JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 73B, No. 3, July–September 1969

Minimax Adjustment of a Univariate Distribution to Satisfy Componentwise Bounds and/or Ranking

A. J. Goldman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(May 7, 1969)

Consider a discrete probability distribution, represented by an *n*-vector **a**. This paper treats the problem of adjusting **a** as little as possible, in the sense of minimizing $\max_i |x_i - a_i|$, to obtain a distribution **x** which satisfies given componentwise bounds $\mathbf{L} \leq \mathbf{x} \leq \mathbf{U}$, or a given componentwise ranking, or both. The resulting linear programs are shown to admit special explicit solution algorithms.

Key words: Linear programs; mathematical models; minimax estimation; operations research; probability distribution.

1. Introduction

An *n*-vector **x** will be called a *probability vector* if its components x_i are nonnegative and sum to unity. This paper deals first with the following problem: given a probability *n*-vector **a**, and *n*-vectors **L** and **U**, to find a probability *n*-vector **x** which minimizes

$$F(\mathbf{x}) = \max_{i} |x_i - a_i| \tag{1.1}$$

subject to the constraints

$$\mathbf{O} \leq \mathbf{L} \leq \mathbf{x} \leq \mathbf{U}. \tag{1.2}$$

For the problem to be feasible, it is obviously necessary that

$$L_i \le U_i \qquad (\text{all } i), \tag{1.3}$$

$$\Sigma_i L_i \le 1 \le \Sigma_i U_i, \tag{1.4}$$

and so these conditions are imposed at the outset.

The motivating situation is one in which values must be attributed to the components x_i of an unknown discrete probability distribution. One type of information, e.g., data on some previous analogous situation, suggests the estimate **a**. Another, e.g., theoretical analyses or subjective opinions on the "present" situation, imposes the componentwise bounds (1.2). If **a** does not satisfy (1.2), a common procedure is to "adjust **a** as little as possible" so as to satisfy (1.2). Here the minimization of $F(\mathbf{x})$ is taken to express the "as little as possible" criterion in replacing **a** by a suitable **x**.

After some preliminaries are disposed of in section 2, a solution method for this problem is presented in section 3. In fact, the method is developed for the more general version in which (1.1) is replaced by

$$F(\mathbf{x}) = \max_{i} \{ w_{i} | x_{i} = a_{i} | \},$$
(1.5)

where the w_i are prescribed positive "weights." This corresponds to the case in which the accuracy, with which **x** approximates **a**, is more important for some components than for others.

Section 4 considers the analogous problem in which the componentwise-bound constraints (1.2) are replaced by a given componentwise ranking

$$x_1 \leq x_2 \leq \ldots \leq x_n. \tag{1.6}$$

Then, in section 5, the problem with *both* bounds *and* ranking is treated. (Both of these sections deal only with the "unweighted" objective function (1.1); the weighted version can be handled as a linear program, but our concern is with more explicit methods.)

Related work is found in $[1, 2, 3]^1$. The present paper, though self-contained, isolates in a form more convenient for reference some material appearing in [1].

2. Preliminaries

This section contains solution methods for four subproblems which will arise later. The material is presented for the sake of completeness; the same or similar problems have surely arisen in the literature as phases in other optimization analyses. In each case below, the solution method provides a constructive proof that certain obviously necessary conditions, for the existence of solutions, are also sufficient.

PROBLEM I. Given *n*-vectors **A** and **B**, and number S, find an *n*-vector **y** such that

$$\mathbf{A} \le \mathbf{v} \le \mathbf{B},\tag{2.1}$$

$$\Sigma_i \gamma_i = S. \tag{2.2}$$

(2.3)

(2.6)

The conditions

$$\sum_{i} A_{i} \leq S \leq \sum_{i} B_{i}, \tag{2.4}$$

which are clearly necessary for Problem I to have a solution, will be assumed to hold. If $S = \sum_i B_i$ then $y = \mathbf{B}$ is clearly a solution, so we assume $S < \sum_i B_i$. Then k = n has the property

 $\mathbf{A} \leq \mathbf{B}$.

$$\sum_{j \le k} B_j + \sum_{j > k} A_j > S, \tag{2.5}$$

but k=0 does not, and so there is a smallest $k \in \{1, 2, \ldots, n\}$ with this property. For that k, not only (2.5) but also

 $\sum_{i < k} B_i + \sum_{i > k} A_i \leq S$

holds. Now set

$$y_j = B_j \qquad \text{for } j < k,$$

$$y_j = A_j \qquad \text{for } j > k,$$

$$y_k = S - \dot{\Sigma}_{j \neq k} y_j;$$

that $A_k \leq y_k \leq B_k$ follows from (2.5) and (2.6).

