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A method is presented for the analysis of data represe nting fun c tion s of two variables , when the 
respon se ca n be tabulated in a rec tangular array. The procedure is based on a partitioning of the 
row by column inte rac tion effec ts into a sum of terms, each of which is the produc t of a row fac tor 
by a column fac tor. The factors in each te rm a re est ima ted by a method involv ing the ext rac tion of 
cha rac te ristic roots. 

The me thod contain s as spec ial cases a number of proced ures used for th e handling of non·addi· 
tivity in tlVO way a rrays. It is ve ry use ful for the fittin g of empiri ca l s urfaces, but is a lso applica ble 
to cases in wh ich the data d epend on qua lit a tive rat he r th an qu an tita tive factors. 

Comparisons with othe r techniqu es are made a nd a n illu s tra ti ve example is g ive n. 

Key words: Fac torial Experiments; inte rac tion; nonadditivit y; princ ipal compone nts; surface 
fittin g. 

1. Introduction 

In a previous paper [8],1 a me thod was presented for the analysis of data representing func
tions of two variables, when the response can be tabulated in a rectangular array. The analysis 
was based on the assumption of a " linear model ," the validity of which was subject to verification 
in each individual case. Essentially, the linear model assumption is that the elements of each row, 
when plotted against the column averages of the table (or that th e elements of each column , when 
plotted against the row averages), provide a s traight line. It was pointed out in [8] th at when th e 
linear model assumption does not hold , the a nalysis can be handled in two ways. The fir st of th ese 
s imply generalizes the assumption of " linearity," required by the linear model, to one of quad
rati c behavior, as discussed in reference [9]. 

The second way of dealing with more complex models than are covered by the linearity 
assumption is to attack the problem of row by column interaction in a co mpletely sys te matic 
way, by partitioning this term in as many individual term s as are req uired by the data. Thus, no 
prior assumptions such as linearity, or concurrence [7], or quadratic behavior [9] are made; 
to a considerable extent the data themselves generate the model. It is this approach that we wish 
to discuss in the present paper. 

We will assume that the response is a quantitative variable, generally a measure of some 
property of a material or of a system. The nature of the data, and of the problem behind the data 
then de pends on the nature of the two independent variables (which are represented by the rows 
and the columns of the two-way table). These may be qualitative or quantitative , or mixtures of 
both types , and the interpre tation of the analysis will depend on which of these situation s pertains. 
For the sake of brevity, we will describe the application of the method to only one illustrative 
example. Other interes ting applications of the method will be prese nted in subseque nt papers. 

I Figures in bracke ts ind ica te the literature references a t the end of thi s pape r. 
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A basic feature of the method discussed in the previous publication [8] was the division of 
the analysis in two phases, the first of which was referred to as the analysis for "internal structure." 
This first phase led to an expression relating the response to sets of parameters, each of which 
was a function of only one variable. The second phase of the analysis consisted in relating these 
parameters to the original row and column variables. The present analysis, while far more general, 
retains this basic feature. 

In the course of our discussion we will call attention to the relation between the proposed 
approach and other models for two·way data. We will also discuss the similarities, as well as the 
differences, between this approach and some relateG procedures discussed in the literature. In 
a broad sense, all these procedures, including the one presented in this paper, derive from the 
"method of principal components," the development of which is due primarily to Harold Hotel· 
ling [4]. Thus, while the method presented in this paper rests largely on well· known mathematical 
results, the approach is nevertheless novel. In particular, while practically all discussions of this 
method of principal components are non symmetrical with respect to the rows and the columns 
of the two-way table, the present approach treats the rows and the columns in the same identical 
way. 

Ideas similar to those presented here have been discussed by E. J. Williams [17] and by Pike 
and Silverberg [11].2 Williams makes explicit use of the theory of latent roots underlying the 
method of principal components, but approaches the data analysis problem from a somewhat 
different point of view. Pike and Silverberg make no use of the method of principal components. 

While this paper was being prepared for publication, a most interesting paper by Gollob [3] 
was published. It is apparent that we developed the same basic model independently of each 
other. 

A basic difference between Gollob's method and mine lies in what I believe to be a novel 
approach to the question of degrees of freedom in principal component analysis. This approach 
is discussed in detail in the present paper. 

2. The Analysis of Internal Structure 

Let Xi and Yj denote the levels of the two independent variables or categories, represented by 
the rows and columns of the table and Zij the observed value of the measured (dependent) variable 
for Xi and Yj. 

Assume that the table consists of m rows and n columns. We begin by writing the model 
usually adopted in analysis of variance: 

Zij = f.-t + Pi + Yj + 1)ij 
Ji= 1 to m 
u= 1 to n . (1) 

Here, f.-t is a constant, estimated by the grand-mean; Pi is the "row main effect" and Yj the 
"column main effect"; the quantity 1)ij represents the "interaction between row i and column j." 

As usual we impose the conditions: 

2: 1)ij= 2: 1)ij=O. (2) 
i j 

It should be noted that eq (1) expresses the function of two variables, Zij, partly in terms of 
two functions of a single variable each, Pi and Yj, but that it also involves a new function of two 
variables, 1)ij. 

It is often assumed that 1)ij is a random variable, of mean zero, and standard deviation (J. 

In that case, which is known as the "additive case," eq (1) constitutes a real simplification: the 
replacement of a function of two variables by two functions of one variable each. 

2 For calling my attention to the latter referen~e I am indebted to Professor David L. Wallace. 
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When the assumption of additivity is not definitely known to be valid, the analysis can proceed 
only on the basis of some other definite assumption concerning the structure of 'Y)ij. The assump· 
tion we will adopt in thi s paper is expressed by the following equation: 

(3) 

where Eij is a random variable of zero mean and standard deviation cr. When 'Y)ij is expressed by 
only a few terms of the multiplicative type f)u;Vj, eq (3) also cons titutes a real simplification. With
out the loss of generality, we may impose the constraints : 

·= 2>j= L v;=. .=0 (4) 
j 

LU[= L u; '=. .=L vJ= L v;'=. .= l. (5) 
i i j 

The problem is to find es timates for the new parameters f) , f)' , . . U, u' , . . , v, v;. . . and for the 
s tandard deviation of random error, cr. Equations (1) and (3) toge ther with the constraints expressed 
by eqs (4) and (5), co nstitute our model. We will refer to the quantiti es fJ- , pi , Yh f) , Ui, vj, f)' , ui, 

vi, etc. as "structural parameters." 

