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A method is presented for the analysis of data representing functions of two variables, when the
response can be tabulated in a rectangular array. The procedure is based on a partitioning of the
row by column interaction effects into a sum of terms, each of which is the product of a row factor
by a column factor. The factors in each term are estimated by a method involving the extraction of
characteristic roots.

The method contains as special cases a number of procedures used for the handling of non-addi-
tivity in two way arrays. It is very useful for the fitting of empirical surfaces, but is also applicable
to cases in which the data depend on qualitative rather than quantitative factors.

Comparisons with other techniques are made and an illustrative example is given.
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1. Introduction

In a previous paper [8],' a method was presented for the analysis of data representing func-
tions of two variables, when the response can be tabulated in a rectangular array. The analysis
was based on the assumption of a “linear model,” the validity of which was subject to verification
in each individual case. Essentially, the linear model assumption is that the elements of each row,
when plotted against the column averages of the table (or that the elements of each column, when
plotted against the row averages), provide a straight line. It was pointed out in [8] that when the
linear model assumption does not hold, the analysis can be handled in two ways. The first of these

)

simply generalizes the assumption of “linearity,” required by the linear model, to one of quad-
ratic behavior, as discussed in reference [9].

The second way of dealing with more complex models than are covered by the linearity
assumption is to attack the problem of row by column interaction in a completely systematic
way, by partitioning this term in as many individual terms as are required by the data. Thus, no
prior assumptions such as linearity, or concurrence [7], or quadratic behavior [9] are made;
to a considerable extent the data themselves generate the model. It is this approach that we wish
to discuss in the present paper.

We will assume that the response is a quantitative variable, generally a measure of some
property of a material or of a system. The nature of the data, and of the problem behind the data
then depends on the nature of the two independent variables (which are represented by the rows
and the columns of the two-way table). These may be qualitative or quantitative, or mixtures of
both types, and the interpretation of the analysis will depend on which of these situations pertains.
For the sake of brevity, we will describe the application of the method to only one illustrative
example. Other interesting applications of the method will be presented in subsequent papers.

! Figures in brackets indicate the literature references at the end of this paper.
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A basic feature of the method discussed in the previous publication [8] was the division of
the analysis in two phases, the first of which was referred to as the analysis for “internal structure.”
This first phase led to an expression relating the response to sets of parameters, each of which
was a function of only one variable. The second phase of the analysis consisted in relating these
parameters to the original row and column variables. The present analysis, while far more general,
retains this basic feature.

In the course of our discussion we will call attention to the relation between the proposed
approach and other models for two-way data. We will also discuss the similarities, as well as the
differences, between this approach and some related procedures discussed in the literature. In
a broad sense, all these procedures, including the one presented in this paper, derive from the
“method of principal components,” the development of which is due primarily to Harold Hotel-
ling [4]. Thus, while the method presented in this paper rests largely on well-known mathematical
results, the approach is nevertheless novel. In particular, while practically all discussions of this
method of principal components are nonsymmetrical with respect to the rows and the columns
of the two-way table, the present approach treats the rows and the columns in the same identical
way.

Ideas similar to those presented here have been discussed by E. J. Williams [17] and by Pike
and Silverberg [11].2 Williams makes explicit use of the theory of latent roots underlying the
method of principal components, but approaches the data analysis problem from a somewhat
different point of view. Pike and Silverberg make no use of the method of principal components.

While this paper was being prepared for publication, a most interesting paper by Gollob [3]
was published. It is apparent that we developed the same basic model independently of each
other.

A basic difference between Gollob’s method and mine lies in what I believe to be a novel
approach to the question of degrees of freedom in principal component analysis. This approach
is discussed in detail in the present paper.

2. The Analysis of Internal Structure

Let x; and y; denote the levels of the two independent variables or categories, represented by
the rows and columns of the table and z;; the observed value of the measured (dependent) variable
for x; and y;.

Assume that the table consists of m rows and n columns. We begin by writing the model
usually adopted in analysis of variance:

i=ltom

2= ptpit v+ i {,-thon-

I
Here, w is a constant, estimated by the grand-mean; p; is the “row main effect”” and vy; the

“column main effect”; the quantity 7;; represents the ‘“‘interaction between row i and column j.”
As usual we impose the conditions:

2pi=0  Fy=0 ¥mny=3 ny=0. )
i J 1 4

It should be noted that eq (1) expresses the function of two variables, z;j, partly in terms of
two functions of a single variable each, p; and v;, but that it also involves a new function of two
variables, 1.

It is often assumed that 7; is a random variable, of mean zero, and standard deviation o.
In that case, which is known as the ‘“‘additive case,” eq (1) constitutes a real simplification: the
replacement of a function of two variables by two functions of one variable each.

2 For calling my attention to the latter reference I am indebted to Professor David L. Wallace.
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When the assumption of additivity is not definitely known to be valid, the analysis can proceed
only on the basis of some other definite assumption concerning the structure of 7. The assump-
tion we will adopt in this paper is expressed by the following equation:

1= Ouiv;+ 0’ uiv; + 6"uivj. . . +e€; (3)
where €;; is a random variable of zero mean and standard deviation o. When 7;; is expressed by

only a few terms of the multiplicative type Quwj, eq (3) also constitutes a real simplification. With-
out the loss of generality, we may impose the constraints:

===, . =0 )
Jui=Fui=. . =Fd=3'=. . =L 6)

The problem is to find estimates for the new parameters 0, 0',. . .u, u',. . .,v,v.. . . andfor the
standard deviation of random error, o. Equations (1) and (3) together with the constraints expressed
by eqs (4) and (5), constitute our model. We will refer to the quantities w, pi, y;, 0, wi, v;, 0', ui,
v}, etc. as “‘structural parameters.”

