JOURNAL OF RESEARCH of the National Bureau of Standards —B. Mathematical Sciences
Vol. 73B, No. 3, July-September 1969

On a Class of Nonlinear
Transformations and Their Applications
to the Evaluation of Infinite Series”

H. L. Gray ' and W. D. Clark 2

(March 12, 1969)

In this paper the problem of increasing the rate of convergence of infinite sequences and series
is considered by means of a class of nonlinear transformations. The transformations employed are the
discrete analogue of the so called G-transformations and the theory surrounding them is investigated
in some detail. The theoretical results are demonstrated by numerous examples.
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1. Introduction

In several recent papers [5, 6, 7, 8] % H. L. Gray, T. A. Atchison, and others have considered
a class of nonlinear transformations, referred to as G-transformations, for the purpose of evaluating
improper integrals. The complete motivation for these transformations is given in [7] although
the underlying concept which suggested this motivation is contained in an earlier paper [11] by
S. Lubkin. However the setting in [7] affords a certain degree of generality not obtainable in [11]
and thus suggests a general class of nonlinear transformation which might be of use in the problem
of [11], i.e., the problem of increasing the rate of convergence of an infinite series to its limit.

To be more specific. In [7] the G-transformation, or the class of transformations referred to
as G-transformations, is defined as follows:

Let f be a continuous function on [a, ®©) and let

F(t)=ftf(x)dxﬂs¢1xast%M. (1.1)
Moreover let
R(t.,g(t))=,—f(t)— (1.2)

fg(t))g'(t)”
where g(t) — ® ast— . Then the G-transformation is defined by

F(t)—R F

From the motivation which produced (1.3) G[F :g(t), t] was expected to be of some value in
the direct evaluation of improper integrals. As has been demonstrated in [5, 6, 7, 8| this turns out

to be the case.
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In this paper a discrete version of (1.3) is considered for the purpose of increasing the rate
of convergence of an infinite series. It is shown that the e; (Shanks) or T (Lubkin) transformation
arises in a natural way from this class of transformations. Moreover close consideration is given
to the ratio R[n, g(n)] as a guide for selecting the appropriate transformation for a given series.

The important special cases in which lim R [n, g(n)]=0, 1 are studied in some detail. Several
examples are included. "

Before formally defining the class of transformations which is the subject of this paper we
give the following definitions.

DEFINITION 1.1: Let A(n) and B(n) be sequences of real numbers such that ylgc A(n)= A and
13_1)1010 B(n)= B and suppose

. |A(n) — Al _

Then we say A(n) converges more rapidly than B(n) if L=0 and at the same rate as B(n)
if L # 0.

DEFINITION 1.2: If
|Am)— A| <|B(n)—B| (1.5)

for all ne(a,b) then we say that A(n) converges uniformly better than B(n) on (a,b).

The following simple theorem connects these two definitions.

THEOREM 1.1: If A(n) converges more rapidly than B(n), then there exists an N such that
A(n) converges uniformly better than B(n) on (N, ).

PRrOOF: The proof is trivial and can be found in [7].

DEFINITION 1.3: We say a transformation T defined on A(n) is exact if there exists an N <o
such that T[A(n)] =L if n > N, where !}_{g A(n)= L.

2. The T Transformation

DEFINITION 2.1: Let g be a positive, integer valued function defined on the nonnegative integers
such that li_r)nmg(n)= oo,
Also let "

n

Sm)=3 ak)—>S#Fwasn—>x, (2.1)
k=1
and
- _ a(n) _ a(n) .
[, 8] = T fetn + D—gm)] ~ afem)] A z) 2.2)

Then we define the T transformation by

T[S(n), g(n)] = S(n)— R[n, g(n)] S[g(n)] : R[n,
1—R[n, gn)]
We assume that either a[g(n)]Agn)# 0 or if a[g(n)]Agn)=0 then lim R[x, g(x)] exists and we

({eﬁne R[n,g(n)]. to be that limit. Unless stated to the contrary we will not necessarily assume
}%R[n, g(n)] exists. Throughout it will be assumed that S has an infinite number of nonzero terms.

gmn)] # 1. 2.3)

THEOREM 2.1: For every function g for which there exists an M > 0 such that

[1—R[n,gm)]|=M (2.4)
Jfor n sufficiently large, T[S(n); g(n)] = S as n— .
PRoOOF: Since
S(n)—S
TIS(n): ()] —Sle(n)] = ko a2 s o 2.5
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as n—, then the theorem follows.
COROLLARY 2.1: If'lli_rpxR[n, g(n)] exists and is different from 1, then T[S(n); g(n)] = S as n— .
THEOREM 2.2: If. 'l]i_l,an[n. gm)] = L(g) # 1, L(g) finite, and

S— S(n)
S—S[em] _ 1@ (2.6)

then T[S(n); g(n)| converges more rapidly than S[g(n)].
Further, if L(g) # 1 or 0, then T[S(n)] converges more rapidly than either S[g(n)] or S(n) if and only
if (2.6) holds.

PRrROOF: Since

S=TISn)g(ni] N 1 -~ S—S[g(n)]
S—S(n)  1=R[n.eg)] {1 ke S—S(n)} (2
and
S—T[S(n); g(n)] 1 §S—=8(n) .
S—Sle(n)] “1—R[n.g<n>]{s—smnn ’”"‘”("”}' @8)

then the result follows.

COROLLARY 2.2: Under the conditions of Theorem 2.2, there exists an N such that T[S(n); g(n)]
converges uniformly better than S(n) or S[g(n)] on (N, ).

Proor: The result follows from Theorem 1.1.

THEOREM 2.3: T[S(n); g(n)| converges uniformly better than S(n) on (a, b) if and only if

R{n, g(n)] S[g(n)]—S(n)

_2 < ¢
1—R[n, g(n)] E(n) =l (2.9)
on (a, b), where E(n)= zx a(k)=S —S(n).
k=n+1
Consider now the following examples.
EXAMPLE 2.1: Let
S(m) = 2 2-k— 2 as m—
k=0
and let g(m)=m2. Then
a(m)=2-"m,
alg(m)]=2-"* and
2-111 2»1('11—1)
R . o == - = a
Lm;2{m)] 2-"[(m+12—m?] 2m+1 (2.10)
Therefore,
m 2m(m—1) m2
ko o—k
) = 2m—+1 ,\Z{, 2
T[S(III): g(m)]: 2 m(m—1)
C2m+1
2III+ 1 m 2m(m+l) m2
— 9k _ o 9k
2m+1—2~"m+”g:,2 2m+1—2"""'“’g:,2 ' 2.11)

