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The possibility of selective harmonic excitation in a one-dimensional plasma that obeys tne Vlasov
equation is discussed. Electron beams, collimated in velocity space, are used for this purpose. Condi-
tions on the velocity distribution function to achieve selective excitation are given. The velocity dis-
tribution function is expanded in Gram-Charlier series and the expansion coefficients are given. Bounds
on truncation errors of the expansion are derived and compared with computer results.
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Introduction

This paper deals with the feasibility of a numerical study of higher harmonic excitation of the
non-linear Vlasov plasma by two counterstreaming electron beams. In section 1 it is shown that
an electron beam with a high degree of collimation in velocity space can couple to the phase
velocity of one of the higher harmonics. The coupling should provide preferential excitation of
the harmonic. The collimation is achieved by expressing the velocity distribution function in the
form exp [— (v +a)?/2¢] with € being the collimation parameter that determines the halfwidth
of the velocity distribution curve. The distribution function is expanded in Gram-Charlier series
and the expansion coefhicients are derived in section 2. The necessary transformations of Hermite
polynomials are given in the paper “Temperature Renormalization in the Non-Linear Vlasov Prob-
lem,” immediately preceding this paper. In section 3 are discussed convergence properties of the
Gram-Charlier expansion and a criterion is given that allows one to calculate an upper bound on
the number of terms necessary to represent the initial distribution function to the desired degree
of accuracy.

Comparison of analytic results with those obtained on the computer are discussed in the
appendix.

1. Selective Excitation of Harmonics

Numerical work on the solution of the non-linear Vlasov equation by the method of eigenfunc-
tion expansion performed by one of the authors [1] ! brought out some interesting facts associated
with the non-linear character of the equation. One of these is that the ratio of plasma frequencies
of successive harmonics is not an integer. For example for £=0.5

! Figures in brackets indicate the literature references at the end of this paper.
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where k is the wave number of the fundamental, k= 27/L. The phase velocity of a standing wave
in a plasma is given by

®

vph=—k”— (1.2)

with wp being the plasma frequency. Since the ratio of £’s in a periodic system is an integer, we can
see from eqs (1.1) and (1.2) that the phase velocities of the fundamental and the second harmonic
do not coincide. In the example quoted above the phase velocities of the fundamental and the
second harmonic are respectively

vpr1 =2.71 and Vphe = 2.52.

The difference in phase velocities is Av=0.19. This fact suggests the possibility of a computer
study of selective excitation of harmonics by two counterstreaming beams of electrons traveling
through the plasma. The electron beams must be sufficiently well collimated in velocity space so
as to couple to the desired harmonic. The amount of trapping as a function of the distance from the
phase velocity was given by J. Dawson [4]. The functional dependence is rather complicated and
will not be given here. It is simpler to use numerical results to examine the possibility of selective
excitation of harmonics. Figure 1 shows f(v) that satisfies the non-linear Vlasov equation® for
k=0.5, «=0.1 at the dimensionless time = 32.

The amplitude of the second harmonic was at all times at least an order of magnitude less than
that of the fundamental. The width of the shoulder as can be seen from the insert in figure 1 is
about 1.54, with the phase velocities of the fundamental and the second harmonic located on this
shoulder. Thus if an electron beam with a velocity distribution with a halfwidth of the order of
separation of the two phase velocities were centered on the phase velocity of the second harmonic,
the interaction of the second harmonic with the electron beam would excite this harmonic. The
effect of the beam on the fundamental would be much less pronounced because of the lower density
at the phase velocity of the fundamental.

Since the initial distribution function [1] was chosen to be Maxwellian, a natural choice for the
two-stream distribution function is also a Maxwellian plus a combination of Maxwellians centered
at a and —a.

1 vz _ (v=a)2 _ (vta)2
[e :l (1.3)

f(v, t=0)= ?+ye 2By eI 2e
Vor(142yVe)

where L is the normalization constant. The parameter € determines the halfwidth
V2m(1+2yVe)

of the two-stream distribution function. To obtain a halfwidth of Av, € must satisfy the relation

Av)2
ﬂ: 1. (1.4)
2€
For Av=0.19 this gives the value
€=1.81X%X10"2

2 Unpublished results.
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The individual components of the two-stream distribution functions are expressed in the form

(v—a)2 2

e 2 =Y C.Hea(v)e?
(1.5)

_(vta)2 v2

e 2 :2 D,,He,,(v)e_?

where He, are Hermite polynomials. The convergence of the expansion, the value of its coefhi-
cients, and the number of terms in the expansion will be treated in detail below.
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FIGURE 1. f(v) versus v for k=0.5 at t=232.

The dashed line givese""”/\/Z_‘rr for comparison. The insert represents f(v)/(e "‘“/\/27).
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2. Expansion Coefficients for the Two-Stream Problem

We want to express one of the side peaks of the two-stream velocity distribution function of
eq (1.5) in the following form:

©

_(v—a)2

e 2 =g(v)e—

(S

2.1)
where

gv)= i CuHe,(v). 2.2)

n=0

Coefficients for the other side peak can be obtained immediately by substituting a for —a, as can
be easily seen by comparing eqs TR (1.14)> and TR (1.15). The expansion coeflicients, C,, are
given by the integral:

" g(w)e  * He,(v)dv. 2.3)

1
an'—_‘_— J.
Vomn! J-=

Substituting the expression for g(v) from eq/(2.1), we obtain

1 v _ (w—a)2
Cr= J’ e 2 He,(v)dv. (2.4)

This leads to the integral

o= 21 : E% " -2 He, (T/_g ) db. (2.6)
V2mn! Y

Here B=¢€"! was introduced to express the argument of He, in the form given in eq TR (1.15),

and a=-2=. Since He,=1 the integrad in eq (2.6) can be considered as a product

Ve
He,=HeoHe,. (2.7)
vt+a

H€n< \/E

we see that the only term in the sum that contributes to the integral is the term with p=n.

