
JOURNAL OF RESEARCH of the Notional Bureau of Standards - B. Mathematical Sciences 
Vol. 73B, No.3, July-September 1969 

Principal Ideals in Matrix Rings 

Morris Newman and Stephen Pierce 

Institute for Basic Standards, National Bureau of Standards, 
Washington, D.C. 20234 

(April 21, 1969) 

It is shown that every left ideal of the complete matrix ring of a given order over a principal ideal 
ring is principal, and a partial converse is proven. 
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1. Introduction 

Let R be a ring with a unity 1, and let n be a positive integer. It is well-known [3, p. 37]1 that 
every two-sided ideal of R" (the complete matrix ring of order n over R) is necessarily of the form 
M", where M is a two-sided ideal of R. Simple examples show that this result no longer holds for 
one-sided ideals. In this note we investigate the left ideals of R" in the case when R is a principal 
ideal ring (an integral domain in which every ideal is principal). We shall prove 

THEOREM 1: IfR is a principal ideal ring, then every left ,ideal ofRn is principal_ 
The proof of Theorem 1 depends upon the fact that if A is any p X q matrix over R, then a 

unit matrix V of Rp exists such that the p X q matrix VA is upper triangular [2 , p. 32]_ 
We also establish the following partial converse to Theorem 1: 
THEOREM 2: If R is not Noetherian or if R is a Dedekind ring but not a principal ideal ring, 

then Rn contains a nonprincipalleft ideal_ 
For general information on rings , see [3]. For information on Dedekind rings, see [1 , p. 101]. 

2. Proofs 

We denote the matrix of R" which has 1 in position (i, j) and 0 elsewhere by Eij. We first prove 
LEMMA 1: Suppose that every left ideal of R has a finite R-basis. Then so has every lefi ideaL 

ofRn-
PROOF: Let a be a left ideal of R". Let ak, 2 :of; k :of; n, be the subset of a consisting of all matrices 

of a whose first k-l columns are 0; and set at = a. Then, as is easily verified, ak is a left ideal of 
R" for 1 :of; k :of; n_ 

Let M;k , 1 :of; i :of; n, be the set of elements of R occurring in the (i, k) position of all matrices 
of ak, 1 :of; k :of; n. Then M;k is a left ideal of R (since ak is a left ideal of R,,) and so has a finite R-basis, 
say 

Hence we can find lik matrices of Ok, say A lik' such that the (i, k )th entry of A lik is m1ik. It follows that 
the lik matrices 

also belong to ak, have ml .. as their (i, k)th entry, but have nonzero entries in the ith row only. These 

I Figures in brackets indicate the literature at the end of this paper. 
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matrices constitute a finite J<·basis for a. For suppose that A is any element of a. We first find ele· 
ments ril of R such that 

n I ii 

A - I 1 r1IBlI =A2w2; 
i = ll = 1 

we then find elements d2 of R such that 
n l iz 

A2- 1 1 rf2Bl2=A3W3; 
i= 1 1= 1 

and continuing in this manner, we determine elements r1kof R such that 

" "lik 

A = 1 1 1 dkBlk. 
k = 1 i = ll = 1 

This completes the proof. 
We now prove Theorem 1. Let a be a left ideal of Rn. By Lemma 1, a possesses a finite R-basis, 

say BJ, B2 , ••• , B t . Let B be the nt X t matrix 

Let V be a unit matrix of R nt such that VB = T is upper triangular. Thus 

VB=T=[~] , 

where H is an n X n upper triangular matrix , and the zero block 0 is (nt - n) X n. We shall show that 
a=R"H. For if we write V= (Vij ) , where the matrices Vij are n X n, then 

t 

so that Hw, implying that 
L VljBj=H, 
j = 1 

R,HC a. 

If we then write V- I = V = (Vij), where the matrices Vij are n X n, then V belongs to R nt (since V 
is a unit matrix of R lit) and from B = VT we find that 

implying that 
1 ,,;;; i ,,;;; t, 

aC R"H. 

This completes the proof of Theorem 1. , 
To prove Theorem 2, we first observe that for any left ideal M of R, the left ideal M" of R" can 

be principal only if M has a set of n or fewer generators. In particular, if R is non·Noetherian, M 
can be chosen to violate this condition. 

We now assume that R is a Dedekind ring and that any ideal in R can be generated by at most 
n elements. Let S be a nonprincial ideal in R, and let Y be the subset of RlI consisting of all matrices 
with first column entries in S and all other entries arbitrary members of R. Clearly, Y is a left ideal 
in R ", We shall show that Y is not principal. 

Suppose the contrary. Let X = (Xij) generate Y, so that Y = RIlX, Clearly the XiI generate 
S; S={Xll , X21, •.. , Xnl}' We may assume that Xll is not zero, since we may interchange the rows 
of X by left multiplication by a permutation matrix. Let d = det X. Since Y contains nonsingular 
matrices (for example, diag (XJl , 1, ... , 1)) Xmust be nonsingular and thus d is a nonzero element 
of S. Let Y = (Yij) be the adjoint of X, so that 

XY=YX=dl. 
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Then YeR n, and if C is any matrix in y, every element of CY must be divisible by d. First choose 
C=Xil Ell , 1 ~ i ~ n. We obtain 

{d}!{XilYlj[, 1 ~ i, j ~ n. (1) 

Next choose C =E 1), 2 ~ i ~ n. We obtain 

{d} !{Yu}, 2 ~ i ~ n, 1 ~ j ~ n. (2) 

Put y = {YI 1, Y12, ... , YIII}. Then (2) implies that y{ d} n- l!{ det Y}; and since det Y = dn- I, y= {I} = 
R. Hence {Yll, Y12, . .. , YIn}={l} = R . But now (1) and (2) imply that {d} !{xid, 1 ~ i ~ n. Write 

Xii = {3id, 1 ~ i ~ n. 

SincedeS and thex il are a basis for 5, elements Ti of R exist such that 

But now (3) implies that 

and hence 

n 

d= L TiXil . 
i = 1 

n 

L Ti{3 i= 1, 
i = 1 

Thus 5 is principal, a con tradiction. This completes the proof of Theorem 2. 
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