253



For m=2,
T[S(2);: g(2)]= 1.9534 (2.12)

which is in error by about 0.0466.
But

S(4) =1.9375 2.13)

which is in error by 0.0625. The use of this particular g has led to only a slightly better approxima-
tion. It is also interesting to note that R[m; g(m)]— «© as m— .
Now let us consider g(m)=m —3 and the same series. Then

a(m)=2—"m

alg(m)]=8(2-™) and (2.14)

Therefore,

) L 1
2?22”"'—7 2-k 2.15)

:% I:Em: 9—k+3 i 2—1\-+3:|

which is the correct answer for any value of m = 3.
EXAMPLE 2.2.: Let

m (_1)k'+1
S(m)zzT—Hn.‘Zas n— o (2.16)
=1

and let g(m) =m—1. Then

a(m)=(=1)"/m,

alg(m)]=(=1)™/(m—1), and 2.17)
Rm; g(m)]=="—1>—1 as m— =,
Therefore,
T[S(m): g(m)] =2mm_l AE: (_1)k+1—21m__ml T:: (-1}1“1 : 2.18)
For m=4,
T[S(4); g(4)]= 0.69048, 2.19)
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with an error of about 0.00267, whereas
S(4) = 0.58333 (2.20)

with an error of about 0.10982.

3. The T, ,, Transformation

From the above two simple examples it is clear that the choice of g can significantly effect
the performance of T.

For this reason we will now consider a more specific type of T transformation. We do so by
determining g such that T[S(n); g(n)] is exact when a(n)=r", i.e., such that the transformation
is exact on geometric series. In regard to this we have the following theorem.

THEOREM 3.1: If a(n)=1", |r| < 1, then a necessary and sufficient condition for T to be exact,
i.e., T[S(n); g(n)] =S, when n is sufficiently large, is that g(n)=n—m > 0.

PRrROOF:

—5: rk+R(n) i i

T[S(n), g(n)] — G k=n+1 : _R(’:‘)=!l(n)+l - (31)

Therefore T is exact if and only if

20 %0 rll+1 r’l+l
— AL e e IL =0 3.2
k:‘sr-z:ﬂ ( )k:y%ﬂ ' = (l_r)[g(”+l)_g(n) -2)
when n > N. The latter implies that
g(n+1)—g(n)=1 when n>N. (3.3)

Since g is a positive, integer valued function, (3.3) implies
g(n)=n—m>0. (3.4)
Substitution of (3.4) in (3.1) shows the sufficiency.
This leads us to the following important special case which we will set apart by a separate
definition.

DEFINITION 3.1.: We define the T, transformation by

S(n+m)—R(n+m, n)S(n)

T, m[S(h+m)]=T[S(n+m); n]= e ewmay (3.5)
For brevity we will adopt the notation R(n; m) for R(n+ m, n), i.e.,
_ S(n+ m)— R(n; m)S(n)
T,n[S(n+m)]= ey T : (3.6)
where
: _a(n+m)
R(n; m)——-———a(n) - 3.7)
Some alternative forms of (3.6) will also be used. They are:
. B S(n+m)—S(n)
Tim[S(n+m)]=S(n)+ I—R(n: m) (3.8)
1
Tin[Sm+m)] =S —-m{s— S(n+m)— R(n; m)[S— S(n)] } (3.9)
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and

S(n)S(n+m—1)—S(n+m)S(n—1)

LR S Rt e o iy ey precy e 3.10)
We can also write, for n = 2,
Tim[S(n+m)]=Tin[S(n—1+m)]
= [Stn-+ m) —Sn) S ! ]—
T n)] [I—R(n: m) 1—Rm—1;m) e G
Therefore we have the following partial sum:
T+m[S(n+m)]=2 b(k), where 3.12)
b(1)=T,n[S(1+ m)] and b(k) is defined by (3.11) for k=2, 3, . . . (3.13)

A case of particular importance is the case where m=1, although this is by no means the only
case of interest here. When m=1 we have

S(n+1)—R(n; 1)S(n)

TulSt+ D= =505

(3.14)

S(n+1)S(n—1) —S2%(n)
S(n+1)+S(n—1)—2S(n)”’

(3.15)

The transformation defined by (3.14) was first introduced by Aitken in [1]. It was later studied
extensively by S. Lubkin in [11] and D. Shanks in [12].

Let us consider the following two examples which justify (1) our interest in T4 [S(n+1)]
and (2) our interest in 7'y, [S(n+m)] when m # 1.

ExAmPLE 3.1: Consider the Liebnitz expansion for 7w. That is,

4 4 4
m= 4~—§+g—?+ 5 ac (3.16)

From a numerical viewpoint (3.16) is essentially worthless as it stands since it takes more
than 4 X 107 terms to obtain eight figure accuracy. It is a remarkable fact, however, that eight
figure accuracy can be obtained from only the first 10 terms by means of T,,[S(n+1)]. This
was demonstrated in [12] by repeated application of T.,. The procedure is indicated below on
the first five terms of (3.16).

TABLE 1
n S(n) T T2,
1 4.0000000
2 2.6666667 3.1666667
3 3.4666667 SAI333383 3.1421053
4 2.8952381 3.1452381
5 3.3396825

ExAMPLE 3.2: Consider now the same sum in the form

43S D) (3.17)

n—1
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Thus we have

4 4 4
7T—4+0—§+0+g+0—7+ B (3.18)

In this case T [S(n+1)] is not worthwhile since 7%,[S(n+1)]=T%"[S(n+1)]=S(n+1) for
every k for which the relations are properly defined. Of course we can apply T [S(n+1)], as we
already have, if we delete the zeros. However in general it may not be a simple matter to determine
how to rearrange a series so that 7. [S(n+1)] is useful. For example if we consider the series
2 | T . . ¢ ;

2 = <sm 1—)), then when p is an integer greater than 2 the problem of rearranging the series so
n=1

as to apply 71y becomes unmanageable due to the difficulty of writing the general term when the
zeros are deleted. However the problem is easily handled by selecting m= p in the T, transforma-
tion. Thus a better way to handle the above problem is as follows. Note that

a(n+m) sin [(n+m)mw/2] n
a(n)  sin (n7/2) n+m

_sin «(nm/2) cos (mm/2) +sin (mm/2) cos (nmw/2) n
n sin (77/2) n+m

n

= [cos: (m/2) + cot (nm/2) sin (mﬂ-/z)]n—f—m’

(3.19)

Thus, if m=1, R(n; 1) does not exist in general. But, if m=2, R(n; 2) exists for every n and we
obtain the following table from applying T';, repeatedly to the first ten terms of (3.18). That is, using
only the partial sums we used in table 1.