PROBLEM II. Given *n*-vector \mathbf{Z} , positive *n*-vector \mathbf{w} , and number S, find the minimum value z^* of z such that $z \ge 0$ and

$$\sum_{i=1}^{n} \max\{0, Z_i - z/w_i\} \le S.$$
(2.7)

The condition $S \ge 0$, which is clearly necessary for Problem II to have a solution, will be assumed. Moreover, if S = 0, then each of the nonnegative summands in (2.7) would have to vanish, yielding

 $z^* = \max \{0, \max_i w_i Z_i\}$

as the solution; thus from now on we assume S > 0. Furthermore if $Z_i \leq 0$, then the *i*th summand in (2.7) will vanish for *every* $z \geq 0$, and so such Z_i can be deleted from the problem in advance; if none are left then clearly $z^*=0$ is the solution. So $Z_i > 0$ will be assumed.

¹Figures in brackets indicate the literature references at the end of the paper.

Now choose $Z_{n+1} = 0$ and any $w_{n+1} > 0$, renumber so that

 $w_1Z_1 \ge w_2Z_2 \ge \cdots \ge w_nZ_n > w_{n+1}Z_{n+1} = 0,$

and set

$$Z_j^* = \sum_i Z_i - w_j Z_j \sum_i (1/w_i).$$

The sequence $\{Z_j^*\}_{j=1}^{n+1}$ is given by the recursion

$$Z_{j+1}^* = Z_j^* + (w_j Z_j - w_{j+1} Z_{j+1}) \sum_{i=1}^{j} (1/w_i),$$

which shows it to be nondecreasing. And unless $\sum_{i=1}^{n} Z_i < S$ (in which case $z^* = 0$ is the solution). we have

$$Z_1^* = 0 < S \leq \sum_{i=1}^{n} Z_i = Z_{n+1}^*.$$

Thus there is a unique $J \in \{1, 2, \ldots, n\}$ such that

$$0 = Z_1^* \le Z_2^* \le \dots \le Z_J^* < S \le Z_{J+1}^* \le \dots \le Z_{n+1}^*.$$
(2.8)
If $0 \le z < w_{J+1}Z_{J+1}$, then

 $\sum_{i} \max\{0, Z_{i} - z/w_{i}\} \ge \sum_{i=1}^{J+1} Z_{i} - z \sum_{i=1}^{J+1} (1/w_{i}) > Z_{i+1}^{*} \ge S.$

so that z does not satisfy (2.7). But if $w_{J+1}Z_{J+1} \leq z \leq w_J Z_J$, then (2.7) becomes

$$\sum \{Z_i - z \sum \{(1/w_i) \leq S \\ z \geq z^* = (\sum \{Z_j - S) / \sum \{(1/w_i) \}$$

$$(2.9)$$

which is equivalent to

By use of (2.8), the value of z^* proposed in (2.9) is easily verified to satisfy $w_{J+1}Z_{J+1} \leq z \leq w_J Z_J$, and so is indeed the smallest $z \ge 0$ obeying (2.7).

