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Cons id er a discrete probability di s tribution, re presented by an n ·vector a . This pape r treats the 
problem of adjusting a as lillie as poss ible, in the sense of minimizin g maxdxi - ad, to obtain a di s· 
tribution x which sa ti sfi es give n compon entwise bounds L .;; x ';; U , or a give n compone ntwise ra nkin g, 
or both . The resulting linear programs are shown to admit special expli cit solution algorithms. 
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1. Introduction 

An n-vector x will be called a probability vector if its compone nts Xi are nonnegative and sum 
to unity. This paper deals first with the following proble m: given a probability n-vector a, and 
n-vectors L a nd U , to find a probability n -vector x which minimizes 

F(x) = maxdxi - ai I 
subject to the constraints 

O .;;; L .;;; x ';;; U. 

For the problem to be feasible, it is obviously necessary that 

(all i), 

and so these conditions are imposed at the outset. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

The motivating situation is one in which values must be attributed to the components Xi of an 
unknown discrete probability distribution. One type of information, e.g. , data on some previous 
analogous situation, suggests the estimate a. Another, e .g., theoretical analyses or subjective 
opinions on the "present" situation, imposes the componentwise bounds (1.2). If a does not satisfy 
(1.2), a common procedure is to "adjust a as little as possible " so as to satisfy (1.2). Here the 
minimization of F(x) is taken to express the "as little as possible" criterion in replacing a by a 
suitable x. 

After some preliminaries are disposed of in section 2, a solution method for this proble m is 
presented in sec tion 3. In fact, the method is developed for the more general version in whic h 
(1.1) is replaced by 

F(x) = maXi {WdXi = aM, (1.5) 

where the W i are prescribed positive "weights." This corresponds to the case in which the accuracy, 
with which x approximates a , is more important for some compone nts than for others. 
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Section 4 considers the analogous problem in which the componentwise-bound constraints 
(1.2) are replaced by a given componentwise ranking 

(1.6) 

Then, in section 5, the problem with both bounds and ranking is treated. (Both of these sections 
deal only with the "unweighted" objective function (1.1); the weighted version can be handled as 
a linear program, but our concern is with more explicit methods.) 

Related work is found in [1, 2, 3)1. The present paper, though self-contained, isolates in a 
form more convenient for reference some material appearing in [1]. 

2. Preli n:linaries 

This section contains solution methods for four subproblems which will arise later. The 
material is presented for the sake of completeness; the same or similar problems have surely arisen 
in the literature as phases in other optimization analyses . In each case below, the solution method 
provides a constructive proof that certain obviously necessary conditions, for the existence of solu
tions, are also sufficient. 

PROBLEM 1. Given n-vectors A and B, and number S, find an n-vector y such that 

A ~ y~ B, (2.1) 

~jYi=S . (2.2) 

The conditions 
A~B, (2.3) 

~;Ai ~ S ~ LiBi, (2.4) 

which are clearly necessary for Problem I to have a solution, will be assumed to hold. If S = LiB; 
then y = B is clearly a solution, so we assume S < LiBi. Then k = n has the property 

(2.5) 

but k=O does not, and so there is a smallest kE{l , 2, ... , n} with this property. For that k, not 
only (2.5) but also 

holds. Now set 
Yj=Bj 

Yj=A j 

Yk = S - !j,<kYj; 

that Ak ~ Yk ~ Bk follows from (2.5) and (2.6). 

for j < k, 

for j > k, 

(2.6) 

PROBLEM II. Given n-vector Z, positive n-vector w, and number S, find the minimum value 
z* of z such that z :;?!: ° and 

L\' max {a, Z;-z/wJ ~S. (2.7) 

The condition 5 :;?!: 0, which is clearly necessary for Problem II to have a solution, will be as
sumed. Moreover, if S = 0, then each of the nonnegative summands in (2.7) would have to vanish, 
yielding 

as the solution; thus from now on we assume S > 0. Furthermore if Z; ~ 0, then the ith summand 
in (2.7) will vanish for every z :;?!: 0, and so such Zi can be deleted from the problem in advance; 
if none are left then clearly z*= ° is the solution. So Zi > ° will be assumed. 

IFigures in brackets indicate the literature" references at the end of the paper. 
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Now choose ZI/+I = 0 and any Wn+1 > 0, renumber so that 

and set 

The sequence {Zf}'j+1 is given by the recursion 

which shows it to be nondecreasing. And unless ~:, Z i < 5 (in which case z* = 0 is the solution), 
we have 

Thus there is a unique JE{I , 2, ... , n} such that 

0= Z t ~ Z i ~. . . ~ Z / < 5 ~ Z /+ I ~. . . ~ Z ,;+ I. (2.8) 
If 0 ~ z < WJ+ IZJ+ I , then 

so that z does not satisfy (2.7). But if WJ+IZJ+ I ~ z ~ wJZj, then (2.7) becomes 

~-{Zi - Z ~.( (l/wi) ~ 5 

which is equivalent to 
(2.9) 

By use of (2.8), the value of z* proposed in (2.9) is easily verified to satisfy WJ+IZJ+l ~ Z ~ wJZj, 
and so is indeed the smallest z ;;.: 0 obeying (2.7). 