3. Solution by Least Squares ?

The interaction 7;; is estimated by the residual
dij=zj—p—pi—79; (6)
where i, pi, 9; are the usual estimates

=z Y =z5—7%.- (7

||
b)

The dot notation indicates here, as usual, averaging over the subscript replaced by the dot. To
fit the interaction, consider first the model:

MNij= Ou,-v,- A €jj (8)

subject to the constraints expressed by eqs (4) and (5). We obtain estimates for 6, w;, and v; by
minimizing with respect to 6, u;, and vj, the quantity:

S= 2 2 (dij— 0u,-v,~)2 - )\1 (Eu2 - l) =)\ (21)2 - 1) - 2;1,121“ —2/1-221)]' (9)
i

where the N and w’s are Lagrange multipliers. Carrying out the calculations, one obtains the
relations:

up=6-! 2 dkj‘l)j (10)
J
u=0"'Y duui (11)
i
3 The derivation in this section is essentially the same as that given by Williams [17].
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Eliminating v; between (10) and (11), and setting

Sik = 2 dijdy; (12)
J
one obtains:

02u;.~ = 2 WiSik- (13)

In matrix notation, eqs (12) and (13) become:

()= (d)(d)" (14)
and

62 (u) = (s) (u) (15)

where T indicates a transpose, (s) is an m X m matrix, and (u) is an m X 1 vector.

It follows from (15) that 6* is an eigenvalue of the matrix (s) and that (u) is an associated
eigenvector.

Similarly it can be shown that:

2 (v) = [(d)"(d) ] (v). (16)

where (v) is an n X 1 vector.

The desired minimization of S (eq (9)) is accomplished by taking the largest eigenvalue 6? of
the matrix (s). Furthermore, an important consequence, which can readily be proved,® is that if
0% is chosen to be the largest eigenvalue of the matrix (s), and one attempts to find the values of
0", u; and vjf such that:

S S [(dy—buay) —0'ujv}]? (7)
J

is a minimum, subject to the constraints (4) and (5), it turns out that 6’2 is simply the second-
largest eigenvalue of the same matrix (s), and (z') the associated eigenvector, with a similar
situation for (v").

Thus, by obtaining the complete set of eigenvalues of (s), and the associated sets of vectors
(n), (v), ("), (¥'), etc., one actually obtains the least-squares solution of all parameters in

eq (3).

4. An Analog to Analysis of Variance

In terms of sample estimates, eq (3) leads to the equation:
diy=0u00;+0'ajv;+ . . . +ei (18)
The rank of the (s) matrix satisfies the inequality:
rank (s) < min (m, n) —1. (19)

Consequently, the number of terms on the right side of (18) is at most min (m,n)—1.
In analogy to the usual interpretation of the results of analysis of variance, a decision will first
be made (see following section)on how many terms of the type Qu;v; should be retained in the model;
the residual sum of squares is then used for an estimation of the variance of e.

‘See, for example: Harman, H. H., Modern Factor Analysis (The University of Chicago Press, Chicago, 1960, chap. 9).
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Assume that we calculate all terms of the type Ouv; so that €; is taken equal to zero.
Then we obtain at once:

2

S &=E+02+87+ . ... (20)

This follows from eq (18) and the orthogonality property of eigenvectors, by which all cross-
products are zero.

Equation (20) constitutes an actual partitioning of the sum of squares of interaction. One is
therefore tempted to try an approach of the analysis of variance type. However, the 6* are not
quadratic forms in the original measurements zj. Nevertheless, it is possible to formulate the
problem in analysis of variance language, by virtue of the following considerations.

Let A/ (w, o) represent a normal population of mean w and standard deviation o.

Suppose first that the z;; are a random sample from a normal population 4#7(0, 1). Then, the

A

quantities 02, 8’2, 8”2, etc., each form a definite statistical population. Let:
M, =E(#),,M,=E(8?), , M;=E(8%),, . . . (21

where E represents an expected value and the symbol ./ refers to the standard normal distribution
A0, 1).

If the normal population in question had a variance of ¢?, instead of unity, the quantities
M., My, M, etc., would simply be multiplied by 2.

Therefore, the ratios of the #2ivalues obtained from a random sample from 4 (0, o) to the
corresponding M values are all estimates of o2.

If, now, a matrix of data z; is given, and if the interaction terms are nothing but random
gaussian error, then the ratios of the  obtained from these data to the corresponding M-values
obtained from an .#7(0, 1) matrix of the same dimensions are simply estimates of o2

Thus, the M-values fulfill a role that is quite analogous to that of the degrees of freedom in
ordinary analysis of variance. More specifically, the M are such that, for random gaussian inter-
action, the ratio of each 6* by the corresponding M is an unbiased estimate of o2.

Carrying the above argument a little further, and using heuristic reasoning, we may expect
that if the real model contains say, k£ terms of the type Quv;, then the corresponding k values of
62 will be inflated by the systematic effects of these terms, while the remaining terms, say:

GF 11 0K+ 2, €1C.
will only be estimates of
Mii102, Mii20?, ete.
Thus:
0f1[Misr, OF 2/M s, ete.,
will all be estimates of o
In this way a judgment can be made as to the number of terms, £, that should be retained in
the model, as will be shown in the discussion of the example, further in this paper.

5. A Monte-Carlo Study

To verify the above assumptions, and obtain reliable numerical estimates for the M-values,
a series of Monte Carlo experiments were carried out, as follows.

For specific values of m and n, matrices containing random normal deviates from /' (0, 1), were
analyzed by the method outlined above. For each m and n combination, 625 such matrices were
analyzed, and the estimates of the corresponding M-values computed. The averages of the 6%,
for 625 sets, and their standard deviations are listed in tables Al and A2, respectively, of the
appendix.
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In an m X n matrix, the number of degrees of freedom for interaction is (m—1) (n—1). If
o2=1, the expected value of the sum of squares for interaction is also (m—1) (n—1). Thus, the
expected value of the sum of the M-values, for any given matrix of size mXn, is (m—1) (n—1).
In view of this fact, it seemed advantageous to compute the ratio of each value to (m—1) (n—1).
These ratios, expressed as percent, are denoted “‘Percent of Total Interaction Degrees of Freedom,”
and are listed in table A3. They were obtained by a weighted least squares adjustment process,
using the reciprocals of the squares of the observed standard deviations as relative weights, and
introducing the constraint that the sum of the percentages be 100. The values in table A3 lend
themselves to more precise interpolation than those of table Al.

Additional Monte Carlo studies were carried out to verify the conjecture that if one or more
terms of the type Quw; were actually present in the true model, the subsequent terms would not be
affected by these systematic terms. The experiments showed that the introduction of even very
large systematic terms of the type 6u;v; had the effect of only slightly inflating the subsequent
terms; these remained, for all practical purposes, acceptable estimates of the experimental error.

