JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 73B, No. 3, July–September 1969

Minimax Error Selection of a Univariate Distribution With Prescribed Componentwise Bounds and Ranking

A. J. Goldman

Institute for Basic Standards, National Bureau of Standards, Washington, D. C. 20234

(April 29, 1969)

The topic treated is that of finding a reproducible, plausible and computationally simple method of selecting a discrete frequency distribution with a prescribed ranking of its components and prescribed upper and lower bounds on these components. The problem is shown to be tractable when a minimax error selection criterion is employed, and "error" is measured by maximum absolute deviation among components. In this case one obtains a linear program of a special form admitting explicit solution.

Key words: Linear programs; mathematical models; minimax estimation; operations research; probability distribution.

1. Introduction

A discrete univariate probability distribution will be represented here as a probability *n*-vector, i.e., an *n*-vector \mathbf{x} whose components x_i are nonnegative and sum to unity. Let *P* be some class of such distributions, describable as a closed subset of \mathbf{x} -space. Then one can pose the problem of *minimax error selection* of a member of *P*, i.e. of choosing $\mathbf{x} \in P$ to minimize

$$F(\mathbf{x}) = \max\left\{d(\mathbf{x}, \mathbf{y}) : \mathbf{y} \in P\right\}$$
(1.1)

where *d* is some metric on *n*-space. The particular metric

$$d(\mathbf{x}, \mathbf{y}) = \max_{i} |x_{i} - y_{i}| \tag{1.2}$$

will be employed, essentially because of its tractability for what follows.

In [1],¹ this selection problem was solved for the case in which the class P of admissable distributions was specified by componentwise bounds, i.e.,

$$\mathbf{O} \leq \mathbf{L} \leq \mathbf{x} \leq \mathbf{U} \tag{1.3}$$

where L and U are given *n*-vectors. (It was also solved for a more general "weighted" version of the metric d.) In [2] it was solved for the case in which P was described by a given componentwise ranking,

$$x_1 \le x_2 \le \dots \le x_n. \tag{1.4}$$

The present note gives a solution method for the case in which both types of constraint are imposed, i.e., P is specified by (1.3) and (1.4) together.

Some preliminaries are presented in section 2. The formulation of the solution method is then begun in section 3, and completed in section 4.

¹ Figures in brackets indicate the literature references at the end of the paper.

2. Preliminaries

This section considers three subproblems which will arise later. PROBLEM I: Given *n*-vectors \mathbf{A} and \mathbf{B} , and number S, find an *n*-vector \mathbf{y} such that

$$\mathbf{A} \le \mathbf{y} \le \mathbf{B}, \tag{2.1}$$

$$\Sigma_i \gamma_i = S, \tag{2.2}$$

$$y_1 \le y_2 \le \ldots \le y_n. \tag{2.3}$$

This problem is treated in [3] (see "Problem IV" in section 2 of that paper), where a solution method is given, and the following two conditions are shown to be jointly necessary and sufficient for the existence of a solution. First,

$$A_i \le B_j \quad \text{for} \quad i \le j. \tag{2.4}$$

In terms of the nondecreasing sequences $\{A'_i\}_1^n$ and $\{B'_i\}_1^n$ defined by

$$A'_{i} = \max_{j \le i} A_{j}, \qquad B'_{i} = \min_{j \ge i} B_{j}, \qquad (2.5)$$

the second condition is

$$\sum_{i} A_i' \le S \le \sum_{i} B_i'. \tag{2.6}$$

PROBLEM II: Given *n*-vector **Z** and number *S*, find the minimum value z^* of *z* such that $z \ge 0$ and

$$\Sigma_i \max\{0, \hat{Z}_i - z\} \le S. \tag{2.7}$$

This problem is a special case of one treated in [3] (see "Problem II" in section 2 of that paper), where a solution method is given, and

$$S \ge 0 \tag{2.8}$$

is shown to be a necessary and sufficient condition for a solution to exist.