PROBLEM III. Given n·vector Z, positive n·vector wand number 5, find the minimum value 
z** of z such that z;;': 0 and 

~\' min {Z;, Z/Wi} ;;.:5. (2.10) 

The condition 
(2.11) 

which is obviously necessary if (2.10) is to have a solution, will be assumed. If equality holds in 
(2.11), then for each i the ith summand in (2.10) must equal Zi, so that the solution is 

z**= max {O, maXi WiZi}; 

thus from now on we assume strict inequality in (2.11). Moreover, if Zi < 0 then for any z;;': 0, 
Zi could be replaced by 0 on the left·hand side of (2.10) without change in value; hence it can be 
assumed that all Zi;;': O. Now z** = 0 will give the solution if 5 ~ 0, so we also assume 5 > O. 

Choose ZII+I = 0 and any Wn+l > 0, renumber so that 

and set 

Z/* = WjZj ~1 (l/Wi) + ~J'+ I Zi . 
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------ -

The sequence {Zj**HHI obeys the recursion 

ZNI =Zj*+ (Wj + IZj + l-wjZj) I~ (l/Wi) 

and so is nonincreasing. Since 

there is a unique Jd1, 2, ... , n} such that 

(2.12) . 

Now if z ,;;;; WJ+I, then 

so that z does not satisfy (2.10). But if W.I+IZ.l+1 ,;;;; z';;;; wJZJ, then (2 .10) becomes 

which is equivalent to 

(2.13) 

By use of (2.12), the value of z** proposed in (2.13) is easily verified to satisfy W.l+1Z.l+l ,;;;; z';;;; wJZJ, 
and so is indeed the smallest z;?; 0 obeying (2.10). 

PROBLEM IV. Given n-vectors A and B, and number S; find an n-vector y such that 

A';;;;y,;;;;8, 

LiYj=S, 

(2.14) 

(2.15) 

(2.16) 

Here it is convenient to define nondecreasing sequences {AD? and {Ba':, forming the com
ponents of respective vectors A' and 8' , by 

Then (2.16) and (2.14) are readily proved equivalent to (2.16) and 

A'';;;;y,;;;;8'. 

Thus necessary conditions, for Problem IV to have a solution, are 

A',;;;;8' (i.e. ,A j ,;;;; Bj for i ,;;;; j), 

These will be assumed to hold. 

If A' = B', then y=A' =8' is the solution. For A' "'" B', define 

and set 

y=A' + O(8'-A'). 
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(2.17) 

(2.14') 

(2.18) 

(2.19) 



Then (2.15) follows from the choice of (), and (2.14') becomes 0 ~ () ~ 1, which follows from (2.19). 
As for (2.16) , i ~ j implies that A; ~ A; and B; ~ B;, so that 

Yi= (l-(})A;+(}B; ~ (l-(})Aj+(}B;=Yj· 

(The same approach yields a simpler solution method for Problem I than the one given above.) 

3. Solution for Componentwise Bounds 

We now return to the problem posed at the beginning of the paper, with objective function 
(1.5). It can be rephrased as the following linear program: choose a number Z and a probability 
n·vector x, to minimize Z subject to the conditions 

O~L~x~U, 

Z ~ Wi(Xi-ai) (all i), 

(all i). 

(3.1) 

(3.2) 

(3.3) 

The constraints of the linear program, including the requirement that x be a probability vector, can 
be written as follows: 

max{L;, a;-z/wi} ~Xi ~ min {Vi, aj+Z/Wi} (all i), (3.3a) 

(3.3b) 

A redundant constraint Z ~ 0 can also be imposed. Thus the aim is to determine the smallest 
Z ~ 0 for which the system (3.3a), (3.3b) has a solution x. 

For any fixed z, the system is an instance of Problem I in Section 2, with S = 1 and 

A;= max {Li, ai-z/wi} , B;= min {Vi , a;+z/w;}. 

By the analysis in Section 2 , a solution x exists if and only if 

(alIi), 

~; max {Li, ai-z/wi} ~ 1, 

~; min {Vi, ai+ Z/Wi} ~ 1. 

(3.4) 

(3.5) 

(3.6) 

So the objective is to determine the smallest value Zmin of Z which will satisfy (3.4), (3.5) and (3.6). 
Now the left·hand side in (3.4) is nonincreasing in z, while the right·hand side is nondecreasing. 

The left·hand sides of (3.5) and (3.6) are respectively nonincreasing and nondecreasing in 0. It 
follows that, if 

ZO = least Z obeying (3.4), 

Z* = least nonnegative Z obeying (3.5), 

Z** = least nonnegative Z obeying (3.6), 

then 

_ {O * **} Zmin - max z, Z ,z . (3.7) 

Since Li ~ Vi, (3.4) reduces to 

ai - Z/Wi ~ V;, L; ~ ai + Z/Wi (all i) , 

and so ZO is readily determined as 

ZO = max {maxiw;(a;- Vi), maXiWi(L;- ai)}. (3.8) 
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Next, (3.5) can be rewritten 

Iimax {O, (ai - Li) - z/w;} ~ 1- IiLi, (3.9) 

so that determining z* is an instance of Problem II in Section 2, with 

Z=a-L, 

The feasibility condition 5 ~ 0 is satisfied by virtue of the first part of (1.4). 

