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A tra ns portatio n network is co ns ide red . The traffic de mands assoc iat ed wit h pairs of nodes and 
the (convex) trave ling cos t functions associat ed with the links a re assumed give n. The twu prob le ms 
of findin g the traffi c patte rn s whi c h e ither minimize the total cos t or equilibrate the use rs' cos ts are 
formulated , and a lgo rithms are co ns truc ted for the so lutio n of these prob lems. 
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Introduction 

Many eco nomi c sys te ms can be visualized as ne twork s whe re nodes stand for commodities, 
and links and path s stand [or s imple and co mplex production processes. The type of sys te m whi c h 
can be thu s described in the most natural way is probably a transportation network. In thi s case 
the nodes s tand [or "cities," th e links stand for roads directly co nn ectin g two citi es, and the paths 
s tand for roads connec tin g two ci ti es directly or indirectly. 

A certain demand is associated with every pair of conn ec ted nodes of the ne twork . Th is 
de mand will be di s tributed among paths which join the pair of nodes. This gives ri se to a traffi c 
pattern, the determination of which is known as th e traffic assignment problem. With every link 
of the network we associate a "traveling" cos t which is assumed to be a fun ction of the "traffic 
volume" on the link. We ass um e that the units travelin g along thi s link uniformly s hare this cost. 

In some cases the traffic pattern can be regulated by some ce ntral authority, as for example, 
a network used for the trans portation of military supplies or for a railroad ne twork. It is obvious 

. that in thi s case, the problem which the central authority faces is to de te rmine the traffic pattern 
whic h minimizes the total cost over th e whole network. 

On the other hand a broad class of transportation ne tworks can be descr ibed as user opti­
mized. He re trave l patte rn s are se t up by individual users each choosing the c heapes t way (in the 
light of othe r users' decis ion s) to arrive at hi s respective destination, rather than having his travel 
pattern dictated by a c hoi ce co nsiste nt with so me aggregate system optimum. 

That the two above criteria lead generally to diffe re nt traffi c patte rns was observed first by 
Pigou [I: p. 194] 3 in an example of a simple two node , two link ne twork. Interest in thi s problem 
has bee n revived by Wardrop [2] , who calcul ates th e traffic patterns according to the above two 
criteria for the case of a network consisting of two nodes connected by n independe nt paths and 
for a special cost function. Wardrop disc usses brie fly the case of a general ne twork and sketches 
the equilibrium equations, but he does not discuss their solution. 

Since 1952 several authors have reexamined the problem of flow patterns in a transportation 
network. For a complete bibliography we refer to a survey acticle by Beckmann [3]. We should 
observe here that two problems discussed by Wardrop , the problem of calculating the flow patterns 
according to the above two criteria, and the problem of planning an optimal investment allocation 
for improvement of the traffic network, still remain open. 

*An in vit ed pape r. This work was undertaken under ('onlracl CST- I278 with the N a tiunal Bureau uf Stand ards. We wi s h to acknowlcd g,c lilt' man ycunslruclive 
('om menl s of Alan Cold man of the App lied Mathematics Division of the Bureau, and Dr. George Ne mhauser uf J ohns Il up kins Uni versit y. 

I Present add ress: Corne ll Un ive rsity , Ithaca. N.Y. 14850. 
2 Prese nt address: The Johns Hopk ins Unive rs it y, Baltimore . Md. 21218. 
:I F igures in brac ke ts indicat e the literature refe rences at the end of thi s paper. 
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Some progress towards the calculation of the flow patterns has been made. Almond [4] has 
constructed an algorithm for the solution of the user optimized network in the case of very simple 
networks. However, no extension of the algorithm for more complicated networks and no proof 
of convergence has been provided so far. 

A different method of attack is based on the observation that the user optimization problem 
can itself be reformulated as a total cost minimization problem for an appropriately chosen objective 
function [5, 3]. 

When viewed in this manner the problem is of the "multicommodity network flow" class, 
which has been considered [13, 14] in the literature. Tomlin [14] has shown that for the case of linear 
cost (congestion) functions, the problem reduces to a linear programming problem that can be solved 
fairly e ffici e ntly by the Dantzig·Wolfe decomposition principle. Others [11] have suggested the use 
of convex programming techniques to get around the nonlinearity of the objective function. In 
fact, it was the enormous number of constraints associated with the convex programming formula­
tion of the problem for the simplest of networks that led us to develop the special algorithms pre­
sented in the paper. 

Returning to the Tomlin algorithm, it should be emphasized that his algorithm takes advantage 
of the linearity of the objective function; on the contrary, the success of ours hinges on the non­
linearity of the objective function, as will be demonstrated below. The algorithms should be viewed 
as a contribution to the theory of nonlinear multicommodity flow, as well as a contribution to the 
traffic flow literature. 

In the present paper we mainly try to solve the open problem of the calculation of the traffic 
pattern in a general network, for the two criteria proposed by Wardrop. Some progress has been 
made [10] on Wardrop's resource allocation problem; these results will be reported in a later 
publication. 