TABLE 2
n S(ny T, T3, UED
1 4 3.1111111 | 3.1444444 | 3.1417363
2 4 3.1666667 | 3.1425851
3 2.6666667 | 3.1466667 | 3.1404762
4 2.6666667 | 3.1333333 | 3.1413119
5 3.4666667 | 3.1401361
6 3.4666667 | 3.1452381
7 2.8952381 | 3.1421517
8 2.8952381
9 3.3396825
10 3.3396825

It should be mentioned that the form (3.10) was utilized in constructing table 2 since this sim-
plifies the repeated application.

As already mentioned the results in table 1 were first given in [12]. In that same paper the
author remarks that if (3.16) is written in the form (3.18), then T1;[S(n+1)] is not directly ap-
plicable. In this example we have seen, however, that T,,, is directly applicable when m=2.

From the above it is clear that 7.,,[S(n+ m)] bears some investigation in general. This will
be the purpose of the next several pages. The case m =1 will not be considered separately since it
has been extensively studied in the existing literature. It will first be necessary to introduce some
results which will be useful in proving these theorems.

THEOREM 3.2: Let A(n) and B(n) be sequences such that lim A(n)=0 and B(n) is monotone and

n— o

converges to zero as n—> . [f

. Am)—An-—-1)
lim

s B(n)—B(n—1) (3.20)
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exists, finite or infinite, then

. A .. A@-—A@—1)
lim g = lim g =Ty (3:21)

PRroOF; See [1].
THEOREM 3.3: If

(i) S(n) is @ monotone sequence with limit

S= 2 a(n) (3:22)
_n:I
(il) m is @ nonnegative integer and
_ a(n—+ m)
R,= ,.h—.x Sl (3.23)
then
. S—S(n+m)
lim —e— = =Rn. (3.24)

PROOF: Since S(n) is a monotone sequence,S —S(n) is a monotone sequence which converges
to zero. Thus we can apply Theorem 3.2 and

I S—S(n-f—m)—S—+—S(n+m—l)_h S(n+m)—S(n+m—1)
T S-S —-S+S(x—-1) 22T S -S(r-1)

1 a(n+m)
o an

1y S—S(n+m)
= AN RESh) (3.25)

It should be noted that Theorem 3.3 can be restated in the form

©

lim k:"+2+1a(k) = lim e )
A (3.26)
k=n+1

This result is directly analogous to applying [.’Hospitals theorem to improper integrals.

A special case of the above theorem arises when the series consists of terms of constant
sign when n is sufficiently large. When a series is alternating, S(n) will generally not be mono-
tone for any range of n and the above theorem does not apply. However a result similar to Theorem
3.3 can be obtained when the terms are decreasing in absolute value.

THEOREM 3.4: If

(i)S= 3 a(n), a(n) = (—1)"C(n),

where C(n) >C(n+1) >0,

a(n+1)

(i) R(n+1)= a(n)

—>R#—1,
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and

(iii) m is a positive integer,

then I S—S(n+m) — lim a(n+m) _ Rgm
,.]_.nl S—S(n) ,,Lx a(n) ’ (3.27)
Moreover, if R=—1 and . 1+R(n; 1) :
M Re-L1 (3.28)

thén the above results hold.

Proor: Consider the case m=1. By hypothesis, S converges and the sequences S(2n) and
S(2rn+1) are decreasing and increasing respectively. Therefore S(2n) —S and S—S(2n+1)
decrease to zero. But

[SCm+1)—S]—[S2m—1)—S] a(2n)+a(2n+1)
[S2m)—S]—[S(2m—2)—S]  a(2n—1)+a(2n)

- B 1+R(2m, 1),
=Ki(an 1'”[1+R(2m—1.1)]‘ (3.29)
which converges to R under the conditions stated. Applying Theorem 3.2, it follows that
S =821
lim = (3.30)

—e S3—3S(2n)

The same argument can be applied to the quotient [S—S(2n+2)]/[S—S(2n+1)] and since
both of these sequences converge to R it follows that

o S=8i@ar)
m =55 K 3-31)
In the general case we note that
a(ntm)_a(ntl) an+2) a(r+3) = a(ntm) 39
) a@) aln+l) a(n+2) e =il s
and thus,
M2 a(n)
Also
S=S(n+tm)_S—=S(n+1) $=S(n+2) S—S(n+tm) 3
S<St) . 5-S(n) .- S—S{AF1) S—S(n+m=1)" )
and referring to the case m=1 we see that
o= pariml)
lim S R, (3.35)

and the theorem follows.

THEOREM 3.5: For every m for which there exists an M > 0 such that |1 — R(n; m)| = M for n
sufficiently large, T, ,[S(n+ m)] converges to S.

ProoF: The result is a special case of Theorem 2.1.

COROLLARY 3.1: If lim R(n; m)= Ry, # 1, then T, [ S(n+ m)] converges to S.

When m=1 a stronger theorem than the above can be given. This is the case for many of the
following theorems. For a discussion of such theorems when m=1 see [11].

A further comment should be made in regard to Theorem 3.5. That is, in general T, ,,[S(n + m)],
is not a regular transformation. Thus S(n) may converge as n—> % and T, »[S(n+m)] diverge.
Theorem 3.5 shows this can only occur when R, =1 or when R, fails to exist.
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LEMMA 3.1: If a(n) is monotone then n[S(n+ m)— S(n)] — 0 as n—> .

PROOF: Since S converges and a(n) is monotone, then n-a(n)— 0. Thus na(n+p)+pa(n+p)
=(n+p)a(n+p)—0 for each integer p=0 and since a(n+p)— 0 as n— » it follows that
na(n+p)— 0 as n—> . Hence n[S+ m)—S(n)|=na(n+1)+ . . . + na(n+m)— 0 as n— .

THEOREM 3.6: If a(n) is monotone and ’lll_)nalc Tim[S(n+ m)] = L(m), then L(m)=S.

PROOF: Suppose the theorem is false. Then

S(n+m)—S(n)
1—R(n; m)

Tim[S(n+m)—S(n)]= —>L(m)—S#0 (3.36)

as n—> %, Hence
n[S(n+m)—S(n)]
n[1—=R(n; m)]

— L(m)—S#0asn— o (3.37)

But, by lemma 3.1, n[S(n+m) —S(n)] — 0 as n — « and hence we must have n[1—R(n;m)]— 0
as n—> o,

Now if we let b(n) =a(nm), then

b(n+1) a(nm+m)
b(n)  a(nm)

R(nm; m) >0,

and thus nm[1—R (nm; m)] = 0 as n— « or

n[1—R(nm; m)]:n[] —b(’l+l)]—> 0

b(n)

as n—> . Therefore, by Raabe’s test, the series

i b(n)= i a(nm) (3.39)

n=1 n=1

diverges. But the latter is false since S(n) converges absolutely as n— % and 2 b(n) is a sub-
n=1
series of S. The theorem therefore follows.
LEMMA 3.2: If a(n)=0(n"%), a>1, as n— =, then n[S(n+ m)— S(n)]— 0 as n— «.
ProoF: By hypothesis,

In[S(n+m)—S(n)]| <nla(n+1)|+nla(n+2)|+ . . . +nla(n+m)|

< nmMn—*= mMn~—o+1 (3.40)

for some M > 0, provided n is sufficiently large. The lemma then clearly follows from (3.40).