6. Practical Use of the Method

Let z;; be given in the form of an m X n matrix. We assume that z;; is a function of x and v,
where the values of x correspond to the rows and the values of y to the columns of the matrix.
We first fit a model of the type:

z;j=,u+pi+yj+n,~j=/.L+p;+7j+0u,-vj+0'uj’vjf+ o o g

to the data, ignoring momentarily the numerical values, if any, of x; and y;.
The usual analysis of variance yields the estimates:
L=z..;pi=zi.—z..; Yi=z.;,—z..
and the residuals:
’YA’U = dij:Zij_ﬁ—'ﬁi_';’j:Zij_'_Z T 2.2 ..

For purposes which will become apparent in the discussion of the illustrative example, we
“standardize” the parameter estimates p; and ¥;, by dividing each of them by the square root of the
corresponding sum of squares. Thus, writing:

ri—

|~

our model becomes:
zij=,u+Rr,-+ch+0u,-vj+H'u{vjf+ o o o o (23)

Applying a diagonalization technique to the matrix (d) - (d)”, we find:
(a) a set of eigenvalues
62, 6%, 0m, . ..

(b) a set of u vectors, each of dimensions m X 1:
(), (@), (%) « . .

(c) a set of v vectors, each of dimensions n X 1:

(v), @), "), ...
314



We now tabulate the results as follows (tables 1 and 2):

TABLE 1. Row-dependent parameters

Row variable Row effects, r; u; uf U
o R ’ ”
X1 r uy uy uy

X2 ra us uw) wy ...
§ / I

Xm 'm Um Um Up - . .

TABLE 2. Column-dependent parameters

Column varaible | Column effects, vj vi | vj ...
Cj
/ "
Y1 Cy 41 vy Uy
Vo o V2 vy vy . . .
Yn Cn Un Un U:; EC

We form the analysis of variance table (table 3):

TABLE 3. Analysis of variance *

Source DF SS MS=%
Total m-n EEZ?J
A
m 1 mnu?
pi il nR* nR*(m—1)
o n—1 mG* mG?/(n—1)
9 (m=1)(=1) | $3dz | T Sdim—1)(n-1)
i
Ou,-v,- M| 62 é2/MI
0'ujvj M, 0" 0"IM,
0'"ul"v}’ M, s 6 *IM,

“The term “analysis of variance” is used here in a generalized sense: as in classical analysis of variance,
the sum of squares is partitioned and mean squares are calculated. Under the null-hypothesis of “no effect,”
the mean squares are unbiased estimates of the error variance. The M-values are “‘degrees of freedom™
only in the sense of appropriate divisors for the corresponding sums of squares, as explained in the text.

We now examine the mean squares corresponding to the breakdown of the 7 into the sum of
multiplicative terms Quvj, 0'uivj, etc. At the present time, no distribution theory is available for
these mean squares, and exact tests of significance cannot be carried out. Nevertheless, even an
intuitive appraisal of the mean squares generally leads to fairly clear-cut decisions concerning the
number of product terms that should be retained in the model. This will be illustrated in the next
section, which deals with an illustrative example.
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The data in table 4 were obtained in an experiment designed to measure the absorption of

7. llustrative Example

gamma radiation by lead (Pb) and by aluminum (Al).

For each of the two metals, two sets of measurements were made, each of which involved
5 different values for the distance between the radioactive source and the counting instrument.
The thickness of the absorbing metal was varied by stacking plates of identical thickness upon each
other, and placing these stacks between the source and the counter. Five thicknesses were used,
obtained by making stacks of respectively 1, 3, 6, 7, and 10 plates. The response is the logarithm,
to the base 10, of the number of pulses per second. The thickness of a single plate was not the same

for the two metals, but this does not invalidate our analysis.

TABLE 4. Absorption of gamma radiation by lead and aluminum?

Number of plates, &;
Distance
Row, i Set 1 3 6 7 10
cm
Lead
1 3.8 1.801 1.765 1.696 1.670 1.606
2 5.2 1.621 1.572 1.516 1.486 1.425
3 6.0 |1 1.526 1.481 1.406 1.401 1.333
4 9.0 13222 1.169 1.102 1.078 1.010
5 12.5 0.973 0.939 0.862 0.850 0.781
6 3.8 1.805 1.768 1.704 1.680 1.615
7 5¥2 1.609 1.572 1.511 1.482 1.408
8 6.0 1.494 1.461 1.387 1.324 =315
9 9.0 |11 1.233 1.208 1.130 (1818181 1.046
10 12.5 0.978 0.930 0.870 | 0.844 0.779
Aluminum
11 3.8 1.834 1.818 1.811 1.790 17
12 B 1.632 1.613 1.600 1.603 1.597
13 6.0 |1 1.509 1.482 1.476 1.454 1.447
14 9.0 1.249 1.224 1.204 1.211 1.179
15 125 0.986 0.971 0.966 0.960 0.943
16 3.8 1.916 1.913 1.884 1.887 1.871
17 5%2 1.732 1.723 1.698 1.696 1.674
18 6.0 |11 1.632 1.624 1.592 1.588 1.579
19 9.0 1.344 1.341 1.312 1.311 1.290
20 12.5 1.118 1.118 1.106 1.086 1.066
2 Tabulated value =log, pulses (corrected for background noise).

The first phase of the analysis was carried out on a two-way table, in which the rows represent
combinations of three factors: metal, distance, and set. The columns of the table correspond to

the 5 levels of “number of plates.,” £;.
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Using the notation introduced previously in this paper, the analysis of variance is given in
table 5. where the M values given in table Al were used for the degrees of freedom. The.structural

parameters are given in table 6.

TABLE 5. Absorption of Gamma Radiation, Analysis of Variance®
Source DF S5 MS
Total 100 | 205.34167  |o.eenieneieiiiiiiaeannnn,
m || TEBSHE | bossanansanancacnnansasacss
pi 19 9.106487 0.4793
Yj 4 0.190188 .0475
nij 76 .067447 .000887
Ouiv; 31.9 .063801 .002000
0'uiv] 28 .002083 .000098
0"ujv"; 14.3 .000847 .000059 1 0.000083
Residual 8.5 .000716 .000084

“ See footnote a of table 3.

"The total number of multiplicative terms for these data is 4; hence the residual is identical with the fourth eigenvalue. The degrees of freedom for the residual

are obtained by difference.