The paper is divided into two sections: the first concerns itself with problem formulation. 
Section 1.1 introduces the notation to be used, and the concept of a feasible flow pattern for a 
network. Section 1.2 describes two problems associated with transportation networks. The first, 
PI, is to find a feasible flow pattern that minimizes the total cost of traveling in the network ; the 
second, P2 , to find the feasible flow pattern that would be arrived at if users considered only their 
own interests in choosing these paths. Section 1.3 spells out the conditions that are assumed con­
cerning the congestion functions for the links of the network , and the n goes on to give the necessary 
and sufficient conditions for the existence, uniqueness , and stability of a solution for problem Pl. 
Then the same conditions are derived for problem P2 by showing that there is always a problem P l2 

associated with problem P2 whose solution is that for P2 , yet whose formulation is that of Pl. This 
theorem is a translation into the present paper's perspective and notation of the result of Jorgensen 
r5] referred to before, and implies that every traffic assignment problem of a user optimized network 
can be solved by solving the associated problem of a total optimized network. In addition, we 
extend Jorgensen's work by examining the stability of user optimized networks, as well as giving 
a more general condition for the user optimized and total cost optimized travel patterns to coin­
cide. The section concludes with the conditions on the congestion functions that will cause the 
so lutions of PI and P2 to coincide. 

Section 2 constructs algorithms for the solution of problems PI and P2 • Section 2.1 introduces 
the co ncept of an equilibration operator , and the co nditions that must hold for such operators 
to obtain a solution to PI, referred to as the process of "inducing an algorithm for the solution 
of PI." The section concludes with the introduction of the notion of disjoint paths. In section 
2.2. we co nstruct two eq uilibration operators, E,/sj for ne tworks with disjoint paths , and EI/<lsj, 

for any network. The operators are first applied to quadratic models, and we discuss under what 
conditions they induce algorithms for Pl. In brief, we show that E<lsj induces an algorithm for 
simple (disjoint paths) and almost simple (see text) networks with quadratic cost functions, and give 
evidence that E<lsj converges rapidly to a solution. Next, we show that the operator En<lsj induces 
an algorithm for problem PI for arbitrary networks with quadratic cost functions. 
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Section 2.3 exte nds the results of the pre vious section to cases where the cost fun ction is 
required only to be twice continuously differentiable and convex, rather than quadrati c. Section 
2.4 briefly compares the two operators and presents the respective conditions that appear favorable 
for their use. 

1. The Problem of the Traffic Distribution in a Transportation Network 

1.1. Generalities 

We start by introducing the concept of a transportation network. Let <'§ be a network in the 
sense of Ford and Fulkerson [7, ch. 1, sec. 1], i.e., <'§ is a pair (ff, 2) where .;V is a collection of 
elements which will be called nodes and 2 is a set of pairs of ordered elements of ff which will 
be called links. 

By a path connecting the ordered pair w = (x, y) of nodes we mean a seque nce of links (Xl, X2), 
(X2, X3), .•. , (x,, - I, X,,) where XI, X2, . • . , x" are distinct nodes, Xl= X, and X n= y. Thus a path here 
is a c hain in the terminology of [7, ch. 1, sec. 1]. In particular, every link is a path. The se t of all 
paths of <'§ will be de noted by 9 . A pair w of nodes will be called connected if there exis ts at least 
one path conn ecting w. The set of all connected (ordered) pairs of nodes of<'§ will be denoted by W". 
The se t of all alJowable travel paths which conn ec t a w will be de noted by gi~. 

With every w= (x, Y) EW" we associate a nonnegative demand dw for travel with origin x and 
d estination y . This demand will be di s tributed among all paths in 9 w• Suppose that pE9w• By 
j;J we denote the part of dw which travels through p. Thus we have the conservation equations 

(Ll) 

We define 
!F == {fp : pE 9 }, !?} == {dw : W E W"} . (1.2) 

A fixed value of !F will be called a flow pattern since it characterizes completely the flow. In the 
present paper we assume that the traffic fl ows are nonnegative real numbe rs and that the links 
of the network have infinite capacity. 

We will assume that a cost c" is associated with e very aE2 of <'§. The value of Ca is assumed 
to be a fun c tion of the total amount of traffic fa through a. Th at is, 

(1.3) 

where 

fa= L 8ap fp (1.4) 
"< (if' 

with 

8a = { 1 if a is contained in p, 
" 0 otherwise. 

(1.5) 

We define 
07:- - } ::Ji' = {fa: aE2 , j"E[O, oo)}. 

The triple .'Y == {<'§, § , 'if} will be called a transportation network. 

Throughout the paper we consider proble ms of the following type: A transportation network 
.'Y is given and the flow pattern !F is the basic unknown. So far!F has to conform to the conserva-

4 We assume that 9'11.' is a reasonably s mall set which can be enumerated in advance with little difficulty. This ass umption , ce rtainl y a plaus ible one 10 make for 
t raffic networks, avoids the problem of computing a ll paths in a ne twork , an e norm ous ly lime cons uming task fo r large networks . 
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tion equation (1.1). An % which satisfies (1.1) will be called a feasible ./Ww pattern. The set of all 
feasible flow patterns (for fixed C§ , £1) will be denoted by 2'[C§ , £1J. It is obvious that there exists 
a unique feasible flow pattern only in the case for which for any WE W" which is connected by more 
than one path, dw = 0 holds. Leaving aside this trivial case, we observe that there is an infinity of 
feasible flow patterns. 