THEOREM 3.7: Ifa(n)=0(n"%), @« > 1, as n— ® and T, [S(n + m)] converges, then T, ,[S(n+m)]
converges to S as n—> .

PRrROOF: The proof is the same as in Theorem 3.6 with the exception that (3.39) converges
because a(n)=0(n"*).

THEOREM 3.8: If lim R(n; m)=R,, # 0, 1, then T, [S(n+ m)] converges more rapidly than

n— o

S(n+m) if and only if

S =S ()
l!l_'l'lfalC S—S(n) Rm- (341)

PRroOF: The result follows from Theorem 2.2.

COROLLARY 3.2: If a(n) is of constant sign for n sufficiently large and Ry, exists but R, # 0, 1,
then T, [S(n+ m)] converges more rapidly than S(n—+ m).

PRrRoOOF: The corollary follows from Theorems 3.8 and 3.3.

COROLLARY 3.3: If a(n)= (—1)"C(n), C(n) > C(n+1) >0 and R,, exists but R,, #0, — 1, then
Tim [S(n+ m)] converges more rapidly than S(n+ m).

PRrOOF: The corollary follows from Theorems 3.8 and 3.4.
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In the above theorems we have established conditions under which (1) 7., [S(n+m)]— S
and (2) T+ n[S(n+ m)]— S more rapidly than S(n+ m) as n— . In general our theorems con-
cerning the latter were less general than those concerning the former. Thus in Theorems 3.5 and
3.6 we did not find it necessary to require even the existence of the lim R(n; m). On the other

n—®

hand, in Theorem 3.8, we required not only the existence of lim R (n; m), but that it be dif-

n— o

ferent from O or 1. In the case R,,=0, T, ,[S(n+ m) ] may or may not converge more rapidly than
S(n-+m). This is best seen by the following examples.

ExaMPLE 3.3: Let S(n)=1/n!. Then S(n) =0 and S(n+1)/S(n) =0 as n— . Hence
lim R(n; 1) =0 by Theorem 3.3. Thus we see in this case that R, =0 and S(n+ 1) converges more

rapidly than S(n). We have included this example to emphasize that our interest when R,=0
should be centered on comparing the rate of convergence of T, [S(n+ m)] with S(n+ m) rather
than S(n), since in this case S(n+m) and S(n) do not necessarily converge at the same rate.
Note that when either Theorem 3.3 or Theorem 3.4 hold that S(n+ m) converges more rapidly
than S(n) if R;=0 and at the same rate as S(n) if R, # 0.
EXAMPLE 3.4: Let a(n)=1/n! and m=1. Then R;=0 and since A(n)=S—S(n+1) is a

deceasing sequence converging to 0, we can apply Theorem 3.2 to A(n) and B(n)=S—T,w[S(n
+m)]. Thus, using (3.11), we have

B(n) —B(n—1)  b(n) a(n) [ I8((pg 1)) =% (m=1ig 1)) ]

A(n) —A(n——l)_a(n-i-l):a(n%-l) (=R NI IR (=15 1))))

]_R(n—l; 1)
[ R(n; 1) :l
(1—R(n; 1))(1—R(n—1;1))

1_n—i—l
= n (3.42)
(I1=R(n;1))(1=R(n—1;1))
as n—> @,
Hence

. S—Tu,[S(r+1)]
lim

L e ey e (3.43)

and T.1[S(n+1)] converges more rapidly than S(n+1).
ExampPLE 3.5: Let m=1 and

2
a(n) = (n+ 1) 120 +3n-9)2

Then

a(n+1) 1
R L)'= a(n) _(n+2)2n+2’

and therefore R;= 0.

Moreover
Rp=1g 1) _(mar2)%==
Rm1) —(nr1)2mt 2 (3.44)
as n— o,
Therefore, using the notation of the previous example, we have
_R(m—l; 1)
S =lelio=10) R(m; 1) -
A edal) R R (3.45)

asn —> «©, %
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Hence,
S=1E | IS{oas 10}

L o T G s

and T';[S(n+1)] and S(n+1) converge with the same order of rapidity. Note that in the same
manner one has

S—T.,[S(n+1)] R(n;1)—R(n—1;1)

M5 S MBU-Rm 1)) (-Re-L1D) 820
so that T4, [S(n+1)] does converge more rapidly than S(n) in this case.
EXAMPLE 3.6: Let m=1 and
( )—L- 3.48
a(n) =" (3.48)
Then ;
R (n; I)ZW—)() (3.49)
as n— « and by Theorem 3.3
S=8parll) a(n+l)
SEsty 0 Ssl (2]
as n—> oo,
Moreover
R(n+1; 1)_(n+l)( 1 )_)0
R(n:1) \n+2)\26n 6 (3.51)
as n—> o,
But
S—S(n+1) _ 1
S—T.[S(n+ )] 1_[ a(nt2) ]r 1 ][ R(n; 1) ] 3-52)
S=Snar 1) [ —R(n; 1) | [R(n+1;1)

and thus (3.52) has the limit zero as n— % so that S(n+ 1) converges more rapidly than 7.4[S(n+ 1)I.

In the previous examples we have seen that if R ,,=0, then the T, transform may or may not
be useful. We will therefore now embark on a series of theorems which are useful in ascertaining
the value of T, in that situation. We begin by listing a sequence of lemmas most of which are
obvious or very easily proven.

LEMMA 3.3: If R(n; m) converges to Ry, then |Rp| < 1.

PRroOF: Suppose the lemma is false. Then |R,,|>1 and therefore there exists an N such
that [R(n; m)| > 1 where n =N, i.e., [a(n+m)| > |a(n)|. Thus, lim a(n) #0, so that S(n) does
not converge as n— . This is a contradiction and the theorem follows

LEMMA 3.4: If R(n; 1)= R, then R(n; m)=> R™ as n— x, i.e., if Ri=R then RS Rm

PROOF: The result follows easxly by noting that

R(n: )_a(n+m):a(n+l) ca(n+2) a(n+m)
i _; a(n) a(n) a(n+1)_' - a(ntm—1)
=R(n;1):R(rn+1;1) . . . R(n+m; 1). ; (3.53)
LEMMA 3.5:
; __a(n+m)
Rin; mape a(n)

_ant+tm+1) am+m) an+1)
an+1) amn+m—+1) a(n)

R(n+1; m)
R(E?m)fi( 1) (3.54)
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LEMMA 3.6:
R(n; m)

Rt im  Aesn—e (3.55)
if and only if

. R(n: 1)

Proo¥: This lemma follows immediately from Lemma 3.5.