3. Solution by Least Squares 3 

The interac tion 'Y)ij is estimated by the residual 

(6) 

where fL, pi , Yj are the usual estimates 

(7) 

The dot notation indicates here, as usual , averaging over the subscript re placed by the dot. To 
fit the interac tion, consider first the model: 

(8) 

subject to the constraints expressed by eqs (4) and (5). We obtain es timates for f) , Ui, and Vj by 
minimizing with respect to 0, Ui, and Vj, the quantity: 

(9) 

where the A and fJ-' S are Lagrange multipliers. Carrying out the calculations, one obtains the 
relation s: 

Uk= f) - I L dkjvj 
j 

3 ~he de rivation in this section is essenti all y th e sa me as that given by WilJiams [I 7J. 
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Eliminating Vj between (10) and (11), and setting 

one obtains: 

Sik = L dijdkj 
j 

()2Uk = L UiSik. 

i 

In matrix notation , eqs (12) and-(13) become: 

(S) = (d) (d)T 
and 

fJ2(u) = (s) (u) 

where T indicates a transpose, (s) is an m X m matrix, and (u) is an m X 1 vector. 

(12) 

(13) 

(14) 

(15) 

It follows from (15) that 82 is an eigenvalue of the matrix (s) and that (u) is an associated 
eigenvector. 

Similarly it can be shown that: 

82 (v) = [(d)T(d) ](v). (16) 

where (v) is an n X 1 vector. 
The desired minimization of S (eq (9)) is accomplished by taking the largest eigenvalue 82 of 

the matrix (s). Furthermore, an important consequence, which can readily be proved,4 is that if 
f)2 is chosen to be the largest eigenvalue of the matrix (s), and one attempts to find the values of 
8' , u; and v; such that: 

(17) 

is a mmlmum, subject to the constraints (4) and (5), it turns out that 8'2 is simply the second
largest eigenvalue of the same matrix (s), and (u ' ) the associated eigenvector, with a similar 
situation for (v'). 

Thus, by obtaining the complete set of eigenvalues of (s), and the associated sets of vectors 
(u), (v), (u ' ), (v'), etc., one actually obtains the least-squares solution of all parameters in 
eq (3). 

4. An Analog to Analysis of Variance 

In terms of sample estimates, eq (3) leads to the equation: 

(18) 

The rank of the (s) matrix satisfies the inequality: 

rank (s) :;;; min (m, n) -1. (19) 

Consequently, the number of terms on the right side of (18) is at most min (m, n)-1. 
In analogy to the usual interpretation of the results of analysis of variance, a decision will first 
be made (see following section) on how many terms of the type 8UiVj should be retained in the model; 
the residual sum of squares is then used for an estimation of the variance of E • 

.. See, for example: Harman, H. H. , Modern Factor Analysis (The Unive rsity of C hi cago Press, C hicago, 1960, chap. 9). 
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Assume that we calculate all terms of the type ()Ui Vj so that Eij is taken equal to zero. 
Then we obtain at once: 

(20) 

This follow s from eq (18) a nd th e orthogo nality property of eige nvec tors, by whi c h a ll c ross· 
produc ts are zero . 

Equation (20) constitutes a n actual partitioning of the sum of squares of interaction. One is 
therefore te mpted to try an approach of the analysis of variance type. However, the (J2 are not 
quadratic form s in the origin al measure ments Zij. Nevertheless , it is possible to formulate the 
problem in analysis of varian ce language, by virtue of the following considerations. 

Let JV (fL, (T) re present a normal population of mean fL and standard deviation (T. 

Suppose first that the Zij are a random sample from a normal population JV (O, 1) . Then, the 
quantities (P , (}'2 , (}1I2 , e tc ., each form a definite statis tical population. Let: 

(21) 

where t; represents an expec ted value and the symbol JV refers to the sta nd ard normal di s tribution 
JV(O, 1) . 

If the norm al popula tion in ques tion had a varian ce of (T2, instead of unit y, the quantities 
M" M2 , M3 , etc . , would simply be multipli ed by (T2 . 

Th erefore, the ratios of th e 82 ivalu es obtain ed from a ra ndom sample from JV (O , (T) to th e 
corresponding M values are all es timates of (T2. 

If, now , a matrix of da ta Zij is give n, and if the interac tion terms are nothin g but rando m 
gaussian error, then the ratios of the (}2 obtained from these da ta to the corres ponding M·values 
obtained from an JV (O, 1) matrix of the same dimensions are simply es tim ates of (T2. 

Thu s, th e M·values ruffin a role tha t is quite analogo us to that of the degrees of freedom in 
ordinary analysi s of variance. More s pecificall y, the M a re s uch that , for random gauss ian in ter
action, the ratio of each {p by th e corres ponding M is a n unbiased es timate of (T2. 

Carrying the above argum ent a little turther, a nd us ing he uri s ti c reasoning, we may expect 
that if the real model con tain s say, k te rm s of the type ()u ;Vj, then the corres pondin g k valu es of 
62 will be inAated by the sys te mati c e ffects of these terms, while the remaining terms, say : 

will only be estimates of 

Thus: 

will all be es timates of (T2. 

In this way a judgment can be made as to the number of terms , k, that should be retained in 
the model, as will be shown in the discussion of the example, further in this paper. 

5. A Monte-Carlo Study 

To verify the above assumptions, and obtain reliable numerical estimates for th e M-values, 
a series of Monte Carlo expe riments were carried out, as follows. 

For specifi c values of m and n, matrices containing random normal deviates from ';v (0, 1), we re 
analyzed by the me thod outlined a bove. For each m and n co mbin ation, 625 s uc h matri ces were 
analyzed, and the es timates of the corresponding M-values co mputed . The averages of the ()2, 

for 625 sets, and their standard deviation s are li sted in tables Al and A2, res pectively, of the 
appendix. 
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In an m X n matrix, the number of degrees of freedom for interaction is (m -1) (n -1). If 
(J2= 1, the expected value of the sum of squares for interaction is also (m -1) (n -1). Thus, the 
expected value of the sum of the M·values, for any given matrix of size m X n, is (m -1) (n -1). 
In view of this fact, it seemed advantageous to compute the ratio of each value to (m -1) (n -1). 
These ratios, expressed as percent, are denoted "Percent of Total Interaction Degrees of Freedom," 
and are listed in table A3. They were obtained by a weighted least squares adjustment process, 
using the reciprocals of the squares of the observed standard deviations as relative weights, and 
introducing the constraint that the sum of the percentages be 100. The values in table A3 lend 
themselves to more precise interpolation than those of table AI. 

Additional Monte Carlo studies were carried out to verify the conjecture that if one or more 
terms of the type (}UiVj were actually present in the true model, the subsequent terms would not be 
affected by these systematic terms. The experiments showed that the introduction of even very 
large systematic terms of the type (}UiVj had the effect of only slightly inflating the subsequent 
terms; these remained, for all practical purposes, acceptable estimates of the experimental error. 

6. Practical Use of the Method 

Let Zij be given in the form of an m X n matrix. We assume that Zij is a function of x and y, 
where the values of x correspond to the rows and the values of y to the columns of the matrix. 

