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The top ic trea ted is that of fi nding a re produ cib le, plausible and computation all y s imple method 
of se lecting a di sc rete frequency di s tribution with a presc r ibed rankin g of its componen ts and pre· 
sc ribed upper and lowe r bounds on these compone nt.s . The problem is shown to be tract.ab le when a 
minimax error se lec tion c rit e rion is employed, and "e rror" is measured by maximum abso lute devia­
tion a mong co mpone nts. In thi s case one obt.ains a lin ea r progra m of a specia l form ad mittin g expli c it 
solut io n. 
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1. Introduction 

A discrete univariate probability distribution will be represented here as a probability n-vector, 
i. e. , a n n·vector x whose co mpon e nts Xi are nonnega tive and s um to unity. Let P be some class 
of such di s tributions , describable as a closed subset of x-s pace. Then one can pose the problem 
of minimax error selection of a me mber of P , i. e. of choosing XEP to minimize 

F(x) = max {d(x, y) : YEP} (1.1) 

where d is some me tri c on n-space. The particular metric 

d(x, y) = maXi IXi-Yi I (1.2) 

will be employed, essentially because of its tractability for what follows. 
In [lJ ,' thi s selec tion problem was solved for the case in which the class P of admissable dis­

tributions was specified by componentwise bounds, i.e., 

(1.3) 

where Land U are given n-vectors. (It was also solved for a more general "weighted" version of 
the metric d.) In [2] it was solved for the case in which P was descri bed by a given componentwise 
ranking, 

(1.4) 

The present note gives a solution me thod for the case in which both types of constraint are imposed, 
i. e., P is specified by (1.3) and (1.4) together. 

Some preliminaries are presented in section 2. The formulation of the solution me thod is then 
begun in section 3, and completed in section 4. 

I Figures in brackets indicate the lite rature referen ces a l the e nd of the paper. 
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2. Preliminaries 

This section considers three subproblems which will arise later. 
PROBLEM I: Given n·vectors A and B, and number S , find an n·vector y such that 

A~y~B , 

Im = S, 

(2.1) 

(2.2) 

(2.3) 

This problem is treated in [3] (see "Problem IV" in section 2 of that paper), where a solution 
method is given, and the following two conditions are shown to be jointly necessary and sufficient 
for the existence of a solution. First, 

(2.4) 

In terms of the nondecreasing sequences {A;};' and {B;}j' defined by 

(2.5) 

the second condition is 

(2.6) 

PROBLEM II: Given n·vector Z and nunber S , find the minimum value z* of z such that z ;3 0 and 

(2.7) 

This problem is a special case of one treated in [3] (see "Problem II" in section 2 of that paper), 
where a solution method is given, and 

(2.8) 

is shown to be a necessary and sufficient condition for a solution to exist. 
PROBLEM III: Given n·vector Z and number S, find the minimum value z** of z such that 

z;3 0 and 

~i min {Z; , z} ;3 S. (2.9) 

This problem too is a special case of one treated in [3] (see "Problem III" in section 2 of that 
paper), where a solution method is given, and 

(2.10) 

is shown to be a necessary and sufficient condition for a solution to exist. 

3. Analysis 

We turn now to the original problem, concerning the constraint set 

P = {x: 0 ~ L ~ x ~ U , Ii xi = 1, (3.1) 

Recall that the problem is to find x E P to minimize 

F(x) = max {maxilxi - yd: YEP}. (3.2) 

As a first application of the material in the preceding section, consider the question of whether 
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the constraints are consistent, i.e., whether P is none mpty. The existence of a YEP is an instance 
of Proble m I , with 

A = L,B = U,S = l. 

Thus the necessary and sufficient conditions for consistency are that 

for i O:; j , 

and, in terms of the quantities 

that 

These conditions will be assumed satisfied from here on. Note that P can be rewritten 

P = {x : 0 0:; L' :%; x :%; U ', k iX i = 1, 

where L' and U' are the vectors with respective components Li and V;. 
Next, set 

Mi= min {Xi :XEP}; 

the de termination of th ese quantiti es will be di scussed late r. As in [1] and [2] , we have 

F (x ) = max y maXi max {Yi -Xi , Xi-Yi} 

= maXi max {max y (Yi-Xi) , max y (Xi-Yi)} 

= maXi max {Mt-X i, xi-Mil . 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3 .9) 

By (3. 9), the minimization of F(x) is equivalent to the following linear program; choose number 
Z and vector XEP , to minimize z subject to the further conditions 

z ~ Mt -Xi, z ~xi-Mi (all i). 

For fixed z, the conditions on x read 

max {L ;, Mt-z} :%;Xi:%; min { V;, M i+z} (alIi) , (3. 10) 

L i X i= l, (3.11) 

(3.12) 

Thus the objective is to find the smallest z for which such an x exists (and to find one). 
Now finding an x to satisfy (3.10) through (3.12) is an instance of Problem I , with S = 1 and 

Ai=max {Li, M t -z}, Bi = min {V; , Mi+ z} . 

