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Consider a finite family of continuous self-mappings of a topological space X, with a common
fixed point. Suppose that for each member of the family, X has a metric for which that member is a
contraction. It is shown that if the family is commutative, then X has a metric under which all members
are (simultaneously) contractions. Additional hypotheses are given which ensure the same conclusion
in the noncommutative case.
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1. Introduction

This paper deals with continuous self-mappings of a metrizable topological space X. Such a
map f is a (p, N)-contraction if Ne(0, 1), p is some metric on X, and

p(fx, fy) < Ap(x, y) (all x, yeX). (1.1)

We term f contractifiable if an appropriate metrization of X makes it a contraction, i.e., if there
exists a pair (p, A) such that fis a (p, A)-contraction.

Banach’s Contraction Theorem asserts that if f is a (p, \)-contraction for some complete
metric? p and some A, then there is a point £éeX and an open neighborhood U of ¢ such that?

f(€)=¢&, (1.2)
fr(x)— & (all xeX), (1.3)
fm(U)— {&}. (1.4)

The explicit meaning of (1.4) is that for each neighborhood V of &, there is an n(V) > 0 such that
fmU) CVforalln=n(V).

In a previous paper.! to be referred to as CONVERSE, the second author proved a converse
result: If £ satisfies (1.2) — (1.4) for some £eX and some open neighborhood U of ¢, then fis contracti-
fiable. [Moreover, the “contraction constant”” A\ can be specified to be any assigned member
of (0, 1), and the ‘‘contractifying”” metric p can be chosen complete if X admits a complete metric. ]
Interest in such converses stems from situations in which one would like to apply the Contraction
Theorem to the study of some iterative numerical process, but encounters difficulty because for
all Ae(0, 1), the associated mapping fails to satisfy (1.1) for the metric initially considered.

3

Our purpose in the present paper is to extend this converse result to the “simultaneous

contractification” of a family ¥ of maps. We will call such a family simultaneously contractifiable

! Present address: IBM World Trade Corporation, 821 United Nations Plaza, New York, New York, 10017.

2 We call a metric p complete if (X, p) is a complete metric space.

3 Actually (1.4) is not usually cited as a conclusion of the Contraction Theorem, but is an easy consequence of (1.1) and (1.2).
4P. R. Meyers, A Converse to Banach’s Contraction Theorem, J. Res. Nat. Bur. Stand. (U.S.), 71B, (2&3) 73-76 (1967).
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if there is a single metric that “works” for all of them, i.e., if X admits a metric p under which all
fe% are contractions. If the associated As can be chosen independent of f, we term & uniformly
contractifiable.

It will be assumed throughout that the members of §§ have a common fixed point £ This is
automatically the case, for example, in the frequently-encountered situations in which the mem-
bers of % commute. For a proof, recall that a contractifiable map f with at least one fixed point
has a wnique fixed point &. For commuting maps f and g, with respective unique fixed points
& and &, the relation

f2(&) =gf(&) =g(&)

identifies g(&;) as a fixed point of £, so that (by uniqueness) g(&y) =&;. Thus & is a fixed point of g,
yielding the conclusion (&= §&,) of a common fixed point.

For the simplest case, in which § is finite and commuting, we can draw the strong conclusion
that individual contractifiability of the members of & implies simultaneous contractifiability . . . in
fact, uniform contractifiability . . . of the family. The following result will be proven in section 2:

THEOREM 1: Let § be a finite commuting family of continuous self-mappings of X which
individually satisfy (1.2)—(1.4). Then ¥ is uniformly contractifiable.

The following example will show both that the finiteness hypothesis cannot be omitted in
Theorem 1, and that simultaneous contractifiability plus commutativity does not imply uniform
contractifiability. Let X be the real line with the usual topology, and take ¥ to consist of the infinite
family of maps

filx)=(1-1/i)x (=01

The members of this family commute, have ¢ =0 as fixed point, and are all contractions under
the standard metric on X. It is easily verified, however, that for no open neighborhood U of ¢ does

Ffr(U)— {¢&  uniformly in feg¥

hold. Thus ¥ cannot be uniformly contractifiable, else the open unit ball around ¢ in a suitable
metric would have the property just displayed.

