JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 73B, No. 3, July-September

Commutator Groups and Algebras^{*}

L. Greenberg**

(March 12, 1969)

Let H and K be connected, Lie subgroups of a Lie group G. The group [H, K], generated by all commutators $hkh^{-1}k^{-1}(h\epsilon H, k\epsilon K)$ is arcwise connected. Therefore, by a theorem of Yamabe, [H, K]is a Lie subgroup. If \mathfrak{H} , \mathfrak{H} denote the Lie algebras of H and K, respectively, then the Lie algebra of [H, K] is the smallest algebra containing $[\mathfrak{F}, \mathfrak{K}]$, which is invariant under $ad\mathfrak{F}$ and $ad\mathfrak{R}$. An immediate consequence is that if H and K are complex Lie subgroups, then [H, K] is also complex.

Key words: Adjoint representation; commutator; Lie algebra; Lie group.

Let G be a real Lie group, and let H and K be connected, Lie subgroups, with Lie algebras \mathfrak{h} and \mathfrak{f} . The group [H, K] generated by commutators $\{hkh^{-1}k^{-1}|h\epsilon H, k\epsilon K\}$ is arc-wise connected. This implies, by a theorem of Yamabe [1], that [H, K] is a Lie subgroup. The question we raise in this note is: What is the Lie algebra of [H, K]? We shall prove that this is the smallest algebra which contains $[\mathfrak{h},\mathfrak{f}]$ and is invariant under $ad\mathfrak{h}$ and $ad\mathfrak{f}$ (i.e., it is the smallest ideal in the algebra generated by \mathfrak{h} and \mathfrak{t} which contains $[\mathfrak{h},\mathfrak{f}]$.) An immediate consequence is that if H and K are complex groups, then [H, K] is also complex. Of course, one obtains as a special case the known fact that if H and K are normal, then $[\mathfrak{h}, \mathfrak{k}]$ is the Lie algebra of [H, K]. More generally, the Lie algebra of [H, K] is the smallest algebra \mathfrak{m} containing $[\mathfrak{h}, \mathfrak{f}]$, if and only if \mathfrak{m} is invariant under $ad\mathfrak{h}$ and $ad\mathfrak{k}$.

We shall first give a list of notation and terminology. In the following, G is a real Lie group, with Lie algebra g.

(1) If $g \in G$ and X is a tangent vector or vector field on G, then gX and Xg denote the left and right translation of X. (i.e., if l_g , r_g are the left and right translations of G, then $gX = dl_g(X)$ and $Xg = dr_g(X)$.)

(2) We denote by ad and Ad the adjoint representations of \mathfrak{g} and G, respectively. Thus ad(X)Y= [X, Y] and $Ad(g)Y = gYg^{-1}$. $\theta(g)$ denotes the inner automorphism $x \to gxg^{-1}$. Note that

$$Ad(\exp X) = \exp(adX)$$
 and $\theta(g) \exp X = \exp[Ad(g)X]$.

(3) If X is a tangent vector at some point of G, \hat{X} denotes the corresponding left-invariant vector field. Of course, \mathfrak{g} is the algebra of left-invariant vector fields on G.

(4) If X is a vector field, $g \in G$, then X_g is the value of X at g. If $\mathfrak{h} \subset \mathfrak{g}$ is a subalgebra,

 $\mathfrak{h}_g = \{ X_g | X \epsilon \mathfrak{h} \}.$ (5) If \mathfrak{h} and \mathfrak{k} are subalgebras of \mathfrak{g} , $[\mathfrak{h}, \mathfrak{k}]$ denotes the linear span of the commutators $\{[X, Y] | X \epsilon \mathfrak{h}, Y \epsilon \mathfrak{f}\}.$

(6) If \mathfrak{m} is a subspace of \mathfrak{g} , $\mathscr{A}\mathfrak{m}$ denotes the subalgebra generated by \mathfrak{m} .