We first fit a model of the type: 

to the data, ignoring momentarily the numerical values, if any, of Xi and yj. 

The usual analysis of variance yields the estimates: 

jL = Z .; Pi = Zi· - Z. ; 

and the residuals: 

For purposes which will become apparent in the discussion of the illustrative example, we 
"standardize" the parameter estimates Pi and Yh by dividing each of them by the square root of the 
corres ponding sum of sQuares. Thus, writing: 

our model becomes: 

Applying a diagonalization technique to the matrix (d) . (d) T , we find: 
(a) a set of eigenvalues 

(b) a se t of u vectors , each of dimensions m X I: 

(u), (u'), (u"), 

(c) a set of v vectors , each of dimensions n X I: 

(v) , (v'), (v"), 
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We now tabulate the results as fo llows (tables 1 and 2): 

T AB LE 1. R ow·dependent pa rameters 

Row va ri able Row effects, r i Ui 
, 

Ui 

XI rl UI 
, 

UI 

x, r, U2 u~ 

XIII r ill u '" 
, 

U m 

TABLE 2. Co lum n ·dependent parameters 

Column vara ible Column e ffects, 

YI 

Y2 

y .. 

Cj 

C" 

We form the a nalysis of vari a nce table (ta ble 3): 

Vj 

V" 

T ABLE 3. Analys is o/ variance a 

Source DF SS 

Total Tn ' n L~>5 
i j 

!J- 1 mn!J-2 

Pi m - l nR 2 

Yj n - l mG2 

vj 

, 
V I 
v; 

v;, 

.. 
lt j 

.. 
UI 

u~ 

.. 
Um 

vj 

.. 
VI 

v~ 

" V" 

MS=SS 
DF 

nR '/(m- l ) 

mG2/(n-l) 

T/ ij (m - 1) (n - l ) LLdi] L L d ;]l(m -l)(n-l) 
i j 

OUiVj MI 0 2 02/M I 
(J'uivJ M 2 (j l'l O"/M 2 

8" II " U i Vj M " e'" il' "/M" 

(I The term "analys is of va ri ance" is used he re in a gene rali zed sense : as in class ica l ana lys is of va ri ance. 

the su m of squa res is pa rti tioned and mean squ ares a re ca lcula ted. Unde r the nu ll-hypothes is of " no effec t: ' 

the mean squa res are unbiased es timates of the error va riance. The M-vaJues are " degrees of freedom" 
only in the sense of appropriate di viso rs for the corres pondi ng sums of squares . as expla ined in the text. 

We now examin e th e mean squares corresponding to the breakdown of the 'Y/ ij into the su m of 
multiplicative terms flUiVj, fI ' ulvJ, etc. At th e prese nt time, no di s tribution th eory is avail a bl e for 
these mean squar es, and exact tests of significan ce cannot be carried out. Nevertheless, e ve n an 
intuitive appraisal of the mean squares ge nerally leads to fairly clear·cut decision s co ncernin g th e 
number of produc t term s that should be re tain ed in the model. This will be illu stra ted in the next 
section, whi ch deals with an illustrative example . 
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7. Illustrative Example 

The data in table 4 were obtained in an experiment designed to measure the absorption of 
gamma radiation by lead (Pb) and by aluminum (AI). 

For each of the two metals, two sets of measurements were made, each of which involved 
5 different values for the distance between the radioactive source and the counting instrument. 
The thickness of the absorbing metal was varied by stacking plates of identical thickness upon each 
other, and placing these stacks between the source and the counter. Five thicknesses were used, 
obtained by making stacks of respectively 1,3,6, 7, and 10 plates. The response is the logarithm, 
to the base 10, of the number of pulses per second. The thickness of a single plate was not the same 
for the two metals, but this does not invalidate our analysis. 

TABLE 4. Absorption of gamma radiation by lead and aluminum a 

Number of plates, kj 

Distance 

Row , i Set 1 3 6 
cm 

Lead 

1 3.8 1.801 1.765 1.696 
2 5.2 1.621 1.572 1.516 

3 6.0 I 1.526 1.481 1.406 
4 9.0 1.222 1.169 l.l02 

5 12.5 0.973 0.939 0.862 

6 3.8 1.805 1.768 1.704 

7 5.2 1.609 1.572 1.511 

8 6.0 1.494 1.461 1.387 

9 9.0 II 1.233 1.208 1.130 

10 12.5 0.978 0.930 0.870 

Aluminum 

11 3.8 1.834 1.818 1.811 

12 5.2 1.632 1.613 1.600 

13 6.0 I 1.509 1.482 1.476 

14 9.0 1.249 1.224 1.204 

15 12.5 0.986 0.971 0.966 

16 3.8 1.916 1.913 1.884 

17 5.2 1.732 1.723 1.698 

18 6.0 II 1.632 1.624 1.592 

19 9.0 1.344 1.341 1.312 

20 12.5 1.118 1.118 1.106 

a Tabulated value = 101;10 pulses (corrected for background noise). 
sec 

7 

1.670 
1.486 

1.401 
1.078 
0.850 

1.680 
1.482 
1.324 

l.l11 
0.844 

1.790 
1.603 

1.454 

1.211 
0.960 

1.887 
1.696 
1.588 
1.311 
1.086 

10 

1.606 
1.425 

1.333 
1.010 
0.781 

1.615 
1.408 
1.315 

1.046 
0.779 

1.777 
1.597 

1.447 

1.179 
0.943 

1.871 
1.674 
1.579 
1.290 
1.066 

The first phase of the analysis was carried out on a two·way table, in which the rows represent 
combinations of three factors: metal , distance , and set. The columns of the table correspond to 
the 5 levels of "number of plates," kj . 
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Using the notation introduced pre viously in thi s paper, the analysis of varian ce is give n in 
table 5, where th e M values give n in table Al were used for th e degrees of f reedom. The.s tru ctural 
parameters are gi ve ni n table 6. 

TABLE 5. A bsorption of Gam.ma R adiation, A naLys is of Variance a 

So urce DF SS MS 

T ota l 100 205.34]67 ..... . .. .... ............ .... 
/L 1 195.97757 ... ... ......... ........ .. .. 
Pi 19 9.106487 0.4793 

'Yj 4 0.190188 .0475 

17 ij 76 .067447 .000887 

(JUiVj 31.9 .063801 .002000 

If u/v] 21.3 .002083 .000098) 
Oil " 1/ 14.3 .000847 .000059

1
0.000083 ui v j 

Res idu al b 8.5 .000716 .000084 

" See footnole a of tab le 3. 
bThe total numbe r o f multi pl ica ti ve Icnns for these data is 4; he nce the residual is ident ica l wit h the fourt h e igenva lue. The degrees of freedom fo r the res idu a l 

are obta ined by di fference. 