PROBLEM III: Given *n*-vector **Z** and number S, find the minimum value z^{**} of z such that $z \ge 0$ and

$$\Sigma_i \min \{Z_i, z\} \ge S. \tag{2.9}$$

This problem too is a special case of one treated in [3] (see "Problem III" in section 2 of that paper), where a solution method is given, and

$$\Sigma_i Z_i \ge S \tag{2.10}$$

is shown to be a necessary and sufficient condition for a solution to exist.

3. Analysis

We turn now to the original problem, concerning the constraint set

$$P = \{ \mathbf{x} : 0 \le \mathbf{L} \le \mathbf{x} \le \mathbf{U}, \ \Sigma_i x_i = 1,$$

$$x_1 \le x_2 \le \ldots \le x_n \}.$$
(3.1)

Recall that the problem is to find $\mathbf{x} \in P$ to minimize

$$F(\mathbf{x}) = \max\left\{\max_{i} |x_{i} - y_{i}| : \mathbf{y} \in P\right\}.$$
(3.2)

As a first application of the material in the preceding section, consider the question of whether

the constraints are consistent, i.e., whether P is nonempty. The existence of a $y \in P$ is an instance of Problem I, with

$$A = L, B = U, S = 1.$$

Thus the necessary and sufficient conditions for consistency are that

$$L_i \le U_j \qquad \text{for } i \le j, \tag{3.3}$$

and, in terms of the quantities

$$L'_{i} = \max_{j \le i} L_{j}, \quad U'_{i} = \min_{j \ge i} U_{j}, \tag{3.4}$$

that

$$\sum_{i} L_{i}^{\prime} \leq 1 \leq \sum_{i} U_{i}^{\prime}. \tag{3.5}$$

These conditions will be assumed satisfied from here on. Note that P can be rewritten

$$P = \{ \mathbf{x} : 0 \le \mathbf{L}' \le \mathbf{x} \le \mathbf{U}', \ \Sigma_i x_i = 1,$$

$$x_1 \le x_2 \le \dots \le x_n \}$$
(3.6)

where \mathbf{L}' and \mathbf{U}' are the vectors with respective components L'_i and U'_i . Next, set

$$M_i^+ = \max\{x_i \colon \mathbf{x} \in P\},\tag{3.7}$$

$$M_i^- = \min\left\{x_i \colon \mathbf{x} \,\epsilon P\right\};\tag{3.8}$$

the determination of these quantities will be discussed later. As in [1] and [2], we have

$$F(\mathbf{x}) = \max_{\mathbf{y}} \max_{i} \max \{ y_{i} - x_{i}, x_{i} - y_{i} \}$$

= max_i max {max { (max_y (y_i - x_i), max_y (x_i - y_i) }
= max_i max { M_i⁺ - x_i, x_i - M_i⁻ }. (3.9)

By (3.9), the minimization of $F(\mathbf{x})$ is equivalent to the following linear program; choose number z and vector $\mathbf{x} \epsilon P$, to minimize z subject to the further conditions

 $z \ge M_i^+ - x_i, \qquad z \ge x_i - M_i^- \qquad (\text{all } i)\,.$

For fixed z, the conditions on \mathbf{x} read

$$\max\{L'_{i}, M^{+}_{i} - z\} \leq x_{i} \leq \min\{U'_{i}, M^{-}_{i} + z\} \quad (all \ i),$$
(3.10)

$$\Sigma_i x_i = 1, \tag{3.11}$$

$$x_i \le x_2 \le \ldots \le x_n. \tag{3.12}$$

Thus the objective is to find the smallest z for which such an x exists (and to find one).

Now finding an **x** to satisfy (3.10) through (3.12) is an instance of Problem I, with S = 1 and

$$A_i = \max \{L'_i, M^+_i - z\}, B_i = \min \{U'_i, M^-_i + z\}.$$

Since sequences $\{L_i'\}_1^n$ and $\{U_i'\}_1^n$ are nondecreasing, while definitions (3.7-8) and the definition of P imply that $\{M_i^+\}_1^n$ and $\{M_i^-\}_1^n$ are nondecreasing, it follows that $\{A_i\}_1^n$ and $\{B_i\}_1^n$ are nondecreasing. Hence in this case, the conditions for the existence of a solution to Problem I become

$$\max\{L'_{i}, M^{+}_{i} - z\} \leq \min\{U'_{i}, M^{-}_{i} + z\} \qquad (all \ i), \tag{3.13}$$

$$\Sigma_i \max\{L'_i, M^+_i - z\} \le 1,$$
 (3.14)

 $\Sigma_i \min\{U'_i, M_i^- + z\} \ge 1.$ (3.15)

We seek z_{\min} , the smallest value of z satisfying these three conditions. The redundant condition $z \ge 0$ can also be imposed.