(7) If m is a subspace of $\mathfrak{g}, \mathfrak{G}$ in denotes the subageonal generated by m. (7) If m is a subspace, \mathfrak{h} a subalgebra, with $\mathfrak{m} \subset \mathfrak{h}$, then $\mathfrak{I}(\mathfrak{m}, \mathfrak{h})$ denotes the smallest ideal in \mathfrak{h} which contains m. Thus $\mathfrak{J}(\mathfrak{m}, \mathfrak{h})$ is the linear span of m and elements of the form $(adX_1)(adX_2) \ldots (adX_r)Y$, where $X_i \in \mathfrak{h}, Y \in \mathfrak{m}$. We write $\mathfrak{I}[\mathfrak{h}, \mathfrak{k}]$ for $\mathfrak{I}([\mathfrak{h}, \mathfrak{k}], \mathscr{A}(\mathfrak{h}+\mathfrak{k}))$. (8) If $g: I \to G$ is a differentiable curve (where I is an interval), we write $\frac{dg}{dt}\Big|_{t_0}$ for the tangent

vector $dg \Big|_{t_0} \Big(\frac{d}{dt} \Big)$. We shall write $0((t-t_0)^k)$ for a function X(t) (with values in g) if there exist numbers M > 0, $\epsilon > 0$ so that $||X(t)|| < M |t-t_0|^k$ when $|t-t_0| < \epsilon$. (Here ||X|| is some norm in \mathfrak{g} .)

^{*}An invited paper. This work has been supported by National Science Foundation Grant NSF GP-5927.

^{**}Present address: University of Maryland, Department of Mathematics, College Park, Md. 20740.

¹ H. Yamabe, On an arcwise connected subgroup of a Lie group, Osaka Math. J. 2, 13-14 (1950).

For example, if g(t) is a differentiable curve in G, with $g(t_0) = 1$ and $\frac{dg}{dt} \Big| t_0 = X$, then (for t near t_0) log $[g(t)] = (t-t_0)X + O((t-t_0)^2)$, or equivalently, $g(t) = \exp \left[(t-t_0)X + O((t-t_0)^2) \right]$. The Campbell-Baker-Hausdorff formula implies.

$$\exp(tX) \exp(tY) = \exp\left(t(X+Y) + \frac{t^2}{2}[X,Y] + 0(t^3)\right).$$

LEMMA 1: Let H and K be connected Lie subgroups of G, with Lie algebras \mathfrak{h} and \mathfrak{k} . (a) If $h \in H$ and $Y \in \mathfrak{k}$, then $(Ad(h)|-1)Y \in \mathfrak{T}[\mathfrak{h},\mathfrak{k}]$.

(b) If $\mathbf{k} \in \mathbf{K}$ and $\mathbf{X} \in \mathfrak{h}$, then $(\mathrm{Ad}(\mathbf{k}) - 1)\mathbf{X} \in \mathfrak{I}[\mathfrak{h}, \mathfrak{f}]$.

PROOF: We shall prove (a). Note that $(Ad(h_1h_2) - 1)Y = Ad(h_1)(Ad(h_2) - 1)Y + (Ad(h_1) - 1)Y$. Thus, if the statement is true for h_1 and h_2 , it is true for h_1h_2 . Therefore it suffices to prove it for a set of generators. We shall show that it is true for $h = \exp(X), X \in \mathfrak{h}$.

$$Ad(\exp X) - 1 = \exp(adX) - 1 = \sum_{n=1}^{\infty} \frac{(adX)^n}{n!},$$

O.E.D.

while $(adX)^n Y \in \mathfrak{I}[\mathfrak{h}, \mathfrak{k}].$

LEMMA 2: Let H and K be connected, Lie subgroups of G, with Lie algebras \mathfrak{h} and \mathfrak{f} . Let $h(\mathfrak{t})$ (respectively $k(\mathfrak{t})$) be a differentiable curve in H (respectively K) with h(0)=1 (respectively k(0)=1). Let $g(\mathfrak{t})=h(\sqrt{\mathfrak{t}})k(\sqrt{\mathfrak{t}})h(\sqrt{\mathfrak{t}})^{-1}k(\sqrt{\mathfrak{t}})^{-1}$. Then for each $\mathfrak{t}_0 \ge 0$ at which $g(\mathfrak{t})$ is defined,

$$\frac{\mathrm{d}\mathbf{g}}{\mathrm{d}\mathbf{t}}\Big|_{\mathbf{t}_0} \boldsymbol{\epsilon} \,\mathfrak{I}[\mathfrak{h},\mathfrak{f}]_{\mathbf{g}(\mathfrak{t}_0)}.$$