TABLE 6. Absorption of Gamma Radiation, Structural Parameters
Model: zj;=1.40 +1.3495r; + 0.0975¢ j+ 0.2526 uv; + €i;

Distance Set ri w; k; cj vj
3.8 .2280 0.2258 1 | —0.6447 —0.6487
1 .0919 $2135
6.0 Pb1 .0218 .2061 3 —.2494 —.2540
9.0 2102 .2623

1225 —.3845 .2148 6 —.0848 —.0767
3.8 .2330 .2043 7 .3556 .3689
582 .0863 .2336
6.0 Pb 1t —.0028 .2290 10 .6233 .6105
9.0 —.1884 2117

1225 = sl .2225
3.8 3009 | —.2117
582 1549 | —.2850
6.0 Al1 .0546 | —.2009
9.0 —.1382 | —.1908

12.5 S S22 (N 659
3.8 3662 [ —.2359
S 2258 | —.2036
6.0 Al 1505 | —.2052
9.0 —.0595 | —.2088

1225 =228 || =206

Since the mean squares in table 5 are small for the second, third, and fourth multiplicative
terms, when compared to that of the first multiplicative term. the analysis of variance indicates
quite conclusively the need for a single multiplicative term, in addition to the usual additive terms
(grand average, row main effects and column main effects).
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The model emerging from this analysis is given by the following equation:
zij=1.400+1.3495r;+ 0.0975¢; + 0.2526uw; + €;;

where r;, ui, cj, and v; are listed in table 6, and €;; is a random error, with standard deviation
o=10.0091.

This model may be simplified by examining the structural parameters. We first note the great
similarity between v; and ¢;.?
Assuming that v;=¢;j, our model becomes

2= 1.400+ 1.3495r; + (0.0975 + 0.2526u:)v; + €;; (24)

Our next task is to study the structure of the parameters r; and u; in terms of the variables of which
they are functions, i.e., distance and set. For the parameter u;, a formal analysis is hardly necessary.
It is evident from table 6 that u; has essentially the same absolute value for all 20 combinations of
distance with set, and that its sign is + for Pb and — for Al. Since 2 u?=1. we obtain:

1

1
m=_w%=iam% 25)

the + sign applying to Pb, and the — sign to Al.

To study r, we make a two-way analysis of the same type as above, considering r; as the
response, and identifying the rows with distance and the columns with the four sets (Pb1, Pb1r,
Al1, Al1). The results are shown in table 7a. From the analysis of variance it is clear that a simple
additive model is appropriate. Thus, we write the model

ri=Aq+ B; (26)

with the values of the new parameters A4 and Bj listed in table 7b. Combining eqs (24), (25) and
(26) yields:

zij=1.400+1.3495 (44 + B;) + (0.0975 £ 0.0565) v; + €; (27)
where the + sign applies to Pb and the — sign to Al

TABLE 7a. Analysis of variance of r;

Source DF ISH) MS
20 1.0000 0.05
1 0 0
4 0.9300 0.2325
3 | .0688 .0229
Distance X set.......... 12 .001203 .000100
LIV 2, ooocaasoosanadensonsd 8.4 .000752 .000090
EV2.... 3.0 .000343 .000114
VIS SUE—————— 0.6 .000108 .000180

a2 EV1, EV2, and EV3 denote the three eigenvalues into which the interaction Distance X Set is partitoned.

® Here the advantage of “‘standardizing™ the p;and ¥;into r; andc; becomes apparent. An identical relationship between vj and c; (or between v; and (— c;)) corre-
sponds to a proportional relationship between v; and ;. Such a proportional relationship might have escaped attention, unless the values had been plotted on a graph.
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TABLE 7b. Values of parameters in equation: r;= Ay + B

Distance Aa Set B;
3.8 0.2820 Pb1 —0.0506
5.2 .1397 Pbu —.0514
6.0 0560 |
9.0 —.1491 Al1 .0100
1285 -~ .3287 Al .0920

All that remains to be done is to fit appropriate curves to the parameter 44, Bs, v; as functions
of the variables distance, metal, and k; (number of plates) respectively, using the values listed in
table 7b (for A4 and B;) and in table 6 (for v)).

In view of the near-identity of the two values of B for Pb. both sets for this metal can be ex-
pressed by the same equation. Equation (27) then leads to the following model equations:

For Pb (sets1 and 11):

21121331+134‘95A,1+ 015401}1"‘6” (28)

For Al:
set 1: z;j=1.414+1.34954,+ 0.04100; + €;; (29)
set I z;; = 1.524+ 1.34954,+ 0.04100; + €;;. (30)

A plot of A4 versus distance and of v; versus number of plates would show smooth relationships
for both these parameters. In fact, the plot of v; versus the number of plates is simply a straight line,
which is in accordance with the theory of absorption of radiation.

We need not complete this phase of the analysis, since it-involves no novel features.

Factorial types of data, such as those used in our illustration (table 4) are often analyzed by
the conventional analysis of variance, in which the sum of squares is partitioned into main effects
and interactions. To interpret such an analysis, it must be ascertained whether the interactions
that are found to be significant depend in a systematic way on the factors. When this is the case,
the model is not additive, and then the nature of the interactions must be further elucidated. This
is precisely what the method of analysis proposed in this paper is intended to do.

Thus, in our analysis of the illustrative example, in which the three factors “type of metal,”
“distance,” and “‘sets” were merged into one (the “rows’ of the table), a clear dichotomy was
nevertheless indicated by the parameter u;, which sharply differentiated between Pb and Al, and
led to the entirely different coefficient of v; in eq (28) as compared to eqs (29) and (30). This is of
course an “‘interaction’” between “type of metal” and “number of plates,” but the advantage of
our approach is that rather than merely indicating the presence of an interaction, the parameter
leads to a quantitative expression for it.

8. Relationship to Models not Based on Principal Component Analysis
a. The Additive Model

Clearly, (23) expresses an additive model if and only if all multiplicative terms vanish (or become
mere random experimental error). An additive model is therefore diagnosed if none of the mean
squares obtained in the partitioning of the interaction are large with respect to subsequent mean

squares.
b. The Linear Model

This model [7, 8] is given by the equation:
zij=ptpityi+ (Bi—1)vite;
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where B=1_
It can be written as:
Zij=,LL+Rri+GCj+ (,B,-—I)ch—}-eij_

In order that this model apply, it is necessary that the following two conditions be fulfilled:
1. The partitioning of the interaction must yield only one significant product term;
2. We must have, either

p=c; ()

or
vj=—c¢ (all)).
Obviously a linear model also holds when )
zij=p+pityitpi(d;—1)+ei o=1.
In this case, condition 2 above becomes:
wi=ri (all l)
or
ui=—ri (all 7)

c. The Concurrent Model

This model [7, 8] is a special case of b.
It is represented by the relation:

zij= p+t pityi+ Kpiyit €ij.