Let us set

 $z^{\circ} = \text{least } z \text{ satisfying (3.13)},$ $z^* = \text{least nonnegative } z \text{ obeying (3.14)},$ $z^{**} = \text{least nonnegative } z \text{ obeying (3.15)}.$

Then we have

$$z_{\min} = \max \{ z^{\circ}, z^{*}, z^{**} \};$$
(3.16)

this is the case since the left-hand and right-hand sides in (3.13) are respectively nonincreasing and nondecreasing functions of z, while the sums in (3.14) and (3.15) are respectively nonincreasing and nondecreasing.

Since $L'_i \leq U'_i$, the determination of z^0 involves the conditions

$$L'_{i} \leq M^{-}_{i} + z, M^{+}_{i} - z \leq U'_{i}, M^{+}_{i} - z \leq M^{-}_{i} + z.$$

and leads to

$$z^{0} = \max_{i} \max \{ L_{i}^{\prime} - M_{i}^{-}, M_{i}^{+} - U_{i}^{\prime}, (M_{i}^{+} - M_{i}^{-})/2 \}.$$
(3.17)

Next, (3.14) is equivalent to

$$\sum_{i} \max \{0, (M_{i}^{+} - L_{i}^{\prime}) - z\} \leq 1 - \sum_{i} L_{i}^{\prime},$$

so that determining z^* is an instance of Problem II with

 $Z_i = M_i^+ - L_i', \qquad S = 1 - \Sigma_i L_i'.$

Finally, (3.15) is equivalent to

$$\Sigma_i \min \{U'_i - M_{\overline{i}}, z\} \ge 1 - \Sigma_i M_{\overline{i}},$$

so that determining z^{**} is an instance of Problem III, with

$$Z_i = U'_i - M_{\overline{i}}, \qquad S = 1 - \Sigma_i M_{\overline{i}}.$$

4. Determination of M_i^+ and M_i^-

It only remains to discuss the determination of the quantities M_i^+ and M_i^- defined by (3.7) and (3.8). For this purpose, consider the conditions under which

$$\mathbf{x} = (y_1, \ldots, y_{i-1}, x_i, y_i, \ldots, y_{n-1}) \boldsymbol{\epsilon} \boldsymbol{P}.$$

These conditions are

$$L_i' \le x_i \le U_i',\tag{4.1}$$

$$L'_{j} \leq y_{j} \leq \min \{U'_{j}, x_{i}\} \quad \text{for } j < i,$$

$$(4.2)$$

$$\max\{L'_{i+1}, x_i\} \leq y_i \leq U'_{\dots} \quad \text{for } j \geq i, \tag{4.3}$$

$$\Sigma_j y_j = 1 - x_i, \tag{4.4}$$

$$y_1 \leqslant y_2 \leqslant \dots \leqslant y_{n-1}. \tag{4.5}$$

Now the determination of an (n-1)-vector y, satisfying (4.2-5), is an instance of Problem I with n-1 replacing n, with $S=1-x_i$, and with

$$A_j = L'_j$$
 and $B_j = \min \{U'_j, x_i\}$ for $j < i$,
 $A_j = \max \{L'_{j+1}, x_i\}$ and $B_j = U'_{j+1}$ for $j \ge i$.