> is expressed in terms of zHe,,(ﬁ) by eq TR (1.15). From the orthogonality conditions

.. . v+al . " . .
Substituting this term for He, (7_,5)’ integration can be carried out and we obtain:

Al a_\.
Cﬂ_ﬁelll(l.—e) “Hen< l_€> (2.8)

# TR-refers to “Temperature Renormalization in the Non-Linear Vlasov Problem™ by the same authors, immediately preceding this paper.
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Substituting the values of C,, obtained in eq (2.8) into eq (2.2), we can now express eq (1.3) in terms
of its Hermite polynomial expansion.

—v2/2 % 1/2 1 S 6)n/z a
, t=0)= . sl Gl i He.
== e e L oo (= ) Hen)

n=0

P 61/2(1_6)11/2 —a

+')’ "20 n! He”(\/i—__e)He"(U) :l (29)

Since Hermite polynomials with odd indices are odd functions, eq (2.9) reduces to its final form

x 61/2(1_6)"

— — e~l‘2/2 e S a ’
Ly e ki o = LSRN R

3. Convergence Properties of the Expansion

In numerical work it is desirable to truncate the expansion after the smallest number of terms
for a given truncation error. Using the asymptotic form for Hermite polynomials [6] (see TR appendix
I for the discussion)

:eﬂ“M[ . ( X _1 ) )2 ]
He,(x) 2 TUn+1) cos | N e o N +0 (n—12) (3.1)

where N=2n+1. For large n, we obtain the asymptotic expression for

1 n

2 _ey V@ I'2(n+1)
C,,He,,(v) . 6_ M_ e 4 4(1—€)

IR (3.2)
n! 20 [2Gn +1)

with C, defined by eq (2.6).
, v 1
In the above expression the term O(n~'2) has been neglected and cos (N‘/"- 2 n7r> has

been replaced by unity.
Using the well-known relation between the I'-function and the factorial

[(z+1)=2z! (3.3)
we obtain the asymptotic expansion for the terms in eq (2.10)

L€ (2n)!

CouHeyn(v) ~ e ﬁ (n!)?

(1—e)" (3.4)

2 2
v a
where K=—

+———— Using Stirling’s formula for the factorials, we finally get:
4 4(1—¢)

6”26K (1 = 6)”
CZZIIHe‘ZH -~ : (3.5)
Vo Va

The asymptotic expression for Cs,Hes, in eq (3.5) tends monotonically to zero with increasing n.
This can be shown easily by taking the logarithm of C.,He,,

In Co,Hesy ~InB+nln (1—e)—3Inn (3.6)
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where
61/261(

Vo
Since 0 <e=<1, In (1—¢) is a negative number and the logarithmic terms in eq (3.6) go to — .

Thus lim C,Hesn=0. (3.7)

Let us now find the truncation error introduced into the function by neglecting all the terms
in eq (2.10) past the term He,y. This error can be represented in the form:

61/2(1—6)‘\'“

R <0< oy Heans (s ) Hewna) § 1= .
where

0=2/V2mr (1+2yVe).

Expressing all Hesny24p, p=0 to o in their asymptotic form we see that since 1 —e < 1, the geo-
metric progression in eq (3.8) can be summed and we finally obtain a bound on the truncation error

vy a2
e4 4(1—€) (1_€)N+1

Vi ell2(N+1)1/2

3.9)
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FIGURE 2. Nuversus € for two-stream function.

Computer results and analytic results for v=3.0, a=2.0
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The inequality in eq (3.9) makes it possible to calculate N for a given truncation error. This is
useful in representing the initial two-stream distribution function in the Vlasov equation. Figure 2
gives the number of terms in the expansion of the expression given in eq (2.10) as a function of €
for a=2.0 and »=3.0 for a truncation error of R, < 10-°S (see appendix). A graph of the number
of terms obtained on the computer is included for comparison. The values of N for e=0.9 and 0.8
do not lie on the curve, which is not surprising since the asymptotic expression for He, is not
very accurate for N ~ 10. As N increases the points form a curve which bounds from above the
computed curve. This again is not surprising, since the approximations made in eqs (3.2) and (3.8)
made the truncation error somewhat bigger than it actually is.

4. Appendix,

A computer program was written in Fortran to calculate the terms of the expansion of f(v,t=0)
of eq (2.10). The Hesn(v) and C»y, were calculated recursively. Scaled polynomials, Hes,, were used
to stay within the range of the computer in single precision.

He‘zrl(v) (Al)

A partial sum, P,, of the first n terms was formed and more terms were added until the relative
error ratio test of eq (A.2) was satisfied for one hundred successive terms.

[R.E.(P)| ='ﬁ%ﬁl< 102 (A.2)

Using eqs (2.10), (3.5), (3.9), and (A.2), the relation of this ratio test to the truncation error is given
by eq. (A.3).

0 eX(1—€)¥+!

Ry < 1028 A.3
el N (N+1)1 L
where
_bfe
5_62

and f is the un-normalized function calculated on the computer. Figure 2 contains the computer
results for v=3.0, a=2.0 and a comparison analytic curve based on eq (A.3). Other values of the
parameters investigated on the computer were

e=1.00, 0.30, 0.10, 0.07, 0.03, 0.01
a=1.00, 2.00, 3.00, 4.00, 5.00
v=10.00 to 6.00 in intervals of 0.25
y=0.1.

Figure 3 contains a set of results for v=3.0, a=1.0, 3.0, 5.0.
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FIGURE 3. N versus € for two-stream function.

Computer results forv=3.0
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