A set of data will be represented by a concurrent model if and only if the following three condi-
tions are simultaneously fulfilled:
1. Only one significant product term results from the partitioning of the interaction.

2. wi=r; or Ui=—r; (all 7)
3. vj=cj or V;=—¢j (all j).

d. Tukey’s One Degree of Freedom for Non-Additivity

In 1949, Tukey [13] proposed a test for nonadditivity consisting in the extraction of one degree
of freedom from the row by column interaction. This test can be interpreted in terms of the model

zij= u+pit v+ Kpiyi+ €

which is identical with what we have called the concurrent model.

In Tukey’s procedure, the sum of squares, with one degree of freedom, for Kpyy;, is tested
against the remaining sum of squares, with [(m—1) (n—1) —1] degrees of freedom.

We can regard this model as a special case of the linear model (case b).

If we write:

zij=p+pit vit Kpiyi+ [(Bi—1) —Kpilvit e

the allocation of degrees of freedom is 1 for Kpyy;, and (m—2) for [(8i—1) —Kpi]vy;, provided
that B; and K are estimated by the appropriate procedure [7]. Thus a valid test for Kp;y; is obtained
by computing the F ratio of the mean squares corresponding to these two terms, with 1 and (m —2)
degrees of freedom. Tukey’s procedure consists in testing the term Kpyy; versus the combined
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mean square for [ (8;—1) —Kpi]y; and €;;. The denominator now has [[m—1)(n—1) —1] degrees
of freedom. Thus carried out, the test overlooks the possible significance of the term [(8;—1)
— Kpily;. It appears preferable to consider first the linear model, and separate out one degree of
freedom for concurrence. Indeed, Tukey’s test will tend to lead to an erroneous conclusion of
additivity everytime the model is linear without being concurrent.

e. The Vacuum-Cleaner Model

In a paper appearing in 1962, Tukey [14] presented what may be considered as a repeated
twofold application of the linear model, both row-wise and column-wise. He referred to it as the
“vacuum cleaner model.”” The first “sweep’ of the vacuum cleaner model may be represented by
the following equation:

zij= pu+tpityitKpivit+Bivi+pidj+ e

where ZBiZZ 6;=0
i Jj

and S Bipi=Y vi8;=0.
i F

If data obeying this model are analyzed by the method of this paper, the first three eigenvalues
will tend to extract all the information contained in the terms Kpyy;j, Biy; and p;8;, but there will be
no one-to-one-correspondence between the eigenvalues and these terms.

A characteristic feature of the vacuum cleaner model is that the ““carriers” of each sweep are
essentially the “coefficients” of the preceding sweep. For example, in the equation above, the three
terms into which the interaction is partitioned are all linear functions of p; and vy;, the coefficients
of the additive components. If an additional sweep were required, its term would be linear functions
of Bi and §j, and so forth.

By contrast, the terms Ouw; introduced consecutively in our method of analysis, are not made
dependent upon each other. At each step, the residuals alone produce the new term fuw;, whereas
in the vacuum-cleaner model, the new terms are functions of the residuals and of the coefhicients
of the preceding sweep.

The preceding discussion shows that an analysis of two-way data carried out according to the
method presented in this paper contains as special cases a number of methods not involving
principal component analysis, and that application of this technique will allow us to recognize at
once a number of frequently occurring special models.

9. Relationship to Other Approaches Involving Principal Component Analysis

As mentioned earlier in this paper, the idea of using principal component procedures in data
analysis is not new. In the following we will show in what way the method presented in this paper
differs from similar approaches.

The method of principal components originated in the field of psychology. We can visualize
the basic problem in terms of a two-way table of m rows and n columns. Each row represents a
different “subject” (e.g., a human heing), and each column represents a particular psychological
“test.”” The response is the score obtained by the ith “subject” in the jth “test.” Here a vast
conceptual difference exists between rows and columns. The object is to find a small number of
linear combinations of the values in any particular row (“derived responses”) that somehow
typifies the overall response of the subject to the entire battery of tests. The model is formulated
in terms of “‘characteristic vectors,” equal in number to the “derived responses.” For each derived
response, the corresponding vector consists of the coefficients by which the n scores of any subject
must be multiplied in order to obtain the linear combination yielding the derived response for that
subject. The set of values obtained for all subjects for a particular derived response is denoted as
the set of “scalar multipliers” corresponding to that vector.
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In our model, no distinction in principle is made between vector components and scalar
multipliers. They fulfill entirely analogous roles, one for the columns, and the other for the rows
(they are the quantities denoted as v; and u; respectively). Furthermore, whereas in the classical
approach, the calculation of principal components is generally carried out on the deviations of the
original scores from the corresponding column means, we apply these calculations to the residuals
from the additive model, i.e., after taking out both row and column means.

The literature dealing with the application of principal components to data analysis in the
physical sciences contains some valuable contributions [1, 2, 3, 5, 6, 10, 12, 15, 17|, but suffers
largely from its adherence to the terminology and model building methods derived from the original
field of application of this technique. In the first place, with the exception of reference [3], which
will be discussed separately below, rows and columns are always treated as conceptually different
entities. We have seen in our illustrative example that this distinction is unnecessary, even when
the rows or columns represent discrete categories rather than controlled quantitative variables.

Secondly, one finds repeated reference to the “percentage of the variance accounted for by a
particular latent root” [2, 5, 12]. While this may be a valid concept in psychological and similar
applications, it could be a very misleading criterion in the analysis of physical and chemical data.
Scientists in these fields generally base their acceptance of a residual sum of squares as an expres-
sion of experimental error on the agreement between the residual mean square and the variance
of experimental error as known to them from previous experience. A good example is provided by
Wernimont’s data [15]. In analyzing jointly two spectrophotometers he obtains the two roots®
(his Table I11): A1= 7,896,525 and A» = 2,553, and a residual sum of squares of 151. The first root
accounts for 99.9658 percent of the total sum of squares, and the second for only 0.0323 percent,
yet Wernimont has shown that the second root is important and has given it a meaningful physical
interpretation.

