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The po ssib ility of selec tive harmonic excitation in a one-d im ensional p lasma that obeys tile Vlasov 
equation is di scussed. Elec tron beam s, co llimated in ve locity space, are used for this purpose. Condi· 
ti ons o n the velocity distribution fun ction to ach ieve selective exc itation are g iven. Th e ve loc ity di s· 
tribution fun c tion is expanded in Gram·Cha rli e r se ries and the expans ion coe ffi c ient s a re give n. Bound s 
on trunca tion e rrors of th e expan s ion a re de ri ved and co mpared with co mpute r res ult s. 
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Introduction 

Thi s paper deals with th e feasibility of a num erical study of hi gher ha rmonic excita tion of the 
non-linear Vlasov plasma by two counterstreaming electron beams. In sec tion 1 it is s hown that 
an electron beam with a high degree of collimation in velocity s pace can co uple to the phase 
velocity of one of the higher harmonics. Th e coupling should provide prefere ntial excitation of 
the harmoni c. The collimation is ac hieved by expressing the velocity di stribution fun ction in the 
form exp [- (v ± a)2/2E] with E being the collimation parameter that determines the halfwidth 
of th e velocity di s tribution curve. The di stribution fun ction is ex panded in Cram-Charlier series 
and the expansion coeffi cients are derived in section 2. The necessar y transforma tions of He rmite 
polynomials are given in the paper " T e mperature Renormalization in the Non-Linear Vlasov Prob­
lem," imm ediately preceding thi s paper. In sec tion 3 are di sc ussed co nverge nce properties of the 
Gram-Charlier expansion and a criterion is given that allows one to calculate an upper bound on 
the number of te rms necessary to re present the initial di stribution fun ction to the desired degree 
of accuracy. 

Comparison of analytic results with those obtained on the computer are di scussed in the 
appendix. 

1. Selective Excitation of Harmonics 

Numerical work on the solution of the non-linear Vlasov equation by the method of eigenfunc­
tion expansion performed by one of the authors [1] 1 brought out some interesting facts associated 
with the non-linear character of the equation. One of these is that the ratio of plasma freque nc ies 
of successive harmonics is not an integer. For example for k = 0.5 

(1.1) 

1 Figures in brackets indicate the lit e rature references at the end of thi s paper. 
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where k is the wave number of the fundamental, k = 27T/L. The phase velocity of a standing wave 
in a plasma is given by 

Wp 
vph=T (1.2) 

with Wp being the plasma frequency. Since the ratio of k's in a periodic system is an integer, we can 
see from eqs (1.1) and (1.2) that the phase velocities of the fundamental and the second harmonic 
do not coincide. In the example quoted above the phase velocities of the fundamental and the 
second harmonic are respectively 

Vphl = 2.71 and Vph2= 2.52. 

The difference in phase velocities is Llv = 0.19. This fact suggests the possibility of a computer 
study of selective excitation of harmonics by two counterstreaming beams of electrons traveling 
through the plasma. The electron beams must be sufficiently well collimated in velocity space so 
as to couple to the desired harmonic. The amount of trapping as a function of the distance from the 
phase velocity was given by J. Dawson [4]. The functional dependence is rather complicated and 
will not be given here. It is simpler to use numerical results to examine the possibility of selective 
excitation of harmonics. Figure 1 shows f( v) that satisfies the non-linear Vlasov equation2 for 
k = 0.5, a = 0.1 at the dimensionless time t = 32. 

The amplitude of the second harmonic was at all times at least an order of magnitude less than 
that of the fundamental. The width of the shoulder as can be seen from the insert in figure 1 is 
about 1.54, with the phase velocities of the fundamental and the second harmonic located on this 
shoulder. Thus if an electron beam with a velocity distribution with a halfwidth of the order of 
separation of the two phase velocities were centered on the phase velocity of the second harmonic, 
the interaction of the second harmonic with the electron beam would excite this harmonic. The 
effect of the beam on the fundamental would be much less pronounced because of the lower density 
at the phase velocity of the fundamental. 

Since the initial distribution function [1] was chosen to be Maxwellian , a natural choice for the 
two-stream distribution function is also a Maxwellian plus a combination of Maxwellians centered 
at a and -a. 

(1.3) 

1 
where is the normalization constant. The parameter E determines the halfwidth 

y'2;(l + 2yVe) 
of the two-s tream distribution function . To obtain a halfwidth of Llv, E must satisfy the relation 

For Llv = 0.19 this gives the value 

2 Unpublished results. 

(Llv)2 = 1. 
2E 

E = 1.81 X 10- 2• 
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---------- -

The individual components of the two-stream distribution functions are expressed in the form 

(v - a)2 v2 

e 2, = 2: C"Hell(v)~2 
n 

_(v+ a)2 _~ 
(1-5) 

e 2, =2: D"He1l(v)e 2 

n 

wh ere Hen are Hermite polynomials_ The convergence of the expansion, the value of its coeffi­
cients, and the number of terms in the expansion will be treated in detail below_ 

.3978 
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FIGURE 1. f(v) versus vlor k=O.S at t =32. 