Di s tan ce 

3.8 
5.2 
6.0 
9.0 

12.5 

3.8 
5.2 
6.0 
9.0 

12.5 

3.8 
5.2 
6.0 
9.0 

12.5 

3.8 
5.2 
6.0 
9.0 

12 .5 

TABLE 6. A bsorption of Gamma Radiation, Structural Param.eters 
Model: Z/j~ I.W+ 1.3495,,+O.0975cj+O.2526u,vj + <ij 

Set r; Ui kj Cj 

0.2280 0.2258 1 - 0.6447 
.0919 .2135 

Pb I .0218 .2061 3 - .2494 
- .2102 .2623 
- .3845 .2148 6 - .0848 

.2330 .2043 7 .3556 

.0863 .2336 
Pb II - .0028 .2290 10 .6233 

- .1884 .2117 
- .3851 .2225 

.3009 - .2117 

.1549 - .2850 
All .0546 - .2009 

- .1382 - .1908 
- .3221 - .2652 

.3662 - .2359 

.2258 - .2036 
AlII .1505 - .2052 

- .0595 - .2088 
- .2231 - .2166 

Vj 

- 0.6487 

- .2540 

- .0767 

.3689 

.6105 

S in ce th e mean squares in ta ble 5 are small for the second , third , and fourth multipjj cative 
terms, when co mpared Lo that of the first multiplicative term , the analysis of variance indicates 
quite co nclusively the need for a s ingle multiplicative te rm , in addition Lo th e usual additive terms 
(grand averag~ , row main effec ts and column main e ffects). 
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The model emerging from this analysis is given by the following equation: 

Zij = 1.400 + 1. 3495rj + 0.0975cj + 0.2526ujvj + Eij 

where Tj , Uj, Cj, and Vj are listed in table 6, and Ejj is a random error, with standard deviation 
0- = 0.0091. 

This model may be simplified by examining the structural parameters. We first note the great 
similarity between Vj and Cj.5 

Assuming that Vj= Cj, our model becomes 

Zij = 1.400 + 1. 3495T; + (0.0975 + O.2526uj)vj+ Ejj (24) 

Our next task is to study the structure of the parameters Ti and Ui in terms of the variables of which 
they are fun ctions, i.e. , distance and set. For the parameter Uj , a formal analysis is hardly necessary. 
It is ev ident from table 6 that Uj has essentially the same absolute value for all 20 combinations of 
distance with set, and that its sign is + for Pb and - for AI. Since 2: u~ = 1. we obtain: 

Uj = ± -Jlo = ± 0.2236 (25) 

the + sign applying to Pb , and the - sign to AI. 
To stud y r; , we make a two-way analysis of the same type as above, considering Tj as the 

response, and identifying the rows with distance and the columns with the four sets (Pb I, Pb II , 

Al I , AlII). The results are shown in table 7a. From the analysis of variance it is clear that a simple 
additive model is appropriate. Thus , we write the model 

(26) 

with the values of the new parameters Ad and Bs listed in table 7b. Combining eqs (24), (25) and 
(26) yields: 

(27) 

where the + sign applies to Pb and the - sign to AI. 

TABLE 7a. Analysis of variance of r. 

Source DF 55 M5 

Total.. ..... . ........ . ...... 20 1.0000 0.05 
Mean ... ... ....... . ... .... . 1 0 0 
Distance .. ................ 4 0.9300 0.2325 
Set. .............. . ......... 3 .0688 .0229 
Distance X seL ......... 12 .001203 .000100 
EV1 " ...................... 8.4 .000752 .000090 
EV2 ..... ........... ..... ... 3.0 .000343 .000114 
EV3 ... ..... ................ 0 .6 .000108 .000180 

a EVI , EV2, and EV3 d enote the three eigenvalues into which the interaction DistanceX Set is partitoned. 

5 He re the advantage of "standardizing" the Pi and -Vj into ri ande) becomes apparent. An identical re lat ionship between VJ and Cj (or between Vj a nd (- ej)) corre

sponds to a proportional relationship between Vj and 'Yj. Such a proportional relationship might have escaped a ttention , unless the values had been plo tted on a graph. 
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TABLE 7 b. Values of parameters in equation: rj = Ad + Bs 

Di stance Ad Set Bs 

3. 8 0.2820 PbI - 0.0506 
5.2 .1397 Pb II - .0514 
6.0 .0560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.0 - .1491 All .0100 

12.5 - .3287 AlII .0920 

All that remains to be done is to fit appropriate curves to the parameter Ad, Bs, Vj as functions 
of the variables distance, metal, and kj (number of plates) respectively , using the values listed in 
table 7b (for Ad and Bs) and in table 6 (for Vj). 

In view of the near·identity of the two values of Bs for Pb. both sets for this metal can be ex· 
pressed by the same equation . Equation (27) then leads to the following model equations: 

For Pb (sets I and II): 

For Al: 
se t l : Zij= 1.414 + 1.3495A rt +0.0410vj+ Eij 
set l[ : zij= 1.524+1.3495Ar/+0.0410vj+ Eij. 

(28) 

(29) 
(30) 

A plot of Ad vers us di s ta nce and of Vj versus number of plates would show s mooth r elations hips 
for both th ese param eters. In fac t , the plot of Vj ve rs us the number of plates is simply a s traight line, 
whic h is in accordance with th e th eory of absorption of radi ation. 

W e need not comple te thi s phase of th e analysis, since it · involves no novel features . 
Factorial types of data, such as those used in our illu stration (table 4) are oft e n a nalyzed by 

the conve ntional analysis of varian ce, in whi ch the sum of squares is pa rtitioned into main e ffects 
and inte r actions. To interpre t suc h an an alys is, it must be ascertained whether the interactions 
that are found to be signifi cant depend in a sys tematic way on the fac tors. Whe n thi s is th e case, 
the mode l is not additive, and th en the nature of the interaction s mus t be furth er eluc idated. This 
is precisely what th e method of analysis proposed in thi s pa per is inte nded to do. 

Thus, in our anal ysis of the illu strative example , in whic h th e three fac tors " type of me tal ," 
"di stance," and "sets" were merged into one (the "rows" of the table), a clear dic hotom y was 
nevertheless indi cated by the para meter U i, whi ch sharply differenti a ted betwee n Pb and AI , and 
led to the entirely different coefficie nt of Vj in eq (28) as compared to eqs (29) and (30). Thi s is of 
course an " interaction" be tween " type of metal" and " number of plates," but the advantage of 
our approach is that rather than merely indicating the presence of an interaction, the parameter 
leads to a quantitative expression for it. 

