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The topic treated is that of finding a reproducible, plausible and computationally simple method
of selecting a discrete frequency distribution with a prescribed ranking of its components and pre-
scribed upper and lower bounds on these components. The problem is shown to be tractable when a
minimax error selection criterion is employed, and “‘error” is measured by maximum absolute devia-
tion among components. In this case one obtains a linear program of a special form admitting explicit
solution.
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1. Introduction

A discrete univariate probability distribution will be represented here as a probability n-vector,
i.e., an n-vector x whose components x; are nonnegative and sum to unity. Let P be some class
of such distributions, describable as a closed subset of x-space. Then one can pose the problem
of minimax error selection of a member of P, i.e. of choosing xeP to minimize

F(x)=max {d(x, y):yeP} (1.1)
where d is some metric on n-space. The particular metric
d(x,y) = max;|x;i—i| (1.2)
will be employed, essentially because of its tractability for what follows.
In [1].' this selection problem was solved for the case in which the class P of admissable dis-
tributions was specified by componentwise bounds, i.e.,
O<L=x<U (1.3)
where L and U are given n-vectors. (It was also solved for a more general ‘“weighted” version of

the metric d.) In [2] it was solved for the case in which P was described by a given componentwise
ranking,

X]sXZs g oG $xn. (14')

The present note gives a solution method for the case in which both types of constraint are imposed,
i.e., P is specified by (1.3) and (1.4) together.

Some preliminaries are presented in section 2. The formulation of the solution method is then
begun in section 3, and completed in section 4.

1 Figures in brackets indicate the literature references at the end of the paper.
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2. Preliminaries

This section considers three subproblems which will arise later.
ProBLEM I: Given n-vectors A and B, and number S, find an n-vector y such that

A<y<B, 2.1)
2iyi=S, (2.2)
VMIS)YesS ... Sy (23)

This problem is treated in [3] (see ‘“Problem IV” in section 2 of that paper), where a solution
method is given, and the following two conditions are shown to be jointly necessary and sufficient
for the existence of a solution. First,

A;<B; for i=<j. (2.4)
In terms of the nondecreasing sequences {4;}} and {B;}? defined by
A{= maxj<iA;, B} = min;-;Bj, (2.5)
the second condition is
Tid; <S < ZBi. (2.6)
ProOBLEM II: Given n-vector Z and nunber S, find the minimum value z* of z such that z= 0 and
Simax {0, Z;—z} <8S. 2.7

This problem is a special case of one treated in [3] (see “Problem II”’ in section 2 of that paper),
where a solution method is given, and

S=0 (2.8)
is shown to be a necessary and sufficient condition for a solution to exist.
ProBLEM III: Given n-vector Z and number S, find the minimum value z** of z such that
z=(0and

2imin {Z;, z} = S. 2.9

This problem too is a special case of one treated in [3] (see ‘“‘Problem III”’ in section 2 of that
paper), where a solution method is given, and

3Z:;=S (2.10)

is shown to be a necessary and sufficient condition for a solution to exist.

3. Analysis

We turn now to the original problem, concerning the constraint set
P={x:0sL=<x=<U,3x;=1, 3.1)
XSS ... < xnt.
Recall that the problem is to find x€P to minimize
F (x)=max {max;|x;— yi|:yeP}. 3.2)

As a first application of the material in the preceding section, consider the question of whether
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the constraints are consistent, i.e., whether P is nonempty. The existence of a yeP is an instance
of Problem I, with

A=L,B=U,S=1.

Thus the necessary and sufficient conditions for consistency are that

L=< U for i =, (3.3)
and, in terms of the quantities
L',f:mansiLj, U,’»=minj>,~Uj, (3.4)
that
S.Li<1<3;U;. (3.5)

These conditions will be assumed satisfied from here on. Note that P can be rewritten
P={x:0sL'=sx<U’', 3ux;=1, (3.6)
XSS ... Sx)

where L’ and U’ are the vectors with respective components L; and Uj.
Next, set

Mi = max {x;:xeP}, (3.7)
Mi =min {xi:xeP}; (3.8)
the determination of these quantities will be discussed later. As in [1] and [2], we have
F (x) = max, max; max {y;—xi, x;— yi}
= max; max {max, (y;i—x;), max, (x;—y;)} (3.9)
= max; max {M;} —x;, xi—M;}.

By (3.9), the minimization of F(x) is equivalent to the following linear program; choose number
z and vector xeP, to minimize z subject to the further conditions

z2= M —x;, z2=xi— My (all 7).

For fixed z, the conditions on x read

max {L}, M} —z} < xi < min {U], Mj +2z} (all 7), 3.10)
Sixi=1, (3.11)
XSS ... Sap. (3.12)

Thus the objective is to find the smallest z for which such an x exists (and to find one).
Now finding an x to satisfy (3.10) through (3.12) is an instance of Problem I, with S=1 and

Ai=max {L{, M{ —z}, Bi=min {U], M7+ z}.