LEMMA 3.7: If
: R(n; 1)
Ll_{r; Rn+m: D) #1 (3.57)
and
lim R(n; m)=R,,, R, finite, (3.58)
then R, =0.
ProoF: The lemma is obvious.
LEMMA 3.8: If a(n) is of constant sign and
. Rn; 1)
!]l_{'ll Ro+m: 1) 1)—A #1, (3.59)
then
lim R(n; 1)=0, (3.60)

n—©

where A4 is finite or infinite.
PROOF: Since A(n) is of constant sign, it follows that R (n; 1) > 0. Also

R(n; 1)
R(n+m; 1) L (3.61)

or
R(n; 1)

R(n+m; 1) =1 (3.62)

for n sufficiently large. However (3.62) and (3.59) imply that S(n) diverges as n— « and hence
cannot hold. Thus, for n sufficiently large, say n = N, we have

R(n; ))>R(n+m; 1)>R(n+2m; 1)> . .. >0
R(n+1; ) >R(n+m+1;1DH)>...>...>0
(3.63)
R(n+m—1)>R(n+2m—1;1)> . .. >0,
and since 4 # 1, each subsequence in (3.63) converges to 0. Thus R(n; 1)— 0 as n— oo.
LemMa 3.9: If a(n) = (—1)"C(n), C(n) > C(n+1) >0, and lim =B _ 441 then

== R(n+m; 1)
,!i_l)ILR(n; 1)=0.
PRroOF: The proof is similar to that of Lemma 3.8.

LEMMA 3.10:
S(n+m)—S(n)=a(n+1)[1+R(n+1;1)+R(n+1; 1)R(n+2; 1)+ . . .
+R(n+1;1) ... R(n+m—1;1)]
=a(n+ D [+RMAr+1; 1)+ .5 +R(n+1;m—1)]
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ProOF: The result follows by noting that

a(n+2) a(n+m)
a(n+l)[l+—-a(n+1)+. o o TF —a(n+l)]
. a(n+2) a(n+3)a(n+2) a(n+m)
—a(n+l)[l+a(n+l) B ) R e
a(n+m—1) a(n+2)]
aln+m—2) 'a(n+1)] o
S(n+ m)— S(n) 1—Mm

LEMMA 3.11: If R(n; 1) is bounded by M, then

and by m if M= 1.
Proor: The proof follows immediately from Lemma 3.10.
Note that if R, exists, then it is finite by Lemma 3.3 and hence R(n; 1) is bounded.

ST is bounded by —lmifM#l

LEMMA 3.12
m—-1 k
1+ R(n+i; 1)
S(n+m)—S(n) _ 1 ,‘:1,1:[1 (3.55)
S(n+2m)—S(n+m) R(n+1;m) =l . )
R(n+m+i;1)
A
PROOF: The lemma follows immediately from LLemma 3.10.
LEMMA 3.13:
S—=S(n+m) S—S(n)—S(n+m)+S(n) _I_S(n+m) —S(n)
S—S(n) S—S(n) B S—S(n) (3.66)
THEOREM 3.9: If either Ry exists or R(n; 1) is bounded, S(n) is monotone, and if there exists p

R; 1)
(n+m; 1)
T, m[S(n+ m)] converges more rapidly than S(n+ m).

) S(n+m)—S(n) .
Proor: By Lemma 3.11, a(n+1)

S—S(n+m) is monotone. Now let B(n) =S—T,,[S(n+m)] and A(n) =S—S(n+m). Then

and m such that llmR =1 and |1—R(n; m)|=p>0 for n sufficiently large, then

is bounded. Moreover, S(n) is monotone, so that

B(n+1)—B(n) _ b(n+1)
A(n+1)—A(n)  alntm+1)

:S(n+m)—S(n){ R(n+1; m)—R(n; m) }

a(n+m-+1) [1—R(n+1;m)][1—=R(n; m)]
_ __Rm)
:S(n+7(ml_lf(n) { ! R(n+1; m) }
il [1—R(n+1;m)][1—R(n; m)] (3.67)
and by Lemma 3.6, the latter quantity goes to zero as n — .
Hence,
Birg S_T+)n[S(n+ m)] =0 (368)

n—® S—-S(n-i*m)

and the theorem follows. One should note that if m=1, then the assumption thatR (n; 1) is bounded
can be dropped. This follows from (3.67).

Also note that the main difference between this theorem and Theorem 3.8 and its corollaries
is that here we have not required R, # 0. In fact we have not even required the existence of R,.

ML) =1, then

COROLLARY 3.4: If a(n) is of constant sign, Ry exists, Ry # 1, and Lf hm T

T, m[S(n+ m)] converges more rapdily than S(n+ m) as n— oo,
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PRrROOF: The result is an immediate consequence of Theorem 3.9 by noting that S(n) is even-
tually monotone and R (n; m) — R} # 1.
Note that since R, =0 1mphes R»=0, then when corollary 3.4 applies T;,[S(n+m)] con-

verges more rapidly than S(n+m) when R,,=0 if ll)m R(RL—B: 1. Another useful theorem
in this respect is the following.
THEOREM 3.10:If a(n)=1)"C(n), C(n) > C(n+ 1) > 0, R, # — 1 exists (mdhmM 1
n—x R (n e m; 1) ’

then T ,[S(n+m)] converges more ru;)u]/) than S(n+ m).
PRrROOF: The sequence S—S(2n+m) is monotone and S—7,,[S(2n+m)| converges to 0

since R, # 1. Moreover

el S@ear )] = PapllS@p=2=rm)ll _  6Ep=11)Fb(%0)
S ar ) =S(Zn—="24r i) " a(2n—1+m) +a(2n)

_ S =3%4F ) =5(@n=2) { R(2n—1; m)—R(2n—2; m)
S a@n—1+m)+a@n+m) |[[1—=R(2n—1; m)][1—R(2n—2; m)]}

S = lar ) =S (Ze= 1), { R(2n; m) —R(2n—1; m) }
a2n—1+m)+an+m) [[1—R(2n; m)][1—R(n—1; m)]

1_R(2n—2 m)
:S(211—2+m)—S(2n—2) R(2n—1; m)
a(2n—1) [1+R2n+m—1;1)][1—R(2n; m)][1—R(2n—1; m)]
(3.69)
Now by Lemma 3.4, R(n; m) = R # 1,— 1 as n— o and therefore by Lemma 3.11 S(n:-(+_)}_—l)5(nl
is bounded. Thus by Lemma 3.6, (3.69) converges to zero.
Hence by Theorem 3.2
. S=T.n[SCrn+1+m)]
!l*n; S—S(n+m) = Sy
A similar argument may be applied for the quotient
S= 10| IS par L 2R )|
SESSI(2 e ESmi)
Thus
. ST ..[SCrt+tl+m)]
TS SAm) (.20

and the theorem follows.
In the previous two theorems we have shown that for series of constant sign or certain alter-

nating series that a sufficient condition that T,,[S(n+ m)] converge more rapidly than S(n+m)

when lim R(n; 1) =0 is that lim E(R—(E——l—)—l)—l We will now show that the condition is neces-
n—>® n—>x \
sary for these types of series. ;
1
THEOREM 3.11: If a(n) is of constant sign and 11 im %=A# 1, A finite, then T,y

[S(n+ m)] converges with the same order of rapLsty as S(n+ m).