8. Relationship to Models not Based on Principal ComP!lnent Analysis 

a . The Additive Model 

Clearly , (23) expresses an additive model if and only if all multiplicative term s vanish (or become 
mere random experim ental error ). An additive model is therefore diagnosed if none of the mean 
squares obtained in the partitioning of the interaction are large with respect to subseque nt mean 
squares . 

b. The Linear Model 

Thi s model [7, 8] is give n by the equation: 
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when' ~= 1. 

or 

or 

It can be wri tten as: 

In order that this model apply, it is necessary that the following two conditions be fulfilled: 
1. The partitioning of the interac tion must yield only one significant product term; 
2. We must have, either 

Obviously a linear model also holds when 
Zij= jL + Pi + Yj+ Pi(oj-l) + Eij: 

In this case, condition 2 above becomes: 

Ui=ri (all i) 

Ui=-ri (all i) 

c. The Concurrent Model 

This model [7, 8] is a special case of b. 
It is represented by the relation: 

Zij= f.L + Pi + Yj + KpiYi + Eij. 

8= 1. 

A set of data will be represented by a concurrent model if and only if the following three condi· 
tions are simultaneously fulfilled: 

1. Only one significant product term results from the partitioning of the interaction. 

2. 
3. 

Ui= ri or 
Vj= Cj or 

Ui=-ri 

Vj=-Cj 

(all i) 
(all j). 

d. Tukey's One Degree of Freedom for Non-Additivity 

In 1949, Tukey [13] proposed a test for nonadditivity consisting in the extraction of one degree 
of freedom from the row by column interaction. This test can be interpreted in terms of the model 

which is ide ntical with what we have called the concurrent model. 
In Tukey's procedure , the sum of squares, with one degree of freedom, for Kpcyj, is tested 

against the remaining sum of squares, with [(m -1) (n -1) -1] degrees of freedom. 
We can regard this model as a special case of the linear model (case b). 
If we write: 

the allocation of degrees of freedom is 1 for KpiYi, and (m - 2) for [(,Bi -1) - KPi]yj, provided 
that ,Bi and K are estimated by the appropriate procedure [7]. Thus a valid test for KpiYi is obtained 
by computing the F ratio of the mean squares corresponding to these two terms, with 1 and (m-2) 
degrees of freedom. Tukey's procedure consists in testing the term Kp(Yj versus the combined 
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mean square for [(13 i -1) - KPi]yj and E ij. The denominator now has [em - 1) (n -1) -1] degrees 
of freedom. Th us carried out, th e test overlooks the possible significance of the term [(f3 i - 1) 
- KPiJ'yj. It appears preferable to consider first th e linear model , and se parate out one degree of 
freedom for co ncurre nce. Indeed , Tukey's tes t will tend to lead to an erroneous conclusion of 
additivity every time the model is linear without being conc urre nt. 

e. The Vacuum-Cleaner Model 

In a paper appearing III 1962, Tukey [14] presented what ma y be cons ide red as a repeated 
twofold application of th e lin ear model, both row·wise and column-wise. He referred to it as the 
"vacuum cleaner model. " Th e firs t "swee p" of the vac uum cleaner model may be represe nted by 
the following equation: 

where 

and 

If data obeying this model are analyzed by the method of thi s paper, th e fir st three eigen values 
will tend to extract all the informa tion contained in the terms Kpm , 13m a nd pljj, but there will be 
no one-to-one-correspondence be twee n the eigenvalues and these terms. 

A charac teris tic feature of the vacuum cleaner model is that the "carriers" of each sweep are 
essentially the "coeffi c ie nts" of the preceding sweep. For example, in the equation above , the three 
term s into which the interac tion is partitioned are all lin ear functions of P i a nd Yh the coe fficients 
of the additive compone nts. If an additi onal sweep were required, its term would be linear functions 
of f3i and oj, and so forth. 

By contras t , the terms (}UiVj introduced co nsecu tively in our me thod of analysis, are not made 
de pe nde nt upon each other. At each step, the residuals alone produce the new term (}UiVj, whereas 
in the vacuum-cleaner model, th e new terms are functions of the residuals and of the coe fficie nts 
of the preceding swee p. 

The precedi ng di scussion s hows that an analysis of two-way data carri ed out according to th e 
method presented in thi s pape r contains as special cases a number of methods not involving 
principal compon ent analysis, and that application of thi s technique will allow us to recognize at 
once a number of frequently occurring s pecial models. 

9. Relationship to Other Approaches Involving Principal Component Analysis 

As mentioned earlier in thi s paper , the idea of using principal component proced ures in data 
analysis is not new. In the followin g we will show in what way the method presented in this paper 
differs from similar approaches. 

The method of principal components originated in the field of psychology. W e can visualize 
the basic problem in terms of a two-way table of m rows and n columns. Each row represents a 
different "subject" (e.g., a human ~eing), and each column represents a particular psychological 
" tes t. " The response is the scon; obtained by the ith "subject" in the jth " tes t." Here a vas t 
conceptual diffe rence exists between rows and columns. The object is to find a small number of 
linear co mbinations of the values in any particular row ("derived responses") that some how 
typifies the overall response of the subject to the entire battery of tests. The model is formulated 
in terms of "characteristic vectors," equal in number to the " derived responses." For each derived 
response, the corresponding vector consist s of the coeffi cie nts by which the n scores of any subjec t 
must be multiplied in order to obtain the linear combination yielding the derived response for that 
subjec t. The se t of values obtained for all subjects for a partic ular derived res ponse is denoted as 
the set of "scalar multipliers" corresponding to that vector. 
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In our model, no distinction in principle is made between vector components and scalar 
multipliers. They fulfill entirely analogous roles, one for the columns, and the other for the rows 
(they are the quantities denoted as Vj and Ui respectively). Furthermore , whereas in the classical 
approach, the calculation of principal components is generally carried out on the deviations of the 
original scores from the corresponding column means, we apply these calculations to the residuals 
from the additive model, i.e., after taking out both row and column means. 

The literature dealing with the application of principal components to data analysis in the 
physical sciences contains some valuable contributions [1, 2, 3, 5, 6, 10, 12, 15, 17], but suffers 
largely from its adherence to the terminology and model building methods derived from the original 
field of application of this technique. In the first place , with the exception of reference [3] , which 
will be discussed separately below, rows and columns are always treated as conceptually different 
entities. We have seen in our illustrative example that this distinction is unnecessary, even when 
the rows or columns represent discrete categories rather than controlled quantitative variables. 

Secondly, one finds repeated reference to the "percentage of the variance accounted for by a 
particular latent root" [2, 5, 12]. While this may be a valid concept in psychological and similar 
applications, it could be a very misleading criterion in the analysis of physical and chemical data. 
Scientists in these fields generally base their acceptance of a residual sum of squares as an expres
sion of experimental error on the agreement between the residual mean square and the variance 
of experimental error as known to them from previous experience. A good example is provided by 
Wernimont's data [15]. In analyzing jointly two spectrophotometers he obtains the two roots6 

(his Table III): A 1= 7,896,525 and 1..2 = 2,553, and a residual sum of squares of 151. The first root 
accounts for 99.9658 percent of the total sum of squares, and the second for only 0.0323 percent, 
yet Wernimont has shown that the second root is important and has gi ven it a meaningful physical 
interpretation. 