PROOF: For $t_0 = 0$, $\frac{dg}{dt}\Big|_0 = [\hat{X}, \hat{Y}]_1$, where $X = \frac{dh}{dt}\Big|_0$ and $Y = \frac{dk}{dt}\Big|_0$. We must find out what happens when $t_0 > 0$. Let $u = \sqrt{t}$, $u_0 = \sqrt{t_0}$, $h_0 = h(u_0)$, $k_0 = k(u_0)$,

$$g_0 = g(t_0) = h_0 k_0 h_0^{-1} k_0^{-1},$$

$$X = \frac{dh(u)}{du} \Big|_{u_0}, Y = \frac{dk(u)}{du} \Big|_{u_0} \text{ and } Z = \frac{dg(t)}{dt}$$

The translated curve $g_0^{-1}g(t)$ has tangent vector $g_0^{-1}Z$ at 1. We shall use properties of exp to compute this tangent vector.

 t_0

Noting that

$$\frac{d}{du}(h_0^{-1}h(u)) \Big|_{u_0} = h_0^{-1}X,$$

$$\frac{d}{du} (h_0 h(u)^{-1}) \Big|_{u_0} = -\frac{d}{du} (h(u) ho^{-1}) \Big|_{u_0} = -X h_0^{-1}.$$

We obtain

(1) $h_0^{-1}h(u) = \exp\{(u-u_0)\hat{X} + 0((u-u_0)^2)\},\$ (2) $h_0h(u)^{-1} = \exp\{-(u-u_0)Ad(h_0)\hat{X} + 0((u-u_0)^2)\}.$ Similarly, (3) $k(u)k_0^{-1} = \exp\{(u-u_0)Ad(k_0)\hat{Y} + 0((u-u_0)^2)\}.$

(4) $k(u)^{-1}k_0 = \exp\{-(u-u_0)\hat{Y} + 0((u-u_0)^2)\}.$ Next, we see that

$$g_0^{-1}g(t) = k_0 h_0 k_0^{-1} h_0^{-1} h(u) k(u) h(u)^{-1} k(u)^{-1}$$

$$= \theta(k_0) \{ \left[\theta(h_0 k_0^{-1}) \left(h_0^{-1} h(u) k(u) k_0^{-1} \right) \right] \left[h_0 h(u)^{-1} k(u)^{-1} k_0 \right] \}.$$

and

Now by using equations (1) - (4),

(5) $\exp(sU + 0(s^2)) \exp(sV + 0(s^2)) = \exp\{s(U+V) + 0(s^2)\}$

and

(6)
$$\theta(g) \exp(U) = \exp[Ad(g)U],$$

a straightforward computation shows that $g_0^{-1}g(t) = \exp[W(t)]$, where

$$W(t) = (u - u_0) \left\{ A d(k_0 h_0) \left(A d(k_0^{-1}) - 1 \right) \hat{X} + A d(k_0) \left(A d(h_0) - 1 \right) \hat{Y} \right\} + 0 \left((u - u_0)^2 \right).$$

It follows that the tangent vector $g_0^{-1}Z$ is the value of the vector field

$$\frac{dW}{dt}\Big|_{t_0} = \frac{1}{\sqrt{t_0}} \{ A d(k_0 h_0) \left(A d(k_0^{-1}) - 1 \right) \hat{X} + A d(k_0) \left(A d(h_0) - 1 \right) \hat{Y} \}$$

at the unit element. Thus, by Lemma 1, $g_0^{-1}Z \in \mathfrak{I}[\mathfrak{h},\mathfrak{k}]_1$ and $Z \in \mathfrak{I}[\mathfrak{h},\mathfrak{k}]_{g_0}$.