The dashed line gives e-vt/*/VZ;; for comparison. The insert re presents!( v) I (e-vt/I /Vi;). 
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2. Expansion Coefficients for the Two-Stream Problem 

We want to express one of the side peaks of the two-stream velocity distribution function of 
eq (L5) in the following form: 

_ (v - a)' v' 

e 2. =g(v)e 2 (2.1) 

where 

00 

g(v) = L CnHen(v). (2.2) 
n = O 

Coefficients for the other side peak can be obtained immediately by subs tituting a for - a, as can 
be eas ily seen by co mparing eqs TR (1.14)3 and TR (LIS). The expansion coefficients, Cn, are 
given by the integral: 

J v' 
Cn = vi; 00 g(v)e -"2 Hen(v)dv_ 

27Tn! -00 

Substituting the expression for g( v) from eq 1(2.1) , we obtain 

1 J (v - a)' 
C,,= y'2; _00

00 
e--2-·-Hell(v)dv. 

27Tn! 

Let us now make the transformation 

v-a 
v= V;' 

This leads to the integral 

C - _1 __ 1_ J x - ;;'/2 H ( v + a ) d-
n - • ~ 'f3 1/ 2 e e". r;:: v. V 27Tn . - 00 Vf3 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Here f3 = E- 1 was introduced to express the argument of Hen in the form given in eq TR (LIS), 
a 

and a = V;. Since Heo = 1 the integrad in eq (2.6) can be considered as a product 

Hen=HeoHen. (2.7) 

Hen (V.:;;) is e xpressed in terms of LHen(v) by eq TR (LIS). From the orthogonality conditions 

we see that the only term in the sum that contributes to the integral is the term with p = n_ 

Substituting this term for Hen (V.:;;), integration can be carried out and we obtain: 

(2.8) 

3 TR- refers to "Tempe rature Renormalization in the Non· Linear Vlasov Proble m" by the same authors. immediately preceding thi s paper. 
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Substituting the values of Cn obtained in eq (2.8) into eq (2 .2), we can now express eq (1.3) in term s 
of its Hermite polynomial expansion. 

e- ,,2/2 [ " E1/2(l-E)"/2 ( a ) 
f(v,t=O)=v2; y-; l+y2:, He" ,~ Hen(v) 

21T(1+2y E) 11 = 0 n . vl-E 

" E1/2(l- E)"/2 ( -a ) J 
+y 2: ,Hen.~ He,,(v) . 

,,=0 n. V l - E 
(2.9) 

S ince Hermite polynomials with odd indices are odd functions, eq (2.9) reduces to its final form 

e-v2 /2 [ x E1/2(l-E)" (a) ] 
f(v,t=O)=.~ .! 1+2y2: (2)' He2n ,~ He2n(V) 

V 217 (1 + 2y V E) n=O n . V 1 - E 
(2.10) 

3. Convergence Properties of the Expansion 

In numerical work it is desirable to truncate the expansion after the s mallest number of terms 
for a given truncation error. Using the asymptotic form for Hermite polynomials [6] (see TR appendix 
I for the di scussio n) 

H () _e'T2/4f(n+l)[ (NI /L':~._.! ) O( - I/Z) J 
ell x - 2"/2 fCtn+ 1) cos v2 2 n17 + n (3.1) 

where N= 2n+ 1. For large n, we obtain the asymptotic expression for 

1 II - -
E2 (1- E)2 

C"He,,(v) ~ -, 2;' 
n. 

lC-t a 2 P(n+ 1) 
e 4 4(1 - E) --,----

'f2(tn + 1) 
(3 .2) 

with C" defi ned by eq (2 .6). 

In the above expression the term O(n - I/2) has been neglected and cos (NI /2 -h-~ n17) has 

bee n replaced by unity. 
Using the well·known relation between th e f·function and the factorial 

l'(z+l) = z! 

we obtain the asymptotic expansion for the terms in eq (2.10) 

v2 a2 
where K=4+ 4(1- E)' Using Stirling's formula for the factorials, we finally get: 

E 1/2eK 0- E)" 
CZ"He211 ~ v;. Vn' 

(3.3) 

(3.4) 

(3.5) 

The asymptotic expression for C2"He211 in eq (3.5) tends monotoni cally to zero with increasing 11. 