Since $\{L_j'\}_1^n$ and $\{U_j'\}_1^n$ are nondecreasing, and (4.1) holds, the sequences $\{A_j\}_1^{n-1}$ and $\{B_j\}_1^{n-1}$ are also nondecreasing. Thus the conditions in this case, for Problem I to have a solution y, are

$$L'_{i} \le \min \{U'_{i}, x_{i}\} \qquad \text{for } j < i, \tag{4.6}$$

$$\max\{L'_{j+1}, x_i\} \le U'_{j+1} \quad \text{for } j \ge i,$$
(4.7)

$$\sum_{j < i} L'_j + \sum_{j > i} \max\{L'_j, x_i\} \le 1 - x_i,$$
(4.8)

$$\sum_{j < i} \min \{ U'_j, x_i \} + \sum_{j > i} U'_j \ge 1 - x_i.$$
(4.9)

Conditions (4.6) and (4.7) are automatically satisfied. Condition (4.8) can be rewritten

$$x_i + \sum_{j>i} \max\{L'_j, x_i\} \le 1 - \sum_{j
(4.10)$$

the left-hand side is a continuous increasing function of x_i , bounded neither above nor below, which therefore equals the right-hand side for a unique value x_i^+ of x_i . Condition (4.9) can be rewritten

$$x_i + \sum_{j < i} \min \{ U'_j, x_i \} \ge 1 - \sum_{j > i} U'_j;$$
(4.11)

again the left-hand side is an increasing function of x_i , which equals the right-hand side for a unique value x_i^- of x_i . It follows that (4.8) and (4.9) are equivalent to

 $x_i^- \leq x_i \leq x_i^+$.

By combination with (4.1), this yields

$$M_i^+ = \min\{U_i', x_i^+\},$$
(4.12)

$$M_i^- = \max\{L_i', x_i^-\}.$$
 (4.13)

Now the determination of x_i^+ and x_i^- must be discussed.

To determine x_i^+ , form the quantities

$$L_k^* = (k-i) L_k' + \sum_{j \ge k} L_j' \qquad (k \ge i).$$

The sequence $\{L_k^*\}_i^n$ is nondecreasing, since

$$L_{k+1}^* - L_k^* = (k+1-i) \ (L_{k+1}' - L_k') \ge 0.$$

We have

$$1 - \sum_{j < i} L'_j \ge \sum_{j \ge i} L'_j = L^*_i,$$

and so there is a last $k \in \{i, i+1, \ldots, n\}$ for which

$$1 - \sum_{j < i} L'_i \ge L^*_k.$$

For this k, it is readily verified that

$$x_i^+ = [1 - \sum_{j < i} L_j' - \sum_{j > k} L_j'] / (k+1-i)$$
(4.14)

satisfies $x_i^+ \epsilon[L'_k, L'_{k+1}]$... or $x_i^+ \ge L'_n$ if k = n... and also satisfies (4.10) as an equation. To determine x_i^- , form the quantities

$$U_k^* = (i-k) U_k' + \sum_{j \le k} U_j' \qquad (k \le i).$$

The sequence $\{U_k^*\}_i^i$ is nondecreasing, since

$$U_k^* - U_{k-1}^* = (i - k + 1) (U_k' - U_{k-1}') \ge 0.$$

We have

$$1 - \Sigma_{j>i} U_j' \leq \Sigma_{j\leq i} U_j' = U_i^*,$$

and so there is a *least* $k \in \{1, 2, \ldots, i\}$ for which

$$1 - \sum_{j>i} U'_i \leq U^*_k$$
.

For this k, it is readily verified that

$$x_{i}^{-} = \left[1 - \sum_{j > i} U_{j}' - \sum_{j < k} U_{j}'\right] / (i + 1 - k)$$
(4.15)

satisfies $x_i \in [U'_{k-1}, U'_k]$. . . or $x_i \leq U'_1$ if k=1 . . . and also satisfies (4.11) as an equation.

5. References

- Goldman, A. J., and Meyers, P. R., Minimax error selection of a discrete univariate distribution with prescribed componentwise bounds, J. Res. NBS 72B (Math. Sci.), No. 4, 263-271 (1968).
- Goldman, A. J., Minimax error selection of a discrete univariate distribution with prescribed componentwise ranking, J. Res. NBS 72B (Math. Sci.), No. 4, 273-277 (1968).
- [3] Goldman, A. J., Minimax adjustment of a univariate distribution to satisfy componentwise bounds and/or ranking, J. Res. Nat. Bur. Stand. (U.S.), 73B (3) 231-239 (1969).

(Paper 73B3-302)