LEMMA 3: [H, K] is normalized by H and K. PROOF: Let h and $h_1 \epsilon H$, $k \epsilon K$. Then

$$h_1(hkh^{-1}k^{-1})h_1^{-1} = (h_1hkh^{-1}h_1^{-1}k^{-1})(kh_1k^{-1}h_1^{-1}).$$

This shows that [H, K] is normalized by H. Since [H, K] = [K, H], the same is true for K.

Q.E.D. THEOREM: Let G be a real Lie group, and let H and K be connected, Lie subgroups with Lie algebras \mathfrak{h} and \mathfrak{k} . Then [H, K] is a Lie subgroup with Lie algebra $\mathfrak{I}[\mathfrak{h}, \mathfrak{k}]$.

PROOF. We have already remarked that Yamabe's theorem implies that [H, K] is a Lie subgroup. Let \mathfrak{m} denote its Lie algebra. We first show that $\mathfrak{I}[\mathfrak{h}, \mathfrak{f}] \subset \mathfrak{m}$. If $X \epsilon \mathfrak{h}, Y \epsilon \mathfrak{f}$, then the curve

$$g(t) = \exp\left(\sqrt{tX}\right) \, \exp\left(\sqrt{tY}\right) \, \exp\left(-\sqrt{tX}\right) \, \exp\left(-\sqrt{tY}\right)$$

lies in [H, K]. Its tangent vector at 1 is $[X, Y]_1$. This shows that $[\mathfrak{h}, \mathfrak{f}] \subset \mathfrak{m}$. Lemma 3 implies that \mathfrak{m} is invariant under $ad(\mathfrak{h})$ and $ad(\mathfrak{f})$. Therefore $\mathfrak{I}[\mathfrak{h}, \mathfrak{f}] \subset \mathfrak{m}$.

Now we show that $\mathfrak{m} \subset \mathfrak{I}[\mathfrak{h}, \mathfrak{f}]$. Equivalently, we show that $[H, K] \subset L$, where *L* is the connected Lie subgroup whose Lie algebra is $\mathfrak{I}[\mathfrak{h}, \mathfrak{f}]$. Let $h \in H$, $k \in K$, and let h(t) and k(t) be differentiable curves in *H* and *K*, respectively, so that h(0) = 1 = k(0), h(1) = h and k(1) = k. Let

$$g(t) = h(\sqrt{t})k(\sqrt{t})h(\sqrt{t})^{-1}k(\sqrt{t})^{-1}$$

Lemma 2 says that

$$\frac{dg}{dt}\Big|_{t_0} \epsilon \mathfrak{I}[\mathfrak{h},\mathfrak{k}]_{g(t_0)} \qquad (0 \le t_0 \le 1).$$

Therefore, the curve g(t) lies in the maximal connected integral manifold (through 1) of the differential system $\Im[\mathfrak{h},\mathfrak{f}]$. In other words, the curve g(t) lies in L. Thus, the commutators $hkh^{-1}k^{-1}\epsilon L$, and consequently $[H, K] \subset L$.

Q.E.D.

COROLLARY 1: Let G be a complex Lie group, and let H and K be connected (complex) Lie subgroups. Then [H, K] is a (complex) Lie subgroup.

PROOF: Considering G with its real structure, we see that [H, K] is a real Lie subgroup whose Lie algebra is $\mathfrak{T}[\mathfrak{h}, \mathfrak{k}]$ (where \mathfrak{h} and \mathfrak{k} are the Lie algebras of H and K). Since \mathfrak{h} and \mathfrak{k} are complex, so is $\mathfrak{T}[\mathfrak{h}, \mathfrak{k}]$ and [H, K].

COROLLARY 2: The Lie algebra of [H, K] is $\mathscr{A}[\mathfrak{h}, \mathfrak{k}]$, if and only if $\mathscr{A}[\mathfrak{h}, \mathfrak{k}]$ is invariant under $ad(\mathfrak{h})$ and $ad(\mathfrak{k})$.

(Paper 73B3-305)

Q.E.D.