This can be shown easily by taking the 10garithm 'ofCzIIHez" 

In C211He2" ~ In B+n In (I-E) -t In n (3.6) 
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where 

Since 0 < E ::;;; 1, In (1- E) is a negative number and the logarithmic terms in eq (3.6) go to - 00 . 

Thus lim C2nHe2n=0. 
fI--+ OO 

(3.7) 

Let us now find the truncation error introduced into the function by neglecting all the terms 
in eq (2.10) past the term He2N. This error can be represented in the form: 

(3.8) 

where 

Expressing all He2N +2+P ' p=O to 00 in their asymptotic form we see that since l-E < 1, the geo­
metric progression in eq (3.8) can be summed and we finally obtain a bound on the truncation error 

(3.9) 

N 

E 

FIGURE 2. N versus E/or two-stream/unction. 

Computer result s and analytic result s for v=3.0 . a=2.0 
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The inequality in eq (3.9) makes it possibl e to calculate N for a given truncation error. This is 
useful in re presenting the initial two· stream dis tribution fun c tion in the Vlasov equation . Figure 2 
gives the number of terms in the expansion of the expression give n in eq (2. 10) as a [un ct ion of E 

for a = 2.0 and v = 3.0 for a trun cation error of Rn < 10 - 55 (see a ppendix). A rrraph of the number 
of term s obtained on th e co mputer is included for compari son. The values of N for E = 0.9 and 0.8 
do not li e on the curve, which is not urpri s ing since the asymptotic expression for Hen is not 
very accurate for N ~ 10. As N increases the points form a c urve whi ch bounds from above the 
computed c urve. This again is not surpri s ing, since the approx imation s made in eqs (3.2) and (3 .8) 
made the trun cation e rror somewhat bigger than it actually is . 

4. Appendix, 

A computer program was written in Fortran to calculate the terms of the expansion off(v, t = 0) 
of eq (2.10). The He 2n(V) and C2n were calculated recursively. Scaled polynomials , He 2n, were used 
to stay within the range of the computer in single precision. 

- 1 
He2n(V) = , ~ He2n(V ) 

V (2n)! 
(A. l) 

A partial sum , P", of the firs t n terms was formed and more terms we re added until the relative 
error ratio test of eq (A.2) was satisfied for one hundred successive terms. 

(A.2) 

Using eqs (2.10), (3.5), (3.9), and (A.2), the relation of this ratio test to the truncation error is give n 
by eq. (A.3). 

where 
() fe v2/2 

5=--
E 2 

(A.3) 

andf is the un ·normalized function calc ulated on the computer. Figure 2 contains the computer 
results for v = 3. 0 , a = 2.0 and a comparison analytic curve based on eq (A.3). Other values of the 
parameters investigated on the computer were 

E= 1.00,0.30,0.10,0.07,0.03,0.01 
a= 1.00, 2.00, 3.00, 4.00, 5.00 
v= 0.00 to 6.00 in intervals of 0.25 
y= 0.1. 

Figure 3 co ntains a se t of results for v = 3.0, a = 1.0, 3.0 , 5.0. 
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FIGU RE 3. N versus E for two-stream function. 

Computer results forv = 3.0 

5. References 

[1] Sadowski , W. L. , On Some Aspects of the Eigenfunction Expansion of the Solution of the No n-Linear Vlasov Equation, 
Symposium on Computer Simulation of Plasma and Many-Body Proble ms , NASA,-SP- 153, 433-440, (1967). 

[2] Armstrong, T. P ., Numerical Studies of th e Non-Linear Vlasov Equation , Ph.D. Th esis, Univ. of Iowa, No. 66-34, (1966). 
[3] Feix, M., Engleman , F ., Minardi , E., and Oxenius, J., Nonlinear effects from Vlasov's equations, Ph ys. Fluids 6 , 266--

275, (1963). 
[4] Dawson , J., On Landau damping, Phys. Fluids 4, 869-874, (1961). 
[5] Knorr , G., Numerische Integration der nichtlinearen Vlasov Gleichung, Z. Naturfo rsch 16a, 1320- ]328, (1961). 
[6] Bateman Manuscript Project, Cal. Ins!. Techno!. , Higher Transcendental Func tions, A. ErdeJyi, editor, Vo!' 2 , 201 

(McGraw·Hill Book Co. , N.Y., 1953). 

(paper 73B4r-308) 

300 


	jresv73Bn4p_293
	jresv73Bn4p_294
	jresv73Bn4p_295
	jresv73Bn4p_296
	jresv73Bn4p_297
	jresv73Bn4p_298
	jresv73Bn4p_299
	jresv73Bn4p_300

