}^{2}\mathrm{H}^{*} \end{array}$				59,575 59,722			0.910 1.091
$B^2D(^3P)^4F$	3/2 5/2 7/2 9/2	93 93 92 93				60,177 60,185 60,199 60,222			$\begin{array}{c} 0.401 \\ 1.029 \\ 1.238 \\ 1.333 \end{array}$
$B^2D(^3P)^4P$	1/2 3/2 5/2	$\begin{array}{l} 49+23({}^3P){}^4P^*\\ 38+16({}^3P){}^4P^*+15(B{}^1D){}^2D\\ 41+16({}^3P){}^4P^* \end{array}$				60,550 60,617 60,522			2.472 1.311 1.432
$^2F(^1P)^2D$	3/2 5/2	$\begin{array}{l} 20+24B{}^{2}D({}^{3}P){}^{4}P\\ +16B^{2}D({}^{3}P){}^{2}D\\ 20+23B{}^{2}D({}^{3}P){}^{4}P \end{array}$				60,586			1.218
		+ 19B ² D(³ P) ² D				60,633			1.366
$(^{3}P)^{4}S^{*}$	3/2	$41 + 20({}^{1}D){}^{2}P^{*} + 11{}^{4}P({}^{1}P){}^{4}S$				60,619			1.687
$(^{3}P)^{2}S^{*}$	1/2	$24 + 30 (B^3P)^2S + 19B^2D(^3P)^4P$				60,660			2.076
$(^{1}\mathrm{D})^{2}\mathrm{P}^{*}$	1/2 3/2	$40 + 13(B^{3}P)^{2}P$ $24 + 35(^{3}P)^{4}S^{*}$				$61,113 \\ 60,917$			$0.754 \\ 1.628$
$({}^{3}P){}^{4}D{}^{*}$	1/2 3/2 5/2 7/2	$\begin{array}{l} 47+24B{}^{2}D({}^{3}P){}^{4}D\\ 42+21B{}^{2}D({}^{3}P){}^{4}D\\ 41+18B{}^{2}D({}^{3}P){}^{4}D\\ 55+21B{}^{2}D({}^{3}P){}^{4}D \end{array}$				61,102 61,123 61,165 61,229			$\begin{array}{c} 0.032 \\ 1.157 \\ 1.334 \\ 1.424 \end{array}$
$B^2D(^3P)^2D$	3/2 5/2	$\begin{array}{l} 44+16(^{3}\mathrm{P})^{2}\mathrm{D}^{*}\\ 39+15(^{3}\mathrm{P})^{2}\mathrm{D}^{*} \end{array}$				$61,292 \\ 61,329$			0.863 1.237
$B^2D(^3P)^2F$	5/2 7/2	$\begin{array}{l} 57+17(B{}^{1}G){}^{2}F\\ 47+16(B{}^{1}G){}^{2}F\end{array}$				$61,707 \\ 61,720$			$0.859 \\ 1.117$
$(B^1G)^2G$	7/2 9/2	$\begin{array}{l} 67+18^{2}F(^{1}P)^{2}G\\ 71+20^{2}F(^{1}P)^{2}G \end{array}$				$61,950 \\ 61,977$			0.919 1.111
$(^{3}P)^{2}P^{*}$	1/2 3/2	$\begin{array}{l} 73+21B^{2}D(^{3}P)^{2}P\\ 73+22B^{2}D(^{3}P)^{2}P\end{array}$				$63,190 \\ 63,184$		с. К	0.667 1.333
$(^{3}P)^{4}P^{*}$	1/2 3/2 5/2	$\begin{array}{l} 62+30B^{2}D(^{3}P)^{4}P\\ 64+29B^{2}D(^{3}P)^{4}P\\ 66+26B^{2}D(^{3}P)^{4}P \end{array}$				$63,541 \\ 63,560 \\ 63,600$			2.665 1.733 1.599
$(B^1G)^2F$	5/2 7/2	$\begin{array}{l} 28+27B^2D(^3P)^2F+25^2F(^1P)^2F\\ 27+27B^2D(^3P)^2F+24^2F(^1P)^2F \end{array}$				65,001 65,013			0.857 1.143
$({}^{1}G){}^{2}G^{*}$	7/2 9/2	$\begin{array}{c} 67+13^2 H(^1P)^2 G \\ 66+15^2 H(^1P)^2 G \end{array}$				65,450 65,465			0.889 1.110
$B^2D(^3P)^2P$	1/2 3/2	93 93				66,142 66,126			$0.667 \\ 1.333$
$({}^{1}G){}^{2}H^{*}$	9/2 11/2	$89 + 8(B^{1}G)^{2}H$ $90 + 8(B^{1}G)^{2}H$				66,065 66,210			$0.910 \\ 1.091$

)

.