PROBLEM III. Given *n*-vector \mathbf{Z} , positive *n*-vector \mathbf{w} and number S, find the minimum value z^{**} of z such that $z \ge 0$ and

$$\sum_{i=1}^{n} \min\left\{Z_{i}, \, z/w_{i}\right\} \ge S. \tag{2.10}$$

The condition

$$\Sigma_1^n Z_i \ge S,\tag{2.11}$$

which is obviously necessary if (2.10) is to have a solution, will be assumed. If equality holds in (2.11), then for each i the ith summand in (2.10) must equal Z_i , so that the solution is

$$z^{**} = \max\{0, \max_i w_i Z_i\};\$$

thus from now on we assume strict inequality in (2.11). Moreover, if $Z_i < 0$ then for any $z \ge 0$, Z_i could be replaced by 0 on the left-hand side of (2.10) without change in value; hence it can be assumed that all $Z_i \ge 0$. Now $z^{**} = 0$ will give the solution if $S \le 0$, so we also assume S > 0. Choose $Z_{n+1} = 0$ and any $w_{n+1} > 0$, renumber so that

$$w_1Z_1 \ge w_2Z_2 \ge \dots \ge w_nZ_n \ge w_{n+1}Z_{n+1} = 0,$$

and set

$$Z_{i}^{**} = w_{j}Z_{j} \Sigma_{i}^{i} (1/w_{i}) + \Sigma_{j+1}^{u}Z_{i}$$

The sequence $\{Z_i^{**}\}_{1}^{n+1}$ obeys the recursion

$$Z_{j+1}^{**} = Z_j^{**} + (w_{j+1}Z_{j+1} - w_jZ_j) \sum_{i} (1/w_i)$$

and so is nonincreasing. Since

$$Z_{n+1}^{**} = 0 < S < \sum_{i=1}^{n} Z_{i} = Z_{1}^{**},$$

there is a unique $J \in \{1, 2, \ldots, n\}$ such that

$$Z_1^* \ge Z_2^* \ge \dots \ge Z_J^* \ge S > Z_{J+1}^* \ge \dots \ge Z_{n+1}^* = 0.$$

$$(2.12)$$

Now if $z \leq w_{J+1}$, then

$$\sum_{i} \min \{Z_{i}, z/w_{i}\} \leq z \sum_{1}^{J+1} (1/w_{i}) + \sum_{J+2}^{n} Z_{1} \leq Z_{J+1}^{**} < S$$

so that z does not satisfy (2.10). But if $w_{J+1}Z_{J+1} \leq z \leq w_JZ_J$, then (2.10) becomes

$$z\Sigma_1^J(1/w_i) + \sum_{l=1}^n Z_l \leq S$$

which is equivalent to

$$z \ge z^{**} = (S - \sum_{j=1}^{n} Z_j) / \sum_{j=1}^{n} (1/w_i).$$
(2.13)

By use of (2.12), the value of z^{**} proposed in (2.13) is easily verified to satisfy $w_{J+1}Z_{J+1} \leq z \leq w_JZ_J$, and so is indeed the smallest $z \geq 0$ obeying (2.10).

PROBLEM IV. Given *n*-vectors \mathbf{A} and \mathbf{B} , and number S, find an *n*-vector \mathbf{y} such that

$$\mathbf{A} \le \mathbf{y} \le \mathbf{B},\tag{2.14}$$

$$\Sigma_i \gamma_i = S, \tag{2.15}$$

$$y_1 \le y_2 \le \dots \le y_n. \tag{2.16}$$

Here it is convenient to define nondecreasing sequences $\{A'_i\}_{1}^{n}$ and $\{B'_i\}_{1}^{n}$, forming the components of respective vectors \mathbf{A}' and \mathbf{B}' , by

$$A'_{i} = \max_{j \le i} A_{j}, \qquad B'_{i} = \min_{j \ge i} B_{j}. \tag{2.17}$$

Then (2.16) and (2.14) are readily proved equivalent to (2.16) and

$$\mathbf{A}' \le \mathbf{y} \le \mathbf{B}'. \tag{2.14'}$$

Thus necessary conditions, for Problem IV to have a solution, are

$$\mathbf{A}' \leq \mathbf{B}' \qquad (\text{i.e.}, A_i \leq B_j \text{ for } i \leq j), \tag{2.18}$$

$$\sum_{i} A_{i}^{\prime} \leq S \leq \sum_{i} B_{i}^{\prime} \qquad (2.19)$$

These will be assumed to hold.