A third majof difference between our approach and that of other authors (with the exception 
of [3]) is that we extract both components of the additive model (Pi and Yj) before extracting char
acteristic roots. This leads, in the first place, to the possibility of treating rows and columns sym
metrically, and , in the second place, to a set of completely "standardized" quantities (sum zero, 
sum of squares unity). As shown above, comparison of these quantities with the rj and Cj allows for 
immediate recognition of important special cases. 

The importance of this point can be seen from an examination of an illustrative example used 
by Simonds [12], and from his own analysis of these data. Starting with a 7 X 5 matrix of data, 
Simonds subjects the column average-corrected values to a principal component analysis, and 
decides that 2 vectors are sufficient to represent the data. His model is, accordingly: 7 

The following values were obtained for the vectors Zj and VI,j: 

Zj= [0.134 

VI , j= [0.048612 

0.166 

0.066297 

0.384 

0.157030 

0.883 

0.401836 

1.446] 

0.661341] . 

The vector VI, j is of course independent of the vector Zj since the latter had been removed from the 
data prior to the extraction of characteristic roots. Simonds fails to observe, however, that these 
two vectors are linearly related. If both vectors are normalized (by subtracting the mean and divid
ing by the square root of the sum of squares of deviation from the mean), one obtains: 

Zj , nol'm. = [-0.4195 

VI , j , norm. = [ - .4174 

-0.3908 

- .3836 

-0.1957 

- .2102 

0.2510 

.2577 

0.7550] 

.7536] . 

6 The first root given in Wernimont's table is actually 94,790,740. This value is in error; it should have been 7,8%,525 [l6j. 
1 We follow as closely as possible his notation, modifying it only s lightly , by introducing the subscripts i andj to represent rows and columns. 
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Thus , the model equation really contains on e less vector than that given by Simonds. A finding of 
this type is of course important for the phy ical interpretation of data. 

Similarly, Wernimont [15] takes no notice of the fac t that, after normalization , the firs t c har
acteri sti c vec tor he obtain ed in the analysis of single spectrophotome te rs, is ide nti cal with the vector 
of column averages , and that the corres ponding vector of scalar multiples is ide nti cal with the vector 
of row ave rages . Th ese facts, as see n a bove, indi cate a co nc urrent model a nd thi s is precisely th e 
model proposed by Wernimont. But an analysis in whi c h both row and column averages have firs t 
been eliminated leads to a more exact tes ting procedure of the conc urre nce of the model. 

Last , but not leas t, some of th e pertinent papers that have come to the author's attention, 
including [3], suffer from a number of miscon ceptions regarding the proper number of degrees of 
freedom to be allocated to the successive eigenvalues. Others [2 , 5,12] ignore the matter altogether , 
by limiting their considerations to the "percentage of total variability explained" by the various 
eigenvalues. As pointed out earlier, the eigenvalues are genuine additive components of the 
interaction sum of squares, but they are not distributed as independent chi-square variates. There
fore the usual intuitive concepts concerning degrees of freedom do not apply. Our method is to 
define degrees of freedom as a quantity such that when the eigenvalue is divided by it, one obtains, 
for the case of random normal deviates of variance (T2 , an unbiased estimate of (T2. In contrast, the 
followin g procedures are found in th e literature . Morris and Morri ssey [10], s tarting with a 42 X 31 
matrix of original measurements, extract three roots, after initial subtraction of the column means. 
The residual sum of squares is th en divided by 41 X 28, indicating th at the y regard as the proper 
formula for residual degrees of freedom , the expression (m -1) (n - p) , where p is the number of 
roots extracted. The formula see ms to be based on the belief that the extraction of each root 
results in the loss of one degree of freedom for each of the m - 1 inde pendent rows. A similar 
formula is used by Wernimont [15] : here no adjus tment (for the column-means) is made prior to 
the extrac tion of the roots, and the residual vari ance is calc ulated by dividing the residual sum of 
squares by men - p). Judd et al. [6] , appear to ma ke no allowance, in terms of degrees of freedom 
for the fac t that the eigenvalues are computed from the data. They state: " The vari ance for each 
se t of data was computed in the usual way as the sum of squares of the differe nces be twee n each 
input data and the corresponding value reconstituted from the mean and the first four characteri stic 
vectors .. . divided by the number of input data." Gollob [3] de fin es mean squares corres ponding 
to the partitioning of the interaction term on the basis of a heuri sti c argument. According to his 
definition , the " mean square" corres ponding to the kth eigenvalue is the quotient of the eigenvalue 
by (m+n-I-2k) (o ur notation). 

A comparison was made be tween the values m + n - 1 - 2k and our e mpirical results. T able 8 
lists both sets for matrices of various sizes. It is seen that the values (m + n - 1 - 2k) become 
less acce ptable as m and n increase. In fact , wh ereas for a 4 X 4 matrix the value for k = 1 is too 
low by about 21 percent, the corresponding value in a 16 X 16 matrix is too low by about 43 percent. 
The situation is reversed at the other end of the series of product terms (large k) where the estimate 
(m + n - 1- 2k) is far too large. Thus , mean squares baseo on these " degrees of freedom" will be 
too large for the beginning terms and too small for the later terms. Comparisons of these "mean
squares" with an estimate of error obtained from within-cell replication will be vitiated by the 
biases inherent in these mean squares. 

1 O. Computer Program 

A computer program has been prepared by Mary N. Steel, for the application of the method of 
analysis presented in this paper, for data displayed in matrices of size up to 78 X 78. De tail s of this 
program, which is written in Fortran V, will be the subject of a separate publication. 

The program includes, in addition to the analysis of variance for the additive e ffects, a parti
tioning of the row by column interaction into eigenvalues. It also tabul ates th e u and v vectors and 
the residuals after each successive s te p in the application of the method. Thus, residuals are given 
for the additive model, the model inc ludin g one multiplicative term , two such terms, and so on. 
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TABLE 8. Comparison of GoLlob's formula for degrees of freedom with M onte'C arlo results of this study 

T erm in Size of matrix 

partitioning 
of inte rac tion 

4 x 4 6 x6 8 x 8 12 X 12 16 X 16 

G( I ) M(2) G M G M G M G M 

1 5 6.45 9 13.35 13 20.72 21 35.39 .29 51.08 
2 3 1.97 7 6.96 11 12.37 19 25.28 27 39.68 
3 1 .27 5 3. 17 9 7.76 17 18.85 25 31.79 
4 3 1.12 7 4.39 15 13.98 23 25.78 
5 1 0.15 5 2.14 13 9.96 21 20.56 
6 3 0.74 11 6.84 19 16.20 
7 1 .11 9 4.46 17 12.59 
8 7 2 .. 62 15 9.56 
9 5 1.31 13 7.00 

10 3 0.48 11 4.86 
11 1 .069 9 3.26 
12 7 1.93 
13 5 0.97 
14 3 .34 
15 1 .045 

(1) Gollob's formul a. 
(2) Monte·Carlo results (thi s stud y). 