A third majof difference between our approach and that of other authors (with the exception
of [3]) is that we extract both components of the additive model (p; and ;) before extracting char-
acteristic roots. This leads, in the first place, to the possibility of treating rows and columns sym-
metrically, and, in the second place, to a set of completely “standardized” quantities (sum zero,
sum of squares unity). As shown above, comparison of these quantities with the r; and ¢; allows for
immediate recognition of important special cases.

The importance of this point can be seen from an examination of an illustrative example used
by Simonds [12], and from his own analysis of these data. Starting with a 7X 5 matrix of data,
Simonds subjects the column average-corrected values to a principal component analysis, and
decides that 2 vectors are sufficient to represent the data. His model is, accordingly: 7

zi=2zi+ Y, i Vi,j+Ys i Vs ;.
The following values were obtained for the vectors z; and V, ;:

z;=1[0.134 0.166 0.384 0.883 1.446]
Vi,j=1[0.048612 0.066297  0.157030  0.401836 0.661341].
The vector Vi jis of course independent of the vector z; since the latter had been removed from the
data prior to the extraction of characteristic roots. Simonds fails to observe, however, that these

two vectors are linearly related. If both vectors are normalized (by subtracting the mean and divid-
ing by the square root of the sum of squares of deviation from the mean), one obtains:

Zonom = [—0.4195  —0.3908  —0.1957  0.2510  0.7550]
Viijom=[ —.4174  —.3836  —.2102 2577 .7536].

6 The first root given in Wernimont’s table is actually 94,790,740. This value is in error; it should have been 7,896,525 [16].
7 We follow as closely as possible his notation, modifying it only slightly, by introducing the subscripts i and j to represent rows and columns.
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Thus, the model equation really contains one less vector than that given by Simonds. A finding of
this type is of course important for the physical interpretation of data.

Similarly, Wernimont [15] takes no notice of the fact that, after normalization, the first char-
acteristic vector he obtained in the analysis of single spectrophotometers, is identical with the vector
of column averages, and that the corresponding vector of scalar multiples is identical with the vector
of row averages. These facts, as seen above, indicate a concurrent model and this is precisely the
model proposed by Wernimont. But an analysis in which both row and column averages have first
been eliminated leads to a more exact testing procedure of the concurrence of the model.

Last, but not least, some of the pertinent papers that have come to the author’s attention,
including [3], suffer from a number of misconceptions regarding the proper number of degrees of
freedom to be allocated to the successive eigenvalues. Others [2, 5, 12] ignore the matter altogether,
by limiting their considerations to the “percentage of total variability explained” by the various
eigenvalues. As pointed out earlier, the eigenvalues are genuine additive components of the
interaction sum of squares, but they are not distributed as independent chi-square variates. There-
fore the usual intuitive concepts concerning degrees of freedom do not apply. Our method is to
define degrees of freedom as a quantity such that when the eigenvalue is divided by it, one obtains,
for the case of random normal deviates of variance o2, an unbiased estimate of o2. In contrast, the
following procedures are found in the literature. Morris and Morrissey [10], starting with a 42 X 31
matrix of original measurements, extract three roots, after initial subtraction of the column means.
The residual sum of squares is then divided by 41 X 28, indicating that they regard as the proper
formula for residual degrees of freedom, the expression (m—1) (n—p), where p is the number of
roots extracted. The formula seems to be based on the belief that the extraction of each root
results in the loss of one degree of freedom for each of the m—1 independent rows. A similar
formula is used by Wernimont [15]: here no adjustment (for the column-means) is made prior to
the extraction of the roots, and the residual variance is calculated by dividing the residual sum of
squares by m(n—p). Judd et al. [6], appear to make no allowance, in terms of degrees of freedom
for the fact that the eigenvalues are computed from the data. They state: “The variance for each
set of data was computed in the usual way as the sum of squares of the differences between each
input data and the corresponding value reconstituted from the mean and the first four characteristic
vectors . . . divided by the number of input data.”” Gollob [3] defines mean squares corresponding
to the partitioning of the interaction term on the basis of a heuristic argument. According to his
definition, the “mean square’ corresponding to the kth eigenvalue is the quotient of the eigenvalue
by (m+n—1—2k) (our notation).

A comparison was made between the values m+n—1—2k and our empirical results. Table 8
lists both sets for matrices of various sizes. It is seen that the values (m+n—1—2k) become
less acceptable as m and n increase. In fact, whereas for a 4 X 4 matrix the value for k=1 is too
low by about 21 percent, the corresponding value in a 16 X 16 matrix is too low by about 43 percent.
The situation is reversed at the other end of the series of product terms (large k) where the estimate
(m+n—1—2k) is far too large. Thus, mean squares based on these “degrees of freedom” will be
too large for the beginning terms and too small for the later terms. Comparisons of these ‘““mean-
squares’” with an estimate of error obtained from within-cell replication will be vitiated by the
biases inherent in these mean squares.

10. Computer Program

A computer program has been prepared by Mary N. Steel, for the application of the method of
analysis presented in this paper, for data displayed in matrices of size up to 78 X 78. Details of this
program, which is written in Fortran V, will be the subject of a separate publication.

The program includes, in addition to the analysis of variance for the additive effects, a parti-
tioning of the row by column interaction into eigenvalues. It also tabulates the u and v vectors and
the residuals after each successive step in the application of the method. Thus, residuals are given
for the additive model, the model including one multiplicative term, two such terms, and so on.
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TABLE 8. Comparison of Gollob’s formula for degrees of freedom with Monte-Carlo results of this study

Teram i Size of matrix
partitioning
of interaction
4X4 6X6 8x8 12X 12 16 X 16
G(1) M(2) G M G M G M G M
1 5 6.45 9| 13.35 13 | 20.72 21 | 35.39 29 | 51.08
2 & 1.97 7 6.96 11 | 12.37 19 | 25.28 27 | 39.68
2 1 27 5 3.17 9 7.76 17 | 18.85 25 | 31.79
4 3 1.12 7 4.39 15 | 13.98 23 | 25.78
5! 1 0.15 5 2.14 13 | 9.96 21 | 20.56
6 3 0.74 11 | 6.84 19 | 16.20
7 1 11 9| 4.46 17 | 12.59
8 7| 2.62 15 9.56
9 & || L2 13 7.00
10 3| 0.48 11 4.86
11 1 .069 9 3.26
12 7 1.93
18} 5 0.97
14 3 .34
115 1 .045

(1) Gollob’s formula.
(2) Monte-Carlo results (this study).