If
$$\mathbf{A}' = \mathbf{B}'$$
, then $\mathbf{y} = \mathbf{A}' = \mathbf{B}'$ is the solution. For $\mathbf{A}' \neq \mathbf{B}'$, define

$$\theta = \left[S - \sum_{i} A'_{i}\right] / \left[\sum_{i} B'_{i} - \sum_{i} A'_{i}\right]$$

and set

 $\mathbf{y} = \mathbf{A}' + \theta (\mathbf{B}' - \mathbf{A}').$

Then (2.15) follows from the choice of θ , and (2.14') becomes $0 \le \theta \le 1$, which follows from (2.19). As for (2.16), $i \le j$ implies that $A'_i \le A'_j$ and $B'_i \le B'_j$, so that

$$y_i = (1-\theta)A'_i + \theta B'_i \le (1-\theta)A'_i + \theta B'_i = y_j.$$

(The same approach yields a simpler solution method for Problem I than the one given above.)

3. Solution for Componentwise Bounds

We now return to the problem posed at the beginning of the paper, with objective function (1.5). It can be rephrased as the following linear program: choose a number z and a probability *n*-vector **x**, to minimize z subject to the conditions

$$\mathbf{0} \leq \mathbf{L} \leq \mathbf{x} \leq \mathbf{U},\tag{3.1}$$

$$z \ge w_i(x_i - a_i) \qquad (\text{all } i), \tag{3.2}$$

$$z \ge w_i(a_i - x_i) \qquad (\text{all } i). \tag{3.3}$$

The constraints of the linear program, including the requirement that \mathbf{x} be a probability vector, can be written as follows:

 $\max\{L_{i}, a_{i} - z/w_{i}\} \le x_{i} \le \min\{U_{i}, a_{i} + z/w_{i}\} \quad (\text{all } i),$ (3.3a)

$$\Sigma_i x_i = 1. \tag{3.3b}$$

A redundant constraint $z \ge 0$ can also be imposed. Thus the aim is to determine the smallest $z \ge 0$ for which the system (3.3a), (3.3b) has a solution **x**.

For any fixed z, the system is an instance of Problem I in Section 2, with S = 1 and

$$A_i = \max \{L_i, a_i - z/w_i\}, \quad B_i = \min \{U_i, a_i + z/w_i\}.$$

By the analysis in Section 2, a solution **x** exists if and only if

$$\max\{L_i, a_i - z/w_i\} \le \min\{U_i, a_i + z/w_i\} \quad (\text{all } i), \tag{3.4}$$

$$\sum_{i} \max\left\{L_{i}, a_{i} - z/w_{i}\right\} \leq 1, \tag{3.5}$$

$$\Sigma_i \min\{U_i, a_i + z/w_i\} \ge 1.$$
 (3.6)

So the objective is to determine the smallest value z_{\min} of z which will satisfy (3.4), (3.5) and (3.6).

Now the left-hand side in (3.4) is nonincreasing in z, while the right-hand side is nondecreasing. The left-hand sides of (3.5) and (3.6) are respectively nonincreasing and nondecreasing in z. It follows that, if

> $z^{\circ} = \text{least } z \text{ obeying (3.4)},$ $z^* = \text{least nonnegative } z \text{ obeying (3.5)},$ $z^{**} = \text{least nonnegative } z \text{ obeying (3.6)},$

$$z_{\min} = \max\{z^{\circ}, z^{*}, z^{**}\}.$$
(3.7)

Since $L_i \leq U_i$, (3.4) reduces to

$$a_i - z/w_i \le U_i, \ L_i \le a_i + z/w_i \qquad (all \ i),$$

and so z° is readily determined as

$$z^{\circ} = \max \{ \max_{i} w_{i}(a_{i} - U_{i}), \max_{i} w_{i}(L_{i} - a_{i}) \}.$$
(3.8)

Next, (3.5) can be rewritten

$$\sum_{i} \max\{0, (a_i - L_i) - z/w_i\} \le 1 - \sum_{i} L_i, \tag{3.9}$$

so that determining z^* is an instance of Problem II in Section 2, with

$$\mathbf{Z} = \mathbf{a} - \mathbf{L}, \qquad S = 1 - \Sigma_i L_i \,.$$

The feasibility condition $S \ge 0$ is satisfied by virtue of the first part of (1.4).