Finally, (3.6) is equivalent to 

Ii min {Vi - ai, Z/Wi} ~ 0, (3.10) 

so that the determination of z** is an instance of Problem III in Section 2, with 

Z=U-a, 5=0. 

The feasibility condition I l' Z i ~ 5 is satisfied by virtue of the second part of 0.4). 
With zo, z*, and z** determined, Zmin can be found from (3.7). Then a single optimizing x can 

be found by applying, to the previously·mentioned instance of Problem I with z = Zmin, the solution 
method given in Section 2. Concerning the nonuniqueness of x, compare Section 5 of [11 . 

4. Solution for Componentwise Ranking 

The next problem to be considered is the determination of a probability n·vector x , among 
those which obey the componentwise ranking 

(4.1) 

which minimizes 
F(x) = maXi lXi-ad· 

This too can be reformulated as a linear program, namely to select a number Z and a vector x ~ 0, 
so as to minimize z subject to 

I;xi=l, 

z~ Xi-a; 

z ~ ai-X; 

(all i), 

(all i). 

Conditions (4.3) and (4.4), together with x ~ 0, can be abbreviated to 

max{O, a;-z} ~Xi~ ai + z. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

A redundant constraint z ~ 0 can also be imposed. Thus the aim is to determine the smallest 
z ~ 0 for which the system (4.1), (4.2), (4.5) has a solution x. 

For any fixed z ~ 0, the system is an instance of Problem IV in Section 2, with S = 1 and 

Ai= max {O, ai - z},Bi= ai+ z. 

It is convenient to define vectors a* and a**, with nondecreasing component sequences given by 

Then the vectors A' and B ', described in Section 2's analysis of Problem 4, are given by 

A'- {O * } B'- **+ i-max , a; - z , i - ai z. 

236 



The conditions (2.18) and (2.19), for Problem IV to be feasible, become 

max{O, cti-Z}';;; ctj+ Z for i ';;;j, 

Li max {O, a,*- z} .;;; 1 .;;; Li (a1*+ z). 

(4.6) 

(4.7) 

Now the objective is to find Zmin, the smallest z ;'; ° satisfying (4.6) and (4.7). Arguing as in 
Section 3, one finds that if 

zo= least nonnegative z obeying (4.6), 

z*=least nonnegative z obeying first part of (4.7), 

z** = least nonnegative z obeying second part of (4.7), 

then 

- {O * **} Zmin - max z ,z ,z . (4.8) 

Since z ;,; ° and each CLj ;'; 0, ZO is readily determined from (4.6) as 

(4.9) 

Since a,/ *.;;; ai, implying 

z ** is readily determined from (4.7) as 

z**= (1- 2.ia,**)/n. (4.10) 

FinaJly, the determination of z* is an instance of Problem II, with 5= 1, W;= 1, and Z;=a,*. 

S. Solution for Componentwise Bounds and Ranking 

The final version to be treated is the determination of a probability n-vector x which minimizes 
max;Jxi - ail, subject both to the ranking condition 

and to the componentwise bounds 

0.;;; L.;;;x.;;;U. 

The analysis proceeds much as in the preceding Section, with (4.5) replaced by 

max {Li' ai-z}';;; Xi';;; min {Vi, ai+z}. (5.1) 

Again we have an instance of Problem IV, with S = 1, and with 

Ai=max {Li' ai-z}, Bi=min {Vi, ai+z}. 

As before, set 

and also put 
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Then the vectors A' and B' are now given by 

A:=max {L;, at-z}, B'- . {V' **+} i-mIn i, ai z. (5.2) 

We continue to have 

- {O * **} Zmin - max z , z , Z , (5.3) 

where 

ZO= least z for which A' :;;:.; B', 

z* = least nonnegative z for which l iA! :;;:.; 1, 

z** = least nonnegative z for which liB i ;:e: 1. 

The problem defining zO, and hence the overall problem, has a solution only if 

fori:;;:';j. (5.4) 

Assuming this holds, the remaining conditions defining ZO are (for i :;;:';J) 

and so 
(5.5) 

The condition defining z* reads 

Ii max{Li, af-z} :;;:.; 1,. 

which can be rewritten 

This is an instance of Problem II, with Wi = 1, 

Zi=at-L: , 

The consistency condition S ;:e: 0 , i.e., 

(5.6) 

is required for a solution to exist. 
The condition defining z** reads 

Ii min{Vi , af*+z};:e: 1, 

which can be rewritten 

This is an instance of Problem III, with Wi = 1, 

Z;= V; -at*, S= I-liar. 

The consistency condition "liZj;:e: S , i.e., 

(5.7) 

is required for a solution to exist. 
Thus the conditions on the data Land U , for the componentwise bounds and ranking to be 

consistent, are given by (5.4), (5.6) and (5.7). 
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