Proor: By Lemma 3.8 R(n; 1)= 0 as n— o and thus R (n; m) = 0 as n— oo. It follows by
Lemma 3.10 that }ll_gl S(—n:%rﬁ=l and the rest of the proof follows as in Theorem 3.9 ex-
cept that in this case

I S—Tin[S(n+m)]
< SRE MY S

—1—A4#0. (3.72)
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THEOREM 3.12: If a(n)= (— 1)"C(n), C(n) > C(n+1) > 0, and

. Rn; 1) ;
r111_)n;1 Rit e 1)—A # 1, A finite,

then T, n[S(n—+m)] converges with the same order of rapidity as S(n+m).
PRroOF: The proof is much the same as the previous theorem.

THEOREM 3.13: If a(n) is of constant sign and lim ——(:;:—%ZOO, then S(n+m) converges
more rapidly than T, ,[S(n+m)]. ’

Proo¥F: The proof follows in the same manner as Theorem 3.9.

R(n; 1)
o = (== ) > G el

THEOREM 3.14: If a(n)= (—1)"C(n), C(n) > C(n+1) >0 andl R+ m: 1)—> ®© as n—> ®©,
then S(n+ m) converges more rapLdly than T, ,[S(n+ m)].

COROLLARY 3.5: If |a(n)| is monotone decreasing or a(n) is of constant sign and if |R,|# 1 and

R(n; 1)

lim

mexlsts finite or infinite, then a necessary and sufficient condition that T, ,[S(n+ m)]

: . . Rmn; 1)
converge more rapidly than S(n+ m) is that }11«1)1010 B

In the above theorems we have established a number of conditions under which T, [S(n+m) ]
will converge more rapidly than S(n+ m). In general we have seen that it is desirable to select m,
if possible, so that |R,| <1, where R, =limR(n; m). Thus one should try to select m so that
|a (n+m)| < |a(n)| for n suﬂiCIently large and R, exists. Of course this will not guarantee that

Ru| <1, but if m is not chosen in this manner there is no chance that |R | <1. In fact, by Lemma
i|">.3 i|f Rm exists and m cannot be chosen so that |a(n+m)| < |a(n)| for n sufﬁciently large, then
Rn|=1.

Before leaving the T, transformation let us consider one more point. Initially we obtained
this transformation by determining g in the T transformation so that T was exact on geometric
series. A question which naturally arises is whether T, is exact on any other kind of series.
The answer is effectively in the negative as the next theorem shows.

THEOREM 3.15: T, ,, is exact on S(n+ m) if and only if

% N+m—1
Sam= Y Y app)xk (3.73)
n=N p=N k=0

for some N, where < is a constant such that |<| <1.
PRrROOF: Since

S=TnlS(n+m)]=y—f s [S=S(ntm)] = R(n: m) [S=S(n)]. (3.74)

it is clear that T ,,[S(n+ m)] =S for n sufficiently large if and only if there exists an N such that

S—S(n+
%()m) R(n; m) (3.75)

forn = N. But (3.75) is true if and only if R (n; m) = <, < q constant, when n =N. To see the latter
note that if R(n; m) =< when n= N, then

3 o

S—S(n+m) j=;+1 qutine '—E E
= = = = O:]_:l:l :(I:R(n; m) (376)
S—=5(n) -_2 a(j) ._E a(j)

On the other hand if T.,, is exact on S(n+m), then
S(n+m)—S=R(n; m)[S(n) —S] forn= N. (3.77)
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Thus
[S(n+m+1)—S]—[S(n+m)—S]=R(n+1; m)[S(n+1)—=S]—R(n; m)[S(n) —S]. (3.78)

Hence
a(n+m+1)=—S[R(n+1; m) —R(n; m) ]+ [R(n+1; m) —R(n; m)1S(n)
+R(n+1;m)[S(n+1) —S(n)]
=[R(n+1; m) —R(n;m)][S(n) =S]+a(n+m+1). (3.79)
Therefore,

S=S8(n) or R(n+1; m)=R(n; m) whenn=N.

The former is false and consequently R (n; m) = < if n = N. Now sinc€ R(n, m) is constant when
n=N and S(n) converges, then |<| < 1 and T, exact implies for k=1, 2, . . . that

a(n) <*=a(n+km)

a(n+1) ck=a(n+km+1)

a(n#h-m—l)‘x"'Za(n-i-km%-m—l), (3.80)
and therefore T, exact implies that
i a(n)=[a(N)+a(N+1)+ . . . +a(N+m—1)]i ock
=N =0
N+m—-1
= a(p) «<k
2 2P (3.81)

and the necessity is proved.
The sufficiency easily follows since 2 «* is a geometric series.

4. The T, Transformation
In the previous section we considered a transformation which we called the 7', ,, transforma-

tion. In particular we found the transformation to be quite effective in increasing the rate of con-
vergence of a series except when R;= 1. Thus if

S(n)=iﬁ, p>1 4.1)

we would not be surprised to find that 7', [S (n + m) ] does not converge more rapidly than S (n+ m)
since

=1 4.2)

for every m.

In searching for a transformation which will be effective when R;=1 we return to the T
transformation and recall that T';,, was obtained by requiring T’ to be exact on geometric series.
Thus we might obtain a transformation which is more effective on series such as (4.1) if we require
T to be exact on a series which more closely resembles (4.1) than a geometric series. These con-
siderations lead us to the following theorem.
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THEOREM 4.1: If a(n)= (n— 1)), then a necessary and sufficient condition for T to be exact is
n n ., o : 5 .
that gn)=, where = is a positive integer and < # 1. Before proving the theorem we should point

out that the symbol n'™" denotes the fractorial function, i.e.

