JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 73B, No. 3, July–September 1969

Principal Ideals in Matrix Rings

Morris Newman and Stephen Pierce

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(April 21, 1969)

It is shown that every left ideal of the complete matrix ring of a given order over a principal ideal ring is principal, and a partial converse is proven.

Key words: Dedekind ring; matrix ring; non-Noetherian ring; principal ideal ring.

1. Introduction

Let R be a ring with a unity 1, and let n be a positive integer. It is well-known $[3, p. 37]^1$ that every two-sided ideal of R_n (the complete matrix ring of order n over R) is necessarily of the form M_n , where M is a two-sided ideal of R. Simple examples show that this result no longer holds for one-sided ideals. In this note we investigate the left ideals of R_n in the case when R is a principal ideal ring (an integral domain in which every ideal is principal). We shall prove

THEOREM 1: If R is a principal ideal ring, then every left ideal of R_n is principal.

The proof of Theorem 1 depends upon the fact that if A is any $p \times q$ matrix over R, then a unit matrix U of R_p exists such that the $p \times q$ matrix UA is upper triangular [2, p. 32].

We also establish the following partial converse to Theorem 1:

THEOREM 2: If R is not Noetherian or if R is a Dedekind ring but not a principal ideal ring, then R_n contains a nonprincipal left ideal.

For general information on rings, see [3]. For information on Dedekind rings, see [1, p. 101].

2. Proofs

We denote the matrix of R_n which has 1 in position (i, j) and 0 elsewhere by E_{ij} . We first prove LEMMA 1: Suppose that every left ideal of R has a finite R-basis. Then so has every left ideal of R_n .

of R_n . PROOF: Let a be a left ideal of R_n . Let $a_k, 2 \le k \le n$, be the subset of a consisting of all matrices of a whose first k-1 columns are 0; and set $a_1 = a$. Then, as is easily verified, a_k is a left ideal of R_n for $1 \le k \le n$.

Let M_{ik} , $1 \le i \le n$, be the set of elements of R occurring in the (i, k) position of all matrices of a_k , $1 \le k \le n$. Then M_{ik} is a left ideal of R (since a_k is a left ideal of R_n) and so has a finite R-basis, say

$$m_{ik}^l, 1 \leq l \leq l_{ik}$$

Hence we can find l_{ik} matrices of a_k , say A_{ik}^l , such that the (i, k)th entry of A_{ik}^l is m_{ik}^l . It follows that the l_{ik} matrices

$$B_{ik}^{l} = E_{ii}A_{ik}^{l}, \ 1 \leq i, \ k \leq n, \ 1 \leq l \leq l_{ik},$$

also belong to a_k , have m_{ik}^l as their (i, k)th entry, but have nonzero entries in the *i*th row only. These

¹Figures in brackets indicate the literature at the end of this paper.

matrices constitute a finite *R*-basis for *a*. For suppose that *A* is any element of *a*. We first find elements r_{i1}^l of *R* such that

$$A - \sum_{i=1}^{n} \sum_{l=1}^{l_{i1}} r_{i_1}^l B_{i_1}^l = A_2 \epsilon a_2;$$

we then find elements r_{i2}^l of R such that

$$A_2 - \sum_{i=1}^n \sum_{l=1}^{l_{i_2}} r_{l_2}^l B_{l_2}^l = A_3 \epsilon a_3;$$

and continuing in this manner, we determine elements r_{ik}^l of R such that

$$A = \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{l=1}^{l_{ik}} r_{ik}^{l} B_{ik}^{l}.$$

This completes the proof.

We now prove Theorem 1. Let a be a left ideal of R_n . By Lemma 1, a possesses a finite R-basis, say B_1, B_2, \ldots, B_t . Let B be the $nt \times t$ matrix

$$B = \begin{pmatrix} B_1 \\ B_2 \\ \cdot \\ \cdot \\ \cdot \\ B_t \end{pmatrix}$$

Let U be a unit matrix of R_{nt} such that UB = T is upper triangular. Thus

$$UB = T = \begin{bmatrix} H \\ 0 \end{bmatrix},$$

where *H* is an $n \times n$ upper triangular matrix, and the zero block 0 is $(nt - n) \times n$. We shall show that $a = R_n H$. For if we write $U = (U_{ij})$, where the matrices U_{ij} are $n \times n$, then

so that $H\epsilon a$, implying that

 $R_{u}H \subset a$.