Finally, (3.6) is equivalent to

$$\Sigma_i \min\{U_i - a_i, z/w_i\} \ge 0, \tag{3.10}$$

so that the determination of z^{**} is an instance of Problem III in Section 2, with

$$\mathbf{Z} = \mathbf{U} - \mathbf{a}, \qquad S = 0.$$

The feasibility condition $\sum_{i} Z_{i} \ge S$ is satisfied by virtue of the second part of (1.4).

With z° , z^{*} , and z^{**} determined, z_{\min} can be found from (3.7). Then a single optimizing **x** can be found by applying, to the previously-mentioned instance of Problem I with $z = z_{\min}$, the solution method given in Section 2. Concerning the nonuniqueness of **x**, compare Section 5 of [1].

4. Solution for Componentwise Ranking

The next problem to be considered is the determination of a probability *n*-vector \mathbf{x} , among those which obey the componentwise ranking

$$x_1 \le x_2 \le \dots \le x_n, \tag{4.1}$$

which minimizes

$$F(\mathbf{x}) = \max_i |x_i - a_i|.$$

This too can be reformulated as a linear program, namely to select a number z and a vector $\mathbf{x} \ge 0$, so as to minimize z subject to

$$\Sigma_i x_i = 1, \tag{4.2}$$

$$z \ge x_i - a_i \qquad (\text{all } i), \tag{4.3}$$

$$z \ge a_i - x_i \qquad (\text{all } i). \tag{4.4}$$

Conditions (4.3) and (4.4), together with $\mathbf{x} \ge 0$, can be abbreviated to

$$\max\left\{0, a_i - z\right\} \le x_i \le a_i + z. \tag{4.5}$$

A redundant constraint $z \ge 0$ can also be imposed. Thus the aim is to determine the smallest $z \ge 0$ for which the system (4.1), (4.2), (4.5) has a solution **x**.

For any fixed $z \ge 0$, the system is an instance of Problem IV in Section 2, with S = 1 and

$$A_i = \max\{0, a_i - z\}, B_i = a_i + z.$$

It is convenient to define vectors \mathbf{a}^* and \mathbf{a}^{**} , with nondecreasing component sequences given by

$$a_i^* = \max_{j \le i} a_i, \ a_i^{**} = \min_{j \ge i} a_i.$$

Then the vectors \mathbf{A}' and \mathbf{B}' , described in Section 2's analysis of Problem 4, are given by

$$A'_i = \max\{0, a^*_i - z\}, B'_i = a^{**}_i + z.$$

The conditions (2.18) and (2.19), for Problem IV to be feasible, become

$$\max\left\{0, a_i - z\right\} \le a_j + z \text{ for } i \le j,\tag{4.6}$$

$$\sum_{i} \max\{0, a_{i}^{*} - z\} \leq 1 \leq \sum_{i} (a_{i}^{**} + z).$$
(4.7)

Now the objective is to find z_{\min} , the smallest $z \ge 0$ satisfying (4.6) and (4.7). Arguing as in Section 3, one finds that if

 $z^0 =$ least nonnegative z obeying (4.6),

 z^* = least nonnegative z obeying first part of (4.7),

$$z^{**} =$$
 least nonnegative z obeying second part of (4.7),

then

$$z_{\min} = \max\{z^0, z^*, z^{**}\}.$$
(4.8)

Since $z \ge 0$ and each $a_j \ge 0$, z^0 is readily determined from (4.6) as

$$z^{0} = \max \{0, \max_{i \le j} (a_{i} - a_{j})/2\}.$$
(4.9)

Since $a_i^{**} \leq a_i$, implying

$$\sum_i a_i^{**} \leq \sum_i a_i = 1,$$

 z^{**} is readily determined from (4.7) as

$$z^{**} = (1 - \sum_{i} a_i^{**})/n. \tag{4.10}$$

Finally, the determination of z^* is an instance of Problem II, with S=1, $w_i=1$, and $Z_i=a_i^*$.