All residuals are ““normalized” through division by their root mean square, to facilitate the detection
of outliers.

At this time, the degrees of freedom for the breakdown of the interaction term have been
calculated for matrices of size up to 20 X 100. Thus, the calculation of mean squares in the parti-
tioned interaction is also limited to matrices of this size.

The author wishes to express his gratitude to Mary N. Steel for performing the Monte-Carlo
calculations and for developing the program for the application of this analysis.

11. Appendix

Tables A1, A2, and A3 were obtained by a Monte-Carlo experiment, as explained in the body
of the paper. Each table consists of three parts, corresponding respectively to the largest, the
second-largest, and the third-largest eigenvalue. The parts are identified by the numerals 1, 2, and
3 at the beginning of each row. The second numeral in each row label represents the value of m;
the column labels represent the values of n. All three tables are of course symmetrical with respect
to m and n.

For interpolation purposes, use table A3 rather than Al. For example, if M, for m=11 and
n=18 is to be calculated, we obtain by interpolation from table A3:

% M, for m=11, n=18,=26.31.

The total number of degrees of freedom being (m—1)(n—1), we have:

M, =26.29% of (10X 17),
or M1=44.7.
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TABLE Al. Expected values of eigenvalues for random normal deviates—M values

o\l 4 5 6 7 8 10 12 16 20

1-4 6.45 8.47 9.86 11.61 12.88 15.08 17.96 23.33 28.20
1-5 8.47 10.37 11.82 13.59 14.75 18.11 21.01 26.29 31.87
1-6 9.86 11.82 13.35 15.44 16.92 20.42 22.85 28.87 36.78
1-7 11.61 13.59 15.44 17.18 18.91 22.89 25.59 31.83 37.46
1-8 12.88 14.75 16.92 18.91 20.72 24.15 27.67 34.52 40.70
1-10 15.08 18.11 20.42 22.89 24.15 27.81 31.88 38.81 45.11
1-12 17.96 21.01 22.85 25.59 27.67 31.88 35.39 42.76 50.00
1-16 23.33 26.29 28.87 31.83 34.52 38.81 42.76 51.08 58.11
1-20 28.20 31.87 36.78 37.46 40.70 45.11 50.00 58.11 66.34
1-32 42.86 46.77 50.83 53.77 57.50 63.21 68.60 78.62 88.71
1-50 63.85 68.93 73.74 77.62 81.68 88.66 9511 | 107.41 117.36
1-100 | 12090 | 126.58| 132.94| 138.45| 143.64| 153.00| 161.58 | 176.32 192.08
2-4 1.97 3.04 4.01 5.06 6.06 7.81 9.98 14.08 17.90
2-5 3.04 4.25 5.45 6.72 7.78 10.10 12.50 16.80 21.27
2-6 4.01 5.45 6.96 8.21 9.68 12.15 14.60 19.51 25.54
2-7 5.06 6.72 8.21 9.77 11.21 14.26 16.77 22.18 27.02
2-8 6.06 7.78 9.68 11.21 12.73 15.70 18.72 24.26 29.77
2-10 7.81 10.10 12.15 14.26 15.70 19.21 22.12 28.60 33.86
2-12 9.98 12.50 14.60 16.77 18.72 22.12 25.28 32.43 38.32
2-16 14.08 16.80 19.51 22.18 24.26 28.60 32.43 39.68 46.05
2-20 17.90 21.27 25.54 27.02 29.77 33.86 38.32 46.05 53.76
2-32 29.99 34.01 38.38 41.15 44.63 50.22 55.54 65.32 74.28
2-50 48.10 53.54 58.35 62.61 66.57 73.16 80.12 91.31 101.51
2-100 98.31 | 105.691 112.21| 118.49| 123.48| 133.58| 142.62 | 156.95 171.26
3-4 0.27 0.67 1.15 1.72 2.26 3.39 4.87 7.74 10.66
3-5 .67 1.38 2.22 3.08 3.72 5.42 7.11 10.65 14.34
3-6 1.15 2.22 3.17 4.15 5.23 7.28 9.15 13.18 18.06
3-7 1.72 3.08 4.15 5.44 6.48 8.95 11.05|  15.55 19.69
3-8 2.26 3.72 5.23 6.48 7.76 10.39 12.80 17.61 22.35
3-10 3.39 5.42 7.28 8.95 10.39 13.38 16.03 21.33 26.30
3-12 4.87 7.11 9.15 11.05 12.80 16.03 18.85 25.03 30.50
3-16 7.74 10.63 13.18 15.55 17.61 21.33 25.03 31.79 37.73
3-20 10.66 14.34 18.06 19.69 22.35 26.30 30.50 37.73 45.04
3-32 20.14 25.11 29.34 32.34 35.65 41.24 46.31 55.84 64.41
3-50 35.12 41.62 47.57 51.70 55.72 62.49 68.76 80.16 90.24
3-100 79.50 89.40 97.12| 103.02| 109.26| 119.49| 127.74 | 143.20 156.38
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TABLE A2. Standard deviation of eigenvalues for random normal deviates