 $\sum_{j=1}^t U_{1j}B_j = H,$

If we then write $U^{-1} = V = (V_{ij})$, where the matrices V_{ij} are $n \times n$, then V belongs to R_{nt} (since U is a unit matrix of R_{nt}) and from B = VT we find that

$$B_i = V_{i1}H, \qquad 1 \le i \le t,$$
$$a \subset R_nH.$$

implying that

This completes the proof of Theorem 1. To prove Theorem 2, we first observe that for any left ideal M of R, the left ideal M_n of R_n can be principal only if M has a set of n or fewer generators. In particular, if R is non-Noetherian, M

can be chosen to violate this condition. We now assume that R is a Dedekind ring and that any ideal in R can be generated by at most n elements. Let S be a nonprincial ideal in R, and let \mathscr{S} be the subset of R_n consisting of all matrices with first column entries in S and all other entries arbitrary members of R. Clearly, \mathscr{S} is a left ideal in R_n . We shall show that \mathscr{S} is not principal.

Suppose the contrary. Let $X = (x_{ij})$ generate \mathscr{S} , so that $\mathscr{S} = R_n X$. Clearly the x_{i1} generate $S; S = \{x_{11}, x_{21}, \ldots, x_{n1}\}$. We may assume that x_{11} is not zero, since we may interchange the rows of X by left multiplication by a permutation matrix. Let $d = \det X$. Since \mathscr{S} contains nonsingular matrices (for example, diag $(x_{11}, 1, \ldots, 1)$) X must be nonsingular and thus d is a nonzero element of S. Let $Y = (y_{ij})$ be the adjoint of X, so that

$$XY = YX = dI$$

Then $Y \in R_n$, and if C is any matrix in \mathcal{S} , every element of CY must be divisible by d. First choose $C = x_{i1} E_{11}, 1 \le i \le n$. We obtain

$$\{d\}|\{x_{i1}y_{lj}\}, \qquad 1 \le i, j \le n.$$
(1)

Next choose $C = E_{1j}$, $2 \le i \le n$. We obtain

$$[d] | \{ y_{ij} \}, \qquad 2 \le i \le n, \qquad 1 \le j \le n.$$

$$\tag{2}$$

Put $y = \{y_{11}, y_{12}, \ldots, y_{1n}\}$. Then (2) implies that $y\{d\}^{n-1}|\{\det Y\}$; and since det $Y = d^{n-1}, y = \{1\} = R$. Hence $\{y_{11}, y_{12}, \ldots, y_{1n}\} = \{1\} = R$. But now (1) and (2) imply that $\{d\}|\{x_{i1}\}, 1 \le i \le n$. Write

$$x_{i1} = \beta_i d, \qquad \beta_i \epsilon R, \qquad 1 \le i \le n. \tag{3}$$

Since $d\epsilon S$ and the x_{i1} are a basis for S, elements r_i of R exist such that

But now (3) implies that

$$\sum_{i=1}^n r_i \beta_i = 1,$$

 $d = \sum_{i=1}^{n} r_i x_{i1}.$

and hence

$$S = \{x_{11}, x_{21}, \ldots, x_{n1}\} = \{\beta_1, \beta_2, \ldots, \beta_n\}\{d\} = \{d\}.$$

Thus S is principal, a contradiction. This completes the proof of Theorem 2.

3. References

Curtis, C., and Reiner, I., Representation theory of finite groups and associated algebras, Interscience (1962).
 MacDuffee, C. C., The theory of matrices, Chelsea (1946).

[2] MacDuffee, C. C., The theory of matrices, Chelsea (1946).
[3] McCoy, N. H., The theory of rings, Macmillan (1964).

(Paper 73B3-300)