5. Solution for Componentwise Bounds and Ranking

The final version to be treated is the determination of a probability *n*-vector **x** which minimizes $\max_i |x_i - a_i|$, subject *both* to the ranking condition

$$x_1 \leqslant x_2 \leqslant \ldots \leqslant x_n,$$

and to the componentwise bounds

$$0 \leq L \leq x \leq U.$$

The analysis proceeds much as in the preceding Section, with (4.5) replaced by

$$\max\{L_i, a_i - z\} \le x_i \le \min\{U_i, a_i + z\}.$$
(5.1)

Again we have an instance of Problem IV, with S = 1, and with

 $A_i = \max \{L_i, a_i - z\}, \quad B_i = \min \{U_i, a_i + z\}.$

As before, set

$$a_i^* = \max_{j \le i} a_j, \ a_i^{**} = \min_{j \ge i} a_j,$$

and also put

$$L_i' = \max_{j \le i} L_j, \qquad U_i' = \min_{j \ge i} U_j$$

Then the vectors \mathbf{A}' and \mathbf{B}' are now given by

$$A'_{i} = \max\{L'_{i}, a^{*}_{i} - z\}, \qquad B'_{i} = \min\{U'_{i}, a^{**}_{i} + z\}.$$
(5.2)

We continue to have

$$z_{\min} = \max\{z^0, z^*, z^{**}\}, \tag{5.3}$$

where

and so

$$z^0 = \text{least } z \text{ for which } \mathbf{A}' \leq \mathbf{B}',$$

 $z^* = \text{least nonnegative } z \text{ for which } \Sigma_i \mathcal{A}'_i \leq 1,$
 $z^{**} = \text{least nonnegative } z \text{ for which } \Sigma_i \mathcal{B}'_i \geq 1.$

The problem defining z^0 , and hence the overall problem, has a solution only if

$$L_i \le U_i \qquad \text{for } i \le j. \tag{5.4}$$

Assuming this holds, the remaining conditions defining z^0 are (for $i \leq j$)

$$L_{i} \leq a_{j} + z, \ a_{i} - z \leq U_{j}, \ a_{i} - z \leq a_{j} + z,$$

$$z^{0} = \max_{i \leq j} \max\{L_{i} - a_{j}, \ a_{i} - U_{j}, \ (a_{i} - a_{j})/2\}.$$
 (5.5)

The condition defining z^* reads

$$\sum_{i} \max\{L'_{i}, a^{*}_{i} - z\} \leq 1,$$

which can be rewritten

$$\sum_{i} \max\{0, (a_{i}^{*} - L_{i}') - z\} \leq 1 - \sum_{i} L_{i}'$$

This is an instance of Problem II, with $w_i = 1$,

$$Z_i = a_i^* - L_i', \qquad S = 1 - \sum_i L_i'.$$

The consistency condition $S \ge 0$, i.e.,

$$\Sigma_i L_i' \leq 1$$
,

is required for a solution to exist.

The condition defining z^{**} reads

$$\Sigma_i \min \{ U'_i, a^{**}_i + z \} \ge 1,$$

which can be rewritten

$$\sum_{i} \min \left\{ U_i' - a_i^{**}, z \right\} \ge 1 - \sum_{i} a_i^{**}.$$

This is an instance of Problem III, with $w_i = 1$,

$$Z_i = U'_i - a^{**}_i, \qquad S = 1 - \sum_i a^{**}_i.$$

The consistency condition $\sum_i Z_i \ge S$, i.e.,

$$\sum_{i} U_i' \ge 1 \tag{5.7}$$

is required for a solution to exist.

Thus the conditions on the data L and U, for the componentwise bounds and ranking to be consistent, are given by (5.4), (5.6) and (5.7).

(5.6)

6. References

Goldman, A. J., and Meyers, P. R., Minimax error selection of a discrete univariate distribution with prescribed componentwise bounds, J. Res. NBS **72B** (Math. Sci.), No. 4, 263–271 (1968).
 Goldman, A. J., Minimax error selection of a discrete univariate distribution with prescribed componentwise ranking, J. Res. NBS **72B** (Math. Sci.), No. 4, 273–277 (1968).
 Goldman, A. J., Minimax error selection of a univariate distribution with prescribed componentwise bounds and ranking, J. Res. Nat. Bur. Stand. (U.S.), **73B** (3), 225–230 (1969).

(Paper 73B3-303)