All res iduals are " normalized" through division by their root mean square, to facilitate the de tection 
of outli ers . 

At thi s time, the degrees of freedom for the breakdown of th e interaction te rm have been 
calculated for matri ces of s ize up to 20 X 100. Thus, the calculation of mean squares in the palti
tioned interaction is also limited to matrices of this size . 

The author wishes to ex press his gratitude to Mary N. S teel for performin g the Monte -Carlo 
calculation s and for developing the program for th e a ppli cation of this analysis. 

11. Appendix 

Tables AI , A2 , and A3 were obtained by a Monte-Carlo ex periment , as explained in the body 
of the paper. Each table consists of three parts, corresponding respectivel y to the larges t, the 
seco nd-larges t , and the third-larges t eigenvalue. The parts are identified by the numerals 1, 2, and 
3 at th e beginning of each row. The second numeral in each row label represents the value of m; 

the column labels represent the values of n . All three tables are of course symmetrical with respect 
to m and n. 

For interpolation purposes, use table A3 rather than AI. For example, if M J, for m = 11 and 
n= 18 is to be calculated , we obtain by interpolation from table A3 : 

% M!, for m = l1 , n=I8,=26.31. 

The total n umber of degrees of freedom being (m -1) (n -1), we have: 

or 

M, = 26.29% of (10 X 17) , 

M,=44.7. 
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TABLE A 1. Expected values oj eigenvalues Jar random normal deviates- M values 

~ 4 5 6 7 8 10 12 16 20 
m 

1- 4 6.45 8.47 9.86 11.61 12.88 15.08 17.96 23.33 28.20 

1-5 8.47 10.37 11.82 13.59 14.75 18.11 21.01 26.29 31.87 
1- 6 9.86 11.82 13.35 15.44 16.92 20.42 22.85 28.87 36.78 

1-7 11.61 13.59 15.44 17.18 18.91 22.89 25.59 31.83 37.46 
1-8 12.88 14.75 16.92 18.91 20.72 24.15 27.67 34.52 40.70 

1-10 15.08 18.11 20.42 22.89 24.15 27.81 31.88 38.81 45.11 

1-12 17.96 21.01 22.85 25.59 27.67 31.88 35.39 42.76 50.00 

1- 16 23.33 26.29 28.87 31.83 34.52 38.81 42.76 51.08 58.11 

1-20 28.20 31.87 36.78 37.46 40.70 45.11 50.00 58.11 66 .34 

1-32 42.86 46.77 50.83 53.77 57.50 63.21 68.60 78.62 88.71 

1-50 63.85 68.93 73.74 77.62 81.68 88.66 95.11 107.41 117.36 

1-100 120.90 126.58 132.94 138.45 143.64 153.00 161.58 176.32 192.08 

2- 4 1.97 3.04 4.01 5.06 6.06 7.81 9.98 14.08 17.90 

2-5 3.04 4.25 5.45 6.72 7.78 10.10 12.50 16.80 21.27 
2- 6 4.01 5.45 6.96 8.21 9.68 12.15 14.60 19.51 25.54 

2- 7 5.06 6.72 8.21 9.77 11.21 14.26 16.77 22.18 27.02 
2-8 6.06 7.78 9.68 11.21 12.73 15.70 18.72 24.26 29.77 

2-10 7.81 10.10 12.15 14.26 15.70 19.21 22.12 28.60 33.86 

2- 12 9.98 12.50 14.60 16.77 18.72 22.12 25.28 32.43 38.32 

2-16 14.08 16.80 19.51 22.18 24.26 28.60 32.43 39.68 46.05 

2-20 17.90 21.27 25.54 27 .02 29.77 33.86 38.32 46.05 53.76 
2-32 29.99 34.01 38.38 41.15 44.63 50.22 55 .54 65.32 74.28 

2- 50 48.10 53 .54 58.35 62 .61 66.57 73 .16 80.12 91.31 101.51 
2- 100 98.31 105.69 112.21 118.49 123.48 133.58 142.62 156.95 171.26 

3- 4 0.27 0.67 1.15 1.72 2.26 3.39 4.87 7.74 10.66 
3-5 .67 1.38 2.22 3.08 3.72 5.42 7.11 10.65 14.34 

3-6 1.15 2.22 3.17 4.15 5.23 7.28 9.15 13.18 18.06 

3- 7 1.72 3.08 4.15 5.44 6.48 8.95 11.05 . 15.55 19.69 

3-8 2.26 3.72 5.23 6.48 7.76 10.39 12.80 17.61 22.35 
3-10 3.39 5.42 7.28 8.95 10.39 13.38 16.03 21.33 26.30 
3-12 4.87 7.11 9.15 11.05 12.80 16.03 18.85 25.03 30.50 

3- 16 7.74 10.65 13.18 15.55 17.61 21.33 25.03 31.79 37.73 

3- 20 10.66 14.34 18.06 19.69 22.35 26.30 30.50 37.73 45.04 

3-32 20.14 25.11 29.34 32.34 35.65 41.24 46.31 55.84 64.41 

3-50 35.12 41.62 47.57 51.70 55.72 62.49 68.76 80.16 90.24 

3- 100 79.50 89.40 97.12 103.02 109.26 119.49 127.74 143.20 156.38 
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TABLE A2. Standard deviation of eigenvalues for random normal deviates 

~ 4 5 6 7 8 10 12 16 20 

]- 4 ;~ . 24 3.83 4.05 4.36 4.52 4.72 5.26 5.71 6.25 
1-5 3.83 4.18 4.12 4.28 4.71 5.12 5.45 5.84 6.40 
1- 6 4.05 4.12 4.30 4.88 4.71 5.64 5.51 6.09 6.92 
1-7 4.36 4.28 4.88 4.80 5.16 5.28 5.64 6.03 6.51 
1-8 4.52 4.71 4.71 5.16 5.26 5.30 6.02 6.49 6.88 
1-10 4.72 5.12 5.64 5.28 5.30 5.50 6.41 6.25 6.89 
1-12 5.26 5.45 5.51 5.64 6.02 6.41 ' 6.65 6.57 7.53 
1-16 5.71 5.84 6.09 6.03 6.49 6.25 6.57 7.10 7.60 
1- 20 6.25 6.40 6.92 6.51 6.88 6.89 7.53 7.60 7.87 
1- 32 7.38 7.59 7.96 7.89 7.98 8.02 8.26 8.37 8.77 
1- 50 9.55 9.55 9.44 8.88 9.04 9.36 9.77 9.86 10.16 
1- 100 12.96 12.22 12.50 11.84 11.96 ]1.67 11.59 11. 95 12.19 