1

(-1 =
e (e e e e R (4:3)
Thus ]
—1)x)=
e n(n+1) . .. (n+x—1)" )
We will now proceed with the proof of Theorem 4.1.
PrOOF: As in Theorem 3.1, the result will follow if and only if
— 2 a(k)+R(n, g(n)) E a(k) =0 4.5)
k=n+1 k=g(n)+1
when n is sufficiently large.
But (4.5) can be written
1
— D= R(n. g(n)) (g(n)) 70 =0, @.6)
The latter implies that
gn+ 1) —g(m) =2, @)
and hence
n
gln)=—_,

g n . - .
where o # 1 is any constant such that & 1s a positive integer. The above theorem leads us to
the following definition.
DEFINITION 4.1. Let m be a positive integer such that m > 1. Then we define the 7', trans-

formation by
T.w[S(nm)]=T[S(nm); n]

_S(nm)—R(nm, n)S(n)
- 1—R(nm, n) '

(4.8)

As in T, for convenience, we will adopt a slightly different notation for R(nm, n) in this spepial
case. Thus we will let R(nm, n)=p(n; m). This notation will be convenient and save confusion
with R(n; m) of section 3. Thus

~S(nm)—p(n; m)S(n)
an[S(nm)]— l-—p(n; ,n) 5 (49)
where
p(n: m) :——'"ZEZ;"). (4.10)

Some alternate forms for (4.9) are the following:

oy Sam) =S

TS (nm)] =8 (n) + >0 @)
_mS(n)S(nm—1)—=S(n—1)S(nm) — (m—1)S(n)S (nm).

Tl nral] S(n) =S(n—1) —m[S(nm) —S(nm—1)] ity
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THEOREM 4.2: If there exists an n and an M such that |1 —p(n, m)| = M > 0 for n sufficiently
large, then T .,[S(nm)] converges to S.
PRrooF: The result is a special case of Theorem 2.1.

COROLLARY 4.1: For every m such that lim p(n; m)=p,# 1, T.,[S(nm)] converges to S.

n— o

In the future the symbol py, will always refer to lim p(n; m).

n— o

LEMMA 4.1: If a(n)=0(n"") as n— © and < >1, then

lim (log n) (S(nm) —S(n))=0. 4.13)

PROOF: There exists m and N such that forn =N
|(log n) [S(nm) —S(n)]| < (log n) (la(n+1)|+ |a(n+2)|+ . . . +]a(nm)])
< (logn)M[(n+ 1)+ (n+2)""+ . . . + (nm)"]
< (log n)Mn(m—1) (n+1)""*"

<M(logn)(m—1)(n+1)"""".

But « >1 and (log n)(n+ 1)~ =*"converges to zero as n— . Thus the lemma follows.
THEOREM 4.3: If a(n) =0(n""), < > 1, then for every m such that T.,[S(nm)] converges as
n— o we have

lim T [S(nm)] = lim S(n) =S. (4.14)

PRoOOF: Let m be any integer such that m >1 and T.,, converges to L,, and assume that

S(mn)—S(n)

T-m[S(nm)] _S(n): l—p(n; m)

— Ln,—S#0 (4.15)

as n— ©, By Lemma 4.3 (logn)(S(mn) —S(n)) — 0 as n — . Thus, from (4.15), (logn)(1 — p(n; m))‘
—> 0as n—> . Now let n=mP, p=0,1,2,3, . . .. Then log n=p log m and consequently p—
if and only if n— . Therefore

limp[1—p(m?; m)]=0, (4.16)
p—®
where
ma(mp+1)
p(ms m) =T D
Now if we let b(p) = mPa(mP?) we have
b(p+1)
P ) S .18
p(m?; m) b(p) (4.18)
Now b(p+1)/b(p) is eventually positive since lim p(m?; m) =1.
Thus !
: b(p+1)]_
I!Ln; p[l 7 ]—0 4.19)
and by Raabe’s Test the series
b(p) (4.20)



diverges. But, for n sufficiently large,

|b(p)|=|mPa(mP)| < mPM(mP)-=
However, =M(m!==)P. (4.21)
M (mi=e) (4.22)

converges when m and < > 1. Thus (4.20) converges absolutely. This is a contradiction and the
theorem follows.

An interesting class of functions for which 7 , will be useful is considered in the following
theorem. For these functions one would expect T ,, to be more effective than T ,. This latter
statement can be easily verified by investigating R(n; m) and p(n; m). That is, by noting that
llm R(n; m)=1 and lim p(n; m) # 1, 0 for the class of functions dlscussed in the followmg theorem.

THEOREM 4.4: Ifan)—%, where u(n)"EC n"i, v(n Edng Lr=N,S=M, S>r+1
1() i=0

and C,, d, # 0, then T ,,[S(nm)] converges to S, i.e.,

lim T [S(m)] = a(n)

PROOF:

3 Ci( S dins-i

m i(nm)r—t G
ma(mn)= ,:2(, ) = ) 4.93
a(n) M B N ) ( & )

2 di(nm)s—i E Cinri

i=0 =0
Thus

li_r)ralcp(n; m)=mrs+1 # ] (4.24)

and Corollary 4.1 applies.
THEOREM 4.5: If pp, # 0, 1, then T ,[S(mn)] converges more rapidly than S(nm) if and only if

S—S(nm)
lim —————=pmn.
am S—S(n) Pm (4.25)

PROOF: The theorem is a special case of Theorem 2.2.

Before we proceed further let us recall that T, was initially considered to circumvent the
problem of R,,=1 in T,,. Consequently, a question which naturally arises and which is of some
importance is the following: Is the class of sequences in Theorem 4.5 distinct from the class
of sequences in Theorem 3.87 That is, we know that if R, # 0, 1, then a necessary and sufficient
condition for 7', to induce more rapid convergence on a sequence is that

R =1l (S—S(n+tm)j)
=i TE=5m)

But by Theorem 4.5T ,, will also induce more rapid convergence if (4.25) holds. Thus, do there
exist sequences for which both Theorem 4.5 and Theorem 3.8 apply and if so which transformation
would be preferable? The dilemma is effectively resolved by the following theorem.

THEOREM 4.6: If lim R(n, 1)=R,, 0 < |R,| <1 and py, exists, then p,=0.

PROOF: Suppose pn # 0, then we have

Rl s ) (4.26)
n>= q(nm)
B a(nm+1) a(nm+2) a(mn+m—1) _a(nm+m) 'a(n+1) .a(n)
Sl [a(nm+2) .a(nm+3) a(nm+m) a(n+1) a(n) a(nm)]
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11 S M_ 1

—SbE o gns R o — )

R, R, R, M 7' p, Rp2 (4.27)

Thus R7"-'=1 and, since m =2, |R|=1. The theorem therefore follows. We see therefore that
with the exception of R;=—1 the two theorems refer to disjoint sets of sequences. Note that in

the event m =2k that R,,=1 and in that case the two theorems refer to two distinct classes of
sequences without exception. That is, if 7', induces more rapid convergence by Theorem 4.5,
then Theorem 3.8 does not apply since we must have R,,=1 by Theorem 4.6.