m 4 5 6 7 8 10 12 16 20

1-4 3.24 3.83 4.05 4.36 4.52 4.72 5.26 5.71 6.25
1=5 3.83 4.18 4.12 4.28 4.71 o512 5.45 5.84 6.40
1-6 4.05 4.12 4.30 4.88 4.71 5.64 5551 6.09 6.92
1-7 4.36 4.28 4.88 4.80 5.16 5:28 5.64 6.03 6.51
1-8 4.52 4.71 4.71 5.16 5.26 5.30 6.02 6.49 6.88
1-10 4.72 5.12 5.64 5.28 5.30 5.50 6.41 6.25 6.89
=112 5.26 5.45 551 5.64 6.02 6.41' 6.65 6.57 7.53
1-16 5.71 5.84 6.09 6.03 6.49 6525 6.57 7.10 7.60
= 6.25 6.40 6.92 6.51 6.88 6.89 7.53 7.60 7.87
1 7.38 7.39 7.96 7.89 7.98 8.02 8.26 8.37 8.77
1 9.55 9155 9.44 8.88 9.04 9.36 9.77 9.86 10.16
1 12.96 1.2 12.50 11.84 11.96 11.67 11.59 11.95 12719
2-4 139 7Y 2.08 2:25 2.62 2507 3.17 3.56 4.11
Z=5 1.77 2.04 2.29 2.48 2.70 3.11 3.43 3195 4.32
2-6 2.08 2.29 2.61 2.83 2.94 3.36 3.68 4.00 4.46
25 2825 2.48 2183 3.04 3.04 3.36 SN 4.20 4.72
2-8 2.62 2.70 2.94 3.04 3.17 3.43 3.82 4.26 4.75
2=l 2 S 3.36 3.36 3.43 3.99 4.09 4.66 5.00
=11 3.17 3.43 3.68 3.77 3.82 4.09 4.10 4.85 4.93
2-16 3.56 3:95 4.00 4.20 4.26 4.66 4.85 5.30 5.55
2-20 4.11 4.32 4.46 4.72 4.75 5.00 4.93 5:55 5.83
=3 5.46 5.24 5.60 5.44 5.52 5.82 5.88 6.27 6.20
2= 6.93 7.09 6.79 6.96 6.61 6.92 7.08 7.36 7.20
2-100 10.15 9.5 9.08 9.56 9.04 9123 8.90 9.27 9.41
3-4 0.37 0.69 0.92 1.20 1.35 1572 2.13 2.80 3.14
3=5 .69 RO 1.23 1.56 1.66 1.86 2.30 2.90 3.36
3-6 .92 1.23 1.53 1.75 2.00 2 2.46 3.08 3.44
3=T 1.20 1.56 1.75 2.00 2.07 2.43 2.66 3:32 3.62
3-8 1.35 1.66 2.00 2.07 2.31 2.62 2.80 3810 3.56
=10 72 1.86 25211 2.43 2.62 2.95 3.11 3.53 3.68
a=1) 2.13 2.30 2.46 2.66 2.80 3.11 3.34 3.60 3.87
3-1 2.80 2.90 3.08 3.32 3:19 3.53 3.60 4.17 4.45
3-2 3.14 3.36 3.44 3.62 3.56 3.68 3.87 4.45 4.76
=3 4.59 4.29 4.53 4.55 4.60 4.52 4.98 5.09 5.38
3-50 6.54 5.64 5.68 5.67 5.84 5.78 5.77 5.87 6.01
3-1 9.21 8.27 8.12 .77 7.98 7.83 7.36 8.11 8.05

326



TABLE A3. M Expressed as percent of total interaction degrees of freedom

"I 4 5 6 7 8 10 12 16 20

m

1-4 7454 |  69.42 65.66 62.91 60.68 57.64 54.80 51.63 49.72
-5 69.42 63.83 59.06 55.83 53.67 50.46 47.74 44.18 41.89
1-6 65.66 59.06 54.05 51.57 48.48 44.96 42.26 38.85 36.74
Y7 62.91 55.83 51.57 47.70 45.50 41.47 38.84 35.07 32.96
1-8 60.68 53.67 48.48 45.50 42.79 38.66 36.07 32.61 30.30
1-10 57.64 50.46 44.96 4147 38.66 34.55 32.36 28.73 26.54
1-12 54.80 47.74 42.26 38.84 36.07 32.36 29.96 25.90 24.08
1-16 51.63 44.18 38.85 35.07 32,61 28.73 25.90 22.59 20.62
1-20 49.72 41.89 36.74 32.96 30.30 26.54 24.08 20.62 18.27
1-32 46.09 38.12 32.71 29.41 26.42 22.77 20.13 16.96 14.97
1-50 43.39 35.36 29.98 26.36 23.73 20.14 17.69 14.53 12.66
1-100 40.44 32.14 26.96 23.40 20.82 17.15 14.83 11.90 10.21
2-4 92.39 25.06 26.69 27.67 28.61 29.56 30.38 31.21 31.51
2-5 95.06 26.34 27.95 27.75 28.13 28.13 28.40 28.17 27.96
2-6 26.69 27.95 28.09 27.41 27.72 26.85 26.86 26.17 25.55
2-7 27.67 27.75 27.41 27.13 26.86 26.04 95.44 24.50 23.77
2-8 28.61 28.13 927.72 26.86 26.17 25.05 24.36 22.99 22.24
2-10 29.56 28.13 26.85 26.04 25.05 23.83 22.41 21.18 19.88
2-12 30.38 28.41 26.86 25.44 24.36 22.41 21.16 19.65| 1840
2-16 31.21 28.17 26.17 24.50 22.99 21.18 19.65 17.58 16.28
2-20 31.51 27.96 25.55 23.77 22,24 19.88 18.40 16.28 14.83
2-32 32.25 27.62 24.73 22.37 20.53 18.06 16.30 14.08 12.56
2-50 32.72 27.44 23.76 21.28 19.36 16.61 14.89 12.38 10.93
2-100 32,93 26.80 22.72 20.01 17.87 14.98 13.09 10.59 9.10
34 3.07 5.52 7.65 9.42 10.71 12.80 14.82 17.16 18.77
3-5 5.52 8.56 11.08 12.75 13.41 15.09 16.15 17.83 18.86
3-6 7.65 11.08 12.76 13.86 14.96 16.10 16.77 17.66 18.08
37 9.42 12.75 13.86 15.12 15.50 16.38 16.76 17.19 17.30
3-8 10.71 13.41 14.96 15.50 15.94 16.57 16.65 16.71 16.72
3-10 12.80 15.09 16.10 16.38 16.57 16.58 16.23 15.79 15.42
3-12 14.82 16.15 16.77 16.76 16.65 16.23 15.76 15.16 14.63
3-16 17.16 17.83 17.66 17.19 16.71 15.79 15.16 14.09 13.32
3-20 18.77 18.86 18.08 17.30 16.72 15.42 14.63 13.32 12.44
3-32 21.66 20.38 18.90 17.56 16.41 14.82 13.59 12.03 10.90
3-50 23.89 21.31 19.37 1757 16.21 14.18 12.77 10.88 9.71
3-100 26.63 22.65 19.66 17.38 15.81 13.40 11.73 9.66 8.31
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