2-4 1.39 1.77 2. 08 2.25 2.62 2.77 3.17 3.56 4.11 
2-5 1.77 2.04 2.29 2.48 2.70 3.11 3.43 3.95 4.32 
2-6 2.08 2.29 2.61 2.83 2.94 3.36 3.68 4.00 4.46 
2-7 2.25 2.48 2.83 3.04 3.04 3.36 3.77 4.20 4.72 
2-8 2.62 2.70 2.94 3.04 3.17 3.43 3.82 4.26 4.75 
2-10 2.77 3.11 3.36 3.36 3.43 3.99 4.09 4.66 5.00 
2- 12 3.17 3.43 3.68 3.77 3.82 4.09 4.10 4.85 4.93 
2- 16 3.56 3.95 4.00 4.20 4.26 4.66 4.85 5.30 5.55 
2- 20 4.11 4.32 4.46 4.72 4.75 5.00 4.93 5.55 5.83 
2-32 5.46 5.24 5.60 5.44 5.52 5.82 5.88 6.27 6.20 
2-50 6.93 7.09 6.79 6.96 6.61 6.92 7.08 7.36 7.20 
2- 100 10.15 9.59 9.08 9.56 9.04 9.23 8.90 9.27 9.41 

3-4 0. 37 0.69 0.92 1.20 1.35 1.72 2.13 2.80 3.14 
3- 5 .69 .97 1.23 1.56 1.66 1.86 2.30 2.90 3.36 
3- 6 .92 1.23 1.53 1.75 2.00 2.21 2.46 3.08 3.44 
3- 7 1.20 1. 56 1.75 2.00 2.07 2.43 2.66 3.32 3.62 
3- 8 1.35 1.66 2.00 2.07 2.31 2.62 2.80 3.19 3.56 
3-10 1.72 1.86 2.21 2.43 2.62 2.95 3. 11 3.53 3.68 
3-12 2.13 2.30 2.46 2.66 2.80 3.11 3.34 3.60 3.87 
3- 16 2.80 2.90 3.08 3.32 3.19 3.53 3.60 4.17 4.45 
3-20 3.14 3.36 3.44 3.62 3.56 3.68 3.87 4.45 4.76 
3- 32 4.59 4.29 4.53 4.55 4.60 4.52 4.98 5.09 5.38 
3-50 6.54 5.64 5.68 5.67 5.84 5.78 5.77 5.87 6.01 
3- 100 9.21 8.27 8.12 7.77 7.98 7.83 7.36 8.11 8.05 
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TABLE A3. M Expressed as percent of total interaction degrees of freedom 

~ 4 5 6 7 8 10 12 16 20 

1-4 74.54 69.42 65.66 62.91 60.68 57.64 54.80 51.63 49.72 

1-5 69.42 63.83 59~06 55.83 53.67 50.46 47.74 44.18 41.89 

1- 6 65.66 59.06 54.05 51.57 48.48 44.96 42.26 38.85 36.74 

1-7 62.91 55.83 51.57 47.70 45.50 41.47 38.84 35.07 32.96 

1-8 60.68 53.67 48.48 45.50 42.79 38.66 36.07 32.61 30.30 

1- 10 57.64 50.46 44.96 41.47 38.66 34.55 32.36 28.73 26.54 

1-12 54.80 47.74 42.26 38.84 36.07 32.36 29.96 25.90 24.08 

1-16 51.63 44.18 38.85 35.07 32.61 28.73 25.90 22.59 20.62 

1-20 49.72 41.89 36.74 32.96 30.30 26.54 24.08 20.62 18.27 

1-32 46.09 38.12 32.71 29.41 26.42 22.77 20.13 16.96 14.97 

1-50 43.39 35.36 29.98 26.36 23.73 20.14 17.69 14.53 12,66 

1-100 40.44 32.14 26.96 23.40 20.82 17.15 14.83 11.90 10.21 

2-4 22.39 25.06 26.69 27.67 28.61 29.56 30.38 31.21 31.51 

2-5 25.06 26.34 27.25 27.75 28.13 28.13 28.40 28.17 27.96 

2- 6 26.69 27.25 28.09 27.41 27.72 26.85 26.86 26. 17 25.55 

2-7 27.67 27.75 27.41 27.13 26.86 26.04 25.44 24.50 23.77 

2- 8 28.61 28.13 27.72 26.86 26.17 25.05 24.36 22.99 22.24 

2- 10 29.56 28.13 26.85 26.Q4 25.05 23.83 22.41 21.18 19.88 

2- 12 30.38 28.41 26.86 25.44 24.36 22.41 21.16 19.65 18.40 

2- 16 31.21 28.17 26.17 24.50 22.99 21.18 19.65 17.58 16.28 

2- 20 31.51 27.96 25.55 23.77 22.24 19.88 18.40 16.28 14.83 
2- 32 32.25 27.62 24.73 22.37 20.53 18.06 16.30 14.08 12.56 
2-50 32.72 27.44 23.76 21.28 19.36 16.61 14.89 12.38 10.93 
2-100 32.93 26.80 22.72 20.01 17.87 14.98 13.09 10.59 9.10 

3-4 3.07 5.52 7.65 9.42 10.71 12.80 ]4.82 17.16 18.77 
3-5 5.52 8.56 11.08 12.75 13.41 15.09 16.15 17.83 18.86 
3-6 7.65 11.08 12.76 13.86 14.96 16.10 16.77 17.66 18.08 

3-7 9.42 12.75 13.86 15.12 15.50 16.38 16.76 17.19 17.30 
3-8 10.71 13.41 14.96 15.50 15.94 16.57 16.65 16.71 16.72 

3- 10 12.80 15.09 16.10 16.38 16.57 16.58 16.23 15.79 15.42 

3-12 14.82 16.15 16.77 16.76 16.65 16.23 15.76 15.16 14.63 
3-16 17.16 17.83 17.66 17.19 16.71 15.79 15.16 14.09 13.32 
3-20 18.77 18.86 18.08 17.30 16.72 15.42 14.63 13.32 12.44 
3-32 21.66 20.38 18.90 17.56 16.41 14.82 13.59 12.03 10.90 
3-50 23.89 21.31 19.37 17.57 16.21 14.18 12.77 10.88 9.71 
3-100 26.63 22.65 19.66 17.38 15.81 13.40 11.73 9.66 8.31 
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