LEMMA 4.2: If R =0, then p, =0.

PROOF: If €>0, then there exists an integer N such that if n=N|R (n; 1)) <1 and |R (n; 1) <e.
Thus |a(n+1)| <|a(n)| and |a(n+1)| < e€|la(n)|. Since nm = n+ 1, it follows that |a(nm)| < |
a(n+1)| <la(n+1) <|a(n)|. Hence, a(nm)| <e and the lemma follows.

a(n) |
+
LEMMA 4.3: If Ry # —1 and pn exists, then %ﬁil)p)ﬁ pm as n— » for each integer p = 0.
: ma(nm-+ p)
e . — p+1
Moreover, if R 1, then S — (—1)P*'p, as n—> o,
Proor: If |R,| <1, then, by Theorem 4.6 and Lemma 4.2, p,,=0. Also, as in Lemma 4.2,
la(nm+p) < la(n+2)| <ela(n+1)|. Thus %—)02 pm. Consideration of the expression
a(nm+p) :u(nm) ~a(nm+1) a(nk+p)  a(n)
a(n+1) a(n) a(nm) " " alnk+p—1) a(n+1)

yields the required result for |[R;|=1.
S — S(mn)
S—S(p)

THEOREM 4.7: If S(n) is monotone, R(n, 1) = R and p,, exists, then — Py as n— o,

ProoF: S(n) being monotone implies that Ry # — 1. Also

S(mn)—S(mn—m)_(z[(n—l)nl+]]+ +a[(n—l)m+m]
S(n)—S(n—1) a(n) R a(n) '

S—S(mn)
By lemma 4.3, this converges to py. Thus, by Theorem 3.2,—m—>pm.

THEOREM 4.8: If S(n) is monotone, R(n; 1) converges and py, # 0,1, then T ., converges more
rapidly than S(nm).

g S —S(nm) :
PrOOF: In this case T S — pm and Theorem 4.5 applies.
S 2
THEOREM 4.9: If a(n) is of constant sign and satisfies the conditions of Theorem 4.4, then

T . converges to S more rapidly than S(mn).
ProOF: Rn; 1)—1 and pp=m" 51 # 0, 1. Thes Theorem 4.8 applies.
The following examples illustrate the advantage of T, over T%,, when R, = 1.

EXAMPLE 4.1: LetS(n)=L. Then
n—+1

i) S=1

(i) a(n) -

:7(n,-{:l)

1
(iii) Rn=1 and P
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2n+m

() Tom[S(nt+m)]=5——""—

v) T-m[S(nm)] =
Obviously, T, and S(n+ m) converge at the same rate while 7'.,, is exact and converges more

rapidly than S(nm) and S(n+m).
ExXAMPLE 4.2: The transforms considered are T, and T ».

Let
S_(1+1)+1 e ] SFaE PRl
T 1+1 22(24+1) 32(34+1)
AL L]
Then ”":n il e and R,=1, pn=1/2.

na(es o)

Since ay, >0, pn #0, 1 and R(n; 1) converges, it follows that 7., converges more rapidly to
S than S(2n). However, this example is given by Lubkin [11] to show lhat TH diverges!

ExXAMPLE 4.3: The transforms considered are T, and T.,. Let S, = E kz Then S, — I12/6.

The transforms were applied in the forms

S(n+l)S(n—1 [S(n)]?
+1)+S(n—1)—2S(n)

T [S(n+1)]=
and
25(n)S(2n—1)—S(n—1)S(2n) —S(n)S(2n)

S(n)—S(n—1)—2[S(2n) —S(2rn—1)]

T..[S(2n)]=

for computational ease.

S(1) through S(10) was the only information used. The transforms were then reapplied to the
resulting sequences. The process was repeated to get the final results.

The process is illustrated in the following tabular form. The symbols 7%, and T% refer to n
applications of the respective transforms.

n Sa T.2[S(2n)] Error
1 1.000 000 0
2 1.250 000 0
3 1.361 111 1 0.159 722 2 D 01 0.477 118 4 D-01
4 1.423 611 1
5 1.463 611 1 162 166 7 D 01 .232 674 0 D-01
6 1.491 388 3
7 1.511 796 9 .163 123 3 D 01 .137 010 7 D-01
8 1.527 421 9
9 1.539 767 5 .163 592 4 D 01 .900 971 6 D-02
10 1.549 767 5

‘ T% [S(2n)] Error

L 0.164 480 6 D 01 0.127 879 3 D-03

The notation D 01 above indicates the position of the decimal. Thus 0.1278793 D—03 is
0.0001278793.
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n ST T, [S(n+1)] Error

1 1.0000000

2 1.2500000 0.145 000 0 D 01 0.194 934 1 D-00
3 1.3611111 150 396 8 D 01 .140 965 8 'D-00
4 1.4236111 .153 472 2 D 01 110 211 8 D-00
5 1.4636111 155 452 0 D 01 904 138 6 D-01
6 1.4913888 .156 831 2 D 01 i 776 221 0 D-01
7 1.5117969 157 846 4 D 01 .664 703 5 D-01
8 1.5274219 .158 624 6 D 01 .586 884 9 D-01
9 1.5397675 .159 239 9 D 01. .525 347 6 D01
10 1.5497675

112 S ar 1)1 Error

1.157 546 465 879 801 D 01 0.694 694 080 502 174 D-01
0.159 029 607 068 481 D 01 .546 379 961 634 098 D-01
159 998 128 111 844 D 01 .449 527 857 297 853 'D—-01
.160 677 629 679 179 381 577 700 564 282 D-01
161 179 840 516 212 D 01 .331 356 616 861 027 D-01
161 565 806 547 658 D 01 .292 760 013 716 415 D01

wlwlwiwie)
=1
—

T?.[S(n+1)] Error

0.161 820 895 875 573
162 275 177 312 803
162 602 451 412 998
162 847 324 260 966

01 0.267 251 080 924 982 D-01
01 221 822 037 201 894 D-01
01 189 095 527 182 483 D-01
01 164 608 242 385 657 D—-01

=ll=l=)=)

3,[S)n+1)] Error

0.163 445 775 421 854 D 01 0.104 763 126 296 867 D—01
163 575 016 014 021 D 01 918 390 670 801 172 D-02

In the above it should be noted that two applications of 7., have yielded better results than
four applications of 7.1 even though each application of T',; gave a better result than the previous
application of T,.
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