Preparing to drop the commutativity hypothesis in Theorem 1, we define §° to consist of the
identity map of X, while ¥" (n>0) consists of all n-fold compositions of maps in §. If ¥, with
common fixed point &, is to be uniformly contractifiable, then the following generalizations of
(1.2)—(1.4) must hold:

& (&) = U{f(€) feF} ={¢}, (1.2")
8"(x) = U{g(x):gex"} = {¢} (1.3")

for all xeX, and
8"(U)=U{g(U):gex"} = {¢} (1.4")

for some open neighborhood U of &. It will be shown in section 2 that these necessary conditions,
for the uniform contractifiability of §§, are also sufficient when % is finite. In other words, the
commutativity hypothesis in Theorem 1 can be dropped if the hypotheses (1.2)—(1.4), expressing
the requirement that individual members of § be contractifiable, are replaced by their ““uniform
in §” versions (1.2")—(1.4"). Thus we have:
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THEOREM 2: Let § be a finite family of continuous self-mappings of X, which satisfies (1.2")~-
(1.4"). Then § is uniformly contractifiable.

(Since (1.2')y+(1.4") are obtained by systematically replacing f with ¥ in (1.2)~(1.4), one might
expect that the same replacement would convert the proof of the main theorem in CONVERSE
into a proof of Theorem 2. As will be seen, this is actually the case.)

The unresolved problem is that of finding appropriate additional hypotheses to ensure uniform
contractifiability (or merely simultaneous contractifiability), with or without commutativity, when ¥
is infinite.’

2. Proofs of Theorems

We first show that Theorem 2 implies Theorem 1. Let § = {fi, . . .,fn} satisfy the hypotheses
of Theorem 1. We shall prove that it also satisfies the hypotheses (1.3") and (1.4") of Theorem 2;
satisfaction of (1.2') is immediate since commutativity implies commonness of the fixed point.

As preparation, it will be shown that there is an open neighborhood U of the fixed point &
such that

& (U) C U and RPN = &) (2.1)

For this purpose, observe that for 1 <i=<m there is an open neighborhood U; of ¢ such that
fr(U;) — {€}. Let I=NU;; then there are integers k() =1 such that f2(U;) C I for all n = k().
Now set

U= mj(l) L. .j()rz)ffj(]) o o o f;,i('")(])’
where j(1) . . . j(m) ranges over all integer sequences with 0 < (i) < k(i) for 1 <i =< m. Since
UCI and §"(I)— {¢}, the second part of (2.1) holds. To prove that the first part also holds, e.g.,
that £, (U) CU, note that
fl(U) Cfrj(l) L. ani("')(I)

follows when j(1) < k(1) —1 from the consequence

[ O) Cffli+tl | foitm(])
of the definition of U, and follows when j(1)=k(1) —1 from the definition of k(1) as justifying
UCf:;j(Z) . f;"j('")(l) Cf:zju) L. f;—nj(m)(Ul)
CHI® . L flmfr0) ([) = frhOfH | faim(])

To demonstrate that = (fi, . . . fw) satisfies (1.3’) and (1.4"), let ¥ be any open neighbor-
hood of &. By (2.1), there is an integer K such that §*(U)CV for all £ > K. Let N=mK+1. For

n =N, an arbitrary member g of F" can (by commutativity) be written in the form
g=}l‘;j(1) L ﬂ"(lm)’ (22)

where 2,j(i) =n = N and thus max;j(z) > K. Since ¥ is commutative, there is no loss of generality
in assuming that the maximum occurs for i=1. Then, since f;(U) CU for i >1, we have

gl)crow)cr.

5Some partial results for the commutative case are given in the second author’s manuscript, Contractive Semigroups and Uniform Asymptotic Stability, presented
at the 6/67 National SIAM Meeting.
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This shows that (1.4") holds. To verify (1.3"), note that for any xeX there is a k(x) such that F*@ C U.
Let NN=m[K~+k(x)]+1. Then for n = N’, an arbitrary ge¥" can be written as (2.2) with max;j (i)
> K+ k(x). Assuming the maximum occurs for i=1, we have j(1) —k(x) > K and thus

g(x) =f0K fi . fmfE(x)
eff-KD o) | fm(U) C fIO-K(U) CV.

This shows that (1.3") holds, completing the proof that Theorem 2 implies Theorem 1.
We turn now to the proof of Theorem 2. Let ¥ satisfy the hypotheses of this theorem. As a
preliminary, it will be shown that the U in (1.4") can be assumed to obey

J(U)CU. 2.3)

For this purpose, begin with any U as in (1.4"). There is an N such that §"(U) CU for all n = N.