TABLE 2. Observed and calculated levels of V I (3d+4s)⁴4p-Continued

Name	J	Percentage	AEL		Obs. level	Calc.	0-0	Obs.	Calc.
			Config.	Desig.	(cm ⁻¹)	(cm ⁻¹)	U U	factor	factor
$(^{3}P)^{2}D^{*}$	3/2 5/2	$\begin{array}{l} 29+32^2F(^1P)^2D+12(^1D)^2D^*\\ 29+31^2F(^1P)^2D+12(^1D)^2D^*\\ \end{array}$		-		67,350 67,266			0.800 1.200
$({}^{1}G){}^{2}F^{*}$	5/2 7/2	$\begin{array}{l} 55+23B^2D(^1P)^2F\\ 55+24B^2D(^1P)^2F \end{array}$				68,160 68,130			$0.857 \\ 1.143$
$(B^{1}D)^{2}P$	1/2 3/2	$79 + 7 ({}^{3}P){}^{2}P^{*}$ $79 + 7 ({}^{3}P){}^{2}P^{*}$				70,861 70,768			$0.667 \\ 1.333$
$(B^1D)^2F$	5/2 7/2	$\begin{array}{l} 87+5({}^1{\rm G}){}^2{\rm F}^*\\ 87+5({}^1{\rm G}){}^2{\rm F}^* \end{array}$				71,444 71,575			$0.858 \\ 1.143$
$(B^1D)^2D$	3/2 5/2	$\begin{array}{c} 65+27 B^2 D({}^1P){}^2D \\ 63+28 B^2 D({}^1P){}^2D \end{array}$				72,521 72,560			$0.800 \\ 1.199$
$B^2D(^1P)^2D$	3/2 5/2	$\begin{array}{l} 56+26(B^{1}D)^{2}D\\ 55+26(B^{1}D)^{2}D\end{array}$				75,334 75,357			$0.803 \\ 1.200$
$B^2D(^1P)^2P$	1/2 3/2	$\begin{array}{l} 49+13({}^{1}S){}^{2}P{}^{*}\\ 48+14(B{}^{1}S){}^{2}P\end{array}$				75,908 75,925			$0.667 \\ 1.330$
$B^2D(^1P)^2F$	5/2 7/2	$\begin{array}{l} 67+22({}^{1}\mathrm{G}){}^{2}\mathrm{F}^{*}\\ 67+22({}^{1}\mathrm{G}){}^{2}\mathrm{F}^{*} \end{array}$				76,208 76,100			$0.857 \\ 1.143$
$(B^1S)^2P$	1/2 3/2	$\begin{array}{l} 66+24B^2D(^1P)^2P\\ 66+23B^2D(^1P)^2P \end{array}$				84,425 84,548			$0.667 \\ 1.333$
$({}^{1}S){}^{2}P{}^{*}$	1/2 3/2	$\begin{array}{l} 79+15(B^{1}S)^{2}P\\ 79+16(B^{1}S)^{2}P\end{array}$				91,043 91,193			$0.667 \\ 1.333$

TABLE 2. Observed and calculated levels of V I (3d+4s)⁴4p-Continued

5. References

- Racah, G., and Shadmi, Y., Bull. Res. Counc. Israel 8F, No. 1, 15 (1959).
- [2] Shadmi, Y., Bull. Res. Counc. Israel 10F, No. 3, 109 (1962).
- [3] Roth, C., Nat. Bur. Stand. (U.S.), 72A (Phys. and Chem.) No. 5, 505–520 (Sept.–Oct. 1968).
- [4] Roth, C., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.) No. 2, 125–157 (Mar.–Apr. 1969).
- [5] Roth, C., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.) No. 2, 159–171 (Mar.–Apr. 1969).
- [6] Roth, C., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.), No. 5, 497–510 (Sept.–Oct. 1969).
- [7] Roth, C., Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.),

No. 6, 599-609 (Nov.-Dec. 1969).

- [8] Moore, C. E., "Atomic Energy Levels," Nat. Bur. Stand. (U.S.), Circ. 467, Vol. I. (1949), referred to as AEL
- [9] Racah, G., Bull. Res. Counc. Israel 3, 290 (1954).
- [10] Condon, E. U., and Shortley, G. H., The Theory of Atomic Spectra (Cambridge University Press, 1935), referred to as TAS.

Ł

- [11] Racah, G., Phys. Rev. 62, 438 (1942), referred to as RII.
- [12] Racah, G., Phys. Rev. 85, 381 (1952).
- [13] Meggers, W. F., and Russell, H. N., J. Res. NBS **17**, 125 (1936) RP906. (Paper 74A2-588)