Since sequences {Li Hand { V; }1 are nondecreasin g, while de finitions (3.7- 8) and the de finition 
of P imply that {Mt}~' and {M;:-}~' are nondecreasing, it follows that {A;}'\ and {B i }'\ are non­
decreasing. He nce in thi s case, the conditions for the exis tence of a solution to Problem I become 

max {L i , M t - z} :%; mi n {V;, M i + z} (all i), (3.13) 
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Li max {Li, Mt-z} ~ 1, (3.14) 

(3.15) 

We seek Zmin, the smallest value of z satisfying these three conditions. The redundant condition 
z"'" 0 can also be imposed. 

Let us set 

Then we have 

ZO = least z satisfying (3.13), 
z* = least nonnega.tive z obeying (3.14) , 

z** = least nonnegative z obeying (3.15). 

Zmin= max {ZO , z* , z**}; (3.16) 

this is the case since the left·hand and right-hand sides in (3.13) are respectively nonincreasing and 
nondecreasing functions of z, while the sums in (3.14) and (3.15) are respectively nonincreasing 
and nondecreasing. 

Since L i ~ Vi , the determination of ZO involves the conditions 

and leads to 

zO=maxi max {Li-Mi,Mt-Vi, (Mt-Mi)/2}. (3.17) 

Next, (3.14) is equivalent to 

2,i max {O, (Mt - Li) - z} ~ 1- Li L; , 

so that determining z* is an instance of Problem II with 

5=1-LiL; . 

Finally, (3.15) is equivalent to 

2,i min {Vi-Mi, z} "'" l-LiMi , 

so that determining z** is an instance of Problem III, with 

5=1-L;Mi· 

4. Determination of Mt and M i-

It only remains to discuss the determination of the quantities M+ and M i defined by (3.7) and 
(3.8). For this purpose, consider the conditions under which I 

x = (YI , ... , Yi- I , Xi, Yi, ... , Yll - I)EP. 

These conditions are 

Li :!S Xi ~ Uj, 

LJ ~ Yj~ min {VJ,Xi} forj < i, 

max {LJ+I' Xi} ~ Yj ~ V~ for j "'" i , 
) + 1 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 



(4.5) 

Now the determination of an (n-l)-vector y, satisfying (4.2-5), is an in s tan ce of Problem 1 
with n - 1 replacing n, with 5 = 1 - Xi, a nd with 

for j < i , 

Aj = max {LJ+I ' Xi} a nd Bj = VJ+I for j ;?: i. 

Since {LJ}t and {l!i'} t are nondec reasin g, and (4.1) holds , the sequences {Aj}{,- I and {Bj}rl-1 are 

also nondecreas in g. Thus the co ndition s in thi s case, for Problem I to have a solution y , are 

Lj ::;; min {Vj, Xi} forj < i, 

max {Lj +I ' Xi} ::;; Vj+1 for j ;?: i, 

lj<iLj + lj>i max {Lj, Xi} ::;; I-Xi, 

lj< i min {Vj, Xi} + lj> i VJ;?: 1 - Xi. 

Conditions (4.6) a nd (4 .7) are automatically sati s fi ed. Condition (4.8) can be rewritte n 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.1 0) 

the left·hand s ide is a continuous increasing fun ction of Xi, bounded neither above nor below, 
which therefore equals the ri ght·hand si de for a unique value xt of Xi. Co ndition (4. 9) can be 
rewritten 

(4.11) 

again the left·hand s id e is an increasing function of Xi, which equals the right-hand side for a unique 
valu e Xi of Xi. It fo llows that (4.8) and (4.9) are equivalent to 

Xi::;; Xi::;; xt· 

By co mbination with (4. 1), thi s yields 

M + - . {V ' +} i - mJn i, X i , 

M j= max {L: , xj}. 

Now the determ ination of xt and Xi must be discussed. 
To determine xi, form the quantities 

The sequence {LtH is nondecreasing, since 

We have 

and so there is a las t kE{i, i + 1, . .. , n} for which 

For this k, it is readily verifi ed that 
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(k;?:i). 

(4.12) 

(4. 13) 

(4.14) 



satisfies xtE[L~ ,L':'+I] ... or xt ::;;,: L:, if k= n ... and also satisfies (4.10) as an equation. 
To determine Xi, form the quantities 

(k~i). 

The sequence {ut } lis nondecreasing, since 

We have 

and so there is a least ke{l, 2, ... , i} for which 

For this k, it is readily verified that 

x-;= [l -Lj>i Uj-Lj<k U;];(i+1-k) (4.15) 

satisfies xie[U':'-I, Uk] ... or Xi ~ U; if k= 1 ... and also satisfies (4.11) as an equation. 
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