Let
=05 N{g"'(U):ged'}.

Then W is an open neighborhood of &, and W CU so that W satisfies (1.4"). Moreover §(W)CW,
as can be seen by considering any fe;§, any te[0, N—1], and any ge': that (W) Cg'(U), i.e.,
gf(W) CU, follows for t < N—1 because of gfe;§*!, and for t=N—1 because gf(W)CF¥(U)CU.
Replacing U by W, we can and will assume that the U of (1.4") satisfies §(U) CU.

Choose any Ae (0, 1) and let py be any metric on X, complete if X admits a complete metric.
We will construct a metric p* on X, complete if py is, such that each fe¥ is a (p™*, M)-contraction.®
The construction, which follows closely that in CONVERSE, has three stages. First comes the
construction of a metric py, complete if po is, with respect to which each fe§ is nonexpanding,
in the sense that

pu(f(x), f(¥)) < pu(x, y) (all x, yeX).

The second stage yields a function d on X XX which has all the properties desired of p* except
perhaps for satisfying the triangle inequality. This is corrected in the third stage, in which p*(x, y)
is introduced as what might be called the “d-geodesic distance” between x and y.

The first step is carried out by setting

pu(x, y) = max {po(g(x), g(¥)):8eUa¥"}. (2.4)
That py is a well-defined metric on X follows as in CONVERSE, and the nonexpansiveness asser-
tion is obvious. Since py < py, any py-convergent sequence is also py-convergent to the same
limit, and a py-Cauchy sequence is also po-Cauchy. Thus the topological equivalence of the two

metrics, as well as the completeness of py if py is complete, will follow once it is shown that for
each xeX and each & > 0, there is an n < 0 such that

po(x, y) <m implies pu(x, y) <8. (2.5)
To prove this, observe that (1.3") assures the finiteness of
v(x) =min {n = 0:F"(x) CU}. (2.6)
Since §")(x) CU, continuity and the finiteness of § imply that for all small enough n > 0,

00(x, y) <m implies @ (y)CU. 2.7)

6 The arbitrariness of A, and the assertion about completeness, make the results somewhat stronger than was stated in section 1.
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Moreover, (1.4") assures the existence of an NV such that
po-diam [F™(U)] <8 for m>N, (2.8)
and continuity and the finiteness of § imply that for small enough 7,
Polx, y)<m implies po(g(x), g(y)) <8 for ge U N@ign, (2.9)

Suppose 7 is chosen so small that (2.7) and (2.9) both apply. Consider any n and any ge;3".
It will be shown that

po(g(x), g(y)) <38, (2.10)

thus establishing (2.5). If n < N+v(x), then (2.10) follows from (2.9). If n > N+ v(x), write g= g»g;
where g€%"®) and zex™ with m > N. By (2.6) and (2.7), g1(x) and gi(y) both lie in U, so that
g(x) and g(y) both lie in g(U) C §™(U); now (2.10) follows from (2.8).

To begin the second stage of the construction, let K, be the closure of %”(U) for n =0, and let

Kiny=38"(Ko) =N {g1(Ko):geF"}.

Then {K,}— {£}, and since §(U) C U, the sequence {K,} is nonascending. Let n(&) =0, and
for x # & set

n(x) = max {n:xekK,} < o;
then n(x) = 0 for xeK,, while for xeX — K,

n(x) =—min {k:F*(x) C Ko} <O.
It is easily checked that

n(f(x)) =n(x)+1 for fe¥.
so that the definitions
c(x, y) =min {n(x), n(y)}; d(x, y) =\ Vpy(x, y)

imply that d has the desired property

d(f(x), fly)) S M(x, y)  (x, yeX: fef).

For the third stage, denote by X, the set of finite chains o,,=[x=x0,. . ., x,=y] between
x and y, with associated lengths

s
L(G_]'u Zd Xi— val

1

and put
p*(x, y) =inf {L(0zy) : Oxy€2zy}-
That p* has all the desired properties follows exactly as in CONVERSE, with sets B,=X —f~"(U)
of CONVERSE replaced by
B,=X—-g*(U)=X N{g (V) :8€%"}.
(Paper 73B4-309)
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