Since sequences {L;}} and {U}}? are nondecreasing, while definitions (3.7-8) and the definition
of P imply that {M}}7 and {M;}} are nondecreasing, it follows that {4;}" and {Bi}" are non-
decreasing. Hence in this case, the conditions for the existence of a solution to Problem I become

max {L;, M{ —z} < min {U}, M7+ z} (all 7), (3.13)
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Dimax (L, ME—zy =1, (3.14)
2imin {U;, My +z} =1. (3.15)
We seek zyin, the smallest value of z satisfying these three conditions. The redundant condition

z=0 can also be imposed.
Let us set

z°= least z satisfying (3.13),

z*=least nonnegative z obeying (3.14),

z**= least nonnegative z obeying (3.15).

Then we have
Zmin= max {z°, z¥*, z**}; (3.16)
this is the case since the left-hand and right-hand sides in (3.13) are respectively nonincreasing and
nondecreasing functions of z, while the sums in (3.14) and (3.15) are respectively nonincreasing
and nondecreasing.
Since L] < U/, the determination of z° involves the conditions
LisM;+z, Mf—z<U;, M —z< M;+z,

and leads to

z’=max; max {L; —M;, My —U;, (M —M;)/2}. (3.17)

Next, (3.14) is equivalent to

3 max {0, (M} —L;)—z}<1-2;L;,

so that determining z* is an instance of Problem II with
Zi=M{—Lj, S=1—-3;L;.
Finally, (3.15) is equivalent to
S min {U;— M7, z} =1—3;M7,
so that determining z** is an instance of Problem III, with

Zi=U;i—Ms, S=1-3;M;.

4. Determination of M; and M;

It only remains to discuss the determination of the quantities M7 and M; defined by (3.7) and
(3.8). For this purpose, consider the conditions under which

X=(¥1, - « 5 ¥ic1s Xi» ¥is - - -5 Yn-1)€P.
These conditions are
Li<x;<Uj, 4.1
L <y;< min {Uj, xi} for j < i, 4.2)
max {Lj,;, xi} Sy;< U}H forj=1, (4.3)
2y;=1—x;, 4.4)
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INSSEAES o oo B e (4.5)

. Now the determination of an (n—1)-vector y, satisfying (4.2—5), is an instance of Problem 1
with n—1 replacing n, with S=1—x;, and with

A;j=L; and B;=min {Uj, x;} for j <1,
Aj=max {Lj,,, xi} and Bj=Uj,, for j = i.

Since {L}* and {U}}{" are nondecreasing, and (4.1) holds, the sequences {4;};~' and {B;}}'! are
also nondecreasing. Thus the conditions in this case, for Problem I to have a solution y, are

L; < min {U], xi} for j <1, (4.6)
max {L},,, x;} < Uj,, forj=1, 4.7
Sj<ilij+ 25 max {L], xi} <1—u, (4.8)
o min {U, 2} +350 U = 1 —x;. 4.9)

Conditions (4.6) and (4.7) are automatically satisfied. Condition (4.8) can be rewritten
xit+2jsi max {Lj, 2} <1—3oL%; (4.10)
the left-hand side is a continuous increasing function of x;, bounded neither above nor below,

which therefore equals the right-hand side for a unique value xj of x;. Condition (4.9) can be
rewritten

xit+2j<i min {U], 2} =1—32:U;; 4.11)

again the left-hand side is an increasing function of x;, which equals the right-hand side for a unique
value x; of x;. It follows that (4.8) and (4.9) are equivalent to

By combination with (4.1), this yields
Mi =min {U;, x{}, (4.12)
M;=max {L;, x;}. (4.13)

Now the determination of xj and x; must be discussed.
To determine x{ , form the quantities

Lf=(k—i)Ly+3;=kLl;  (k=1).
The sequence {L;}! is nondecreasing, since
Ly — L= (k+1—i) (Liy, —Li) = 0.

We have
]._Ej<iLj’- = EjziL;' :Li*’

and so there is a last ke{i, i+ 1, . . ., n} for which
1—3eil) = L,
For this £, it is readily verified that
xi=[1-3;5L] =35 L] 1/ (k+1—i) (4.14)
229



satisfies xf€[L), L] - . . orxi=L,if k=n . . . and also satisfies (4.10) as an equation.
To determine x;j , form the quantities

U= (i—k) U+ 2j<Uj (k<1).
The sequence {U} }§is nondecreasing, since
U—=Ui¢ ,=(G0—k+1) (U, —U;_,) =0.
We have
1—-35i Uj < 3j<: Uj=UF,

and so there is a least ke{1, 2, . . ., i} for which

1-25 Uj < Ui.

For this £, it is readily verified that

x‘i=[1—2j>i U}_2j<k Ujfil/(i‘}‘l'—k) 4.15)

satisfies xj€[U,_;, Ur] . . . or x; <U; if k=1 . . . and also satisfies (4.11) as an equation.
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