We are now ready to formulate the two basic problems with which we will deal in the paper. 

1.2. Formulation of the Problems PI and P2 

PROBLEM PI [g- ]: Given a transportation network g- = (C§ , £1, 9&'), find a feasible solution 
% I(g- ) whic h minimizes the total cost 

C(ffi") == L calfa) (1.6) 
(J£2! 

spent in the network. 
A solution % I(g-) of problem PI[g-J will be called a "system optimizing" flow pattern. 
As noted in the introduction, this is a reasonable problem but in many cases the network is 

in fact "user optimized." Each user of a link a will be charged with a portion of the total cost Ca 
on this link. It is natural to assume that there is full interaction between all units traveling on 
link a; that is, the cost is distributed uniformly among them. Thus, the share of the cost of each 
unit traveling on a will be given by 

- _ - r1) - calfn) 
Ca-Cava = fa (1. 7) 

In consequence, the personal cost cp of a unit traveling on PEf!} will be given by 

Cp= L QapC" (1.8) 
aE2 

where the incidence symbols Qap have been introduced by (1.5). 
In order to make clear the notion of a flow pattern which is "user optimized," we introduce 

the following definition. 
DEFINITION (1.1): For given g-= (C§, £1, 9&' ), by an equilibrium flow pattern § ' we mean a 

feasible flow pattern with the following property. Let WEW" such that dw > O. Choose any PEf!}w 
for whichj~ > 0, and any number 6.f, 0 < llf<f~. Consider another path qEf!}w. Then the individual 
cost cp (% ' )llf of llf in the original flow pattern %' is not greater than the individual cost Cq(!fr") llf 
in the flow pattern % " defined by 

1;: == f~ -6f, 
r.; == f~ +!:If, 

, rEf!}, r =P p, q. 5 

(1. 9) 

In other words, an equiljbrium flow pattern is an equilibrium point in the sense of Nash 
(e.g. [8 , sec. 7.8]) of the noncooperative game among the various users of thp- network. Having; 
given the definition of an equilibrium flow pattern, we now formulate problem P2 . 

PROBLEM P2 [g-J: Given a transportation network g-, find an equilibrium flow pattern 
1%2 = %2 (g-). 



1.3. Study of the Solutions to Problems PI and P2 

It is not to be expected that the proble ms PI , P2 , formulated above are well posed unless so me 
condition s are se t on the form of the cos t fun c ti ons c" lfc,). Wheneve r we consider th e proble m PI 
we will ass ume th at the above functions sa ti sfy th e following assumptions for all aE2 . 

1. c" lfc, ) is continuous on [0, (0). 
2. Ca. (0)= 0. 
3. Co lfa) is s tri c tly increasing on [0, (0). 
41• Co <t, ) is stri c tl y convex on [0, (0). 

The interpre ta tion of condition s 1- 3 is obvious. Conditions 41, for differe ntiable Co (f,,), means 
that the rate of in crease of the cost , i. e . , the marginal cost , is a strictly in creasing fun ction of the 
traffi c fl ow f., (co nges tion effect). 

Whenever we con side r the problem P2 we will assume that co nditi ons 1- 3 a bove a re satisfied 
but , in the place of 41 , we will impose the condition 

4 2. Co (j, ) is s tric tl y in creas ing on [0 , (0) 

with the under sta ndin g th a t 

(0) 1m Ca.{j,), 
CII == 

l,~ 0+ fa 

Assumpti on 42 provides a s li ghtly differe nt interpre tatio n of the co nges tion e ffect with the e mphas is 
pl aced on th e indi vidu a l ra th e r tha n o n th e margina l cos L.in fac l condili o ns 1,2,3,4 1 im ply co nditi on 
42 . (Howeve r, co nditions 1,2,3,42 do nol impl y, in ge neral. co nditi on 4 1') 

The simples t model whic h sati sfi es the above require ments corres pond s to a cost fun ction of 
the form 

C a(],,) = gajft + h a!". g o > 0, h" ~ O (1.10) 

and will be called the quadratic model. In thi s mode l the co nges tion effect de pe nds linearly on the 
tra ffi c fl ow. 

Havin g specified the admi ss ible form of ~, le t us consider the proble m PI [.3'], .3' = (~, £!d , ~). 

Recall that thi s proble m call s for the vec to r (g-, SZ;) which solves the minimi zation proble m: 

s ubject to 

min C (g-) = L Ca<t,) 
O€.!if 

1" - )' Oalit) = 0, aE2 , 
pf# 

f~ ~ 0, PE g; , 

(1.11 ) 

(1.12) 

Observe th at a fi xed g- induces a unique g- through (1.12)1. But it is possible that more than one 
feas ible g- induces the same g-. Th e set of all feasible g- which induce a given fixe d SZ; will be 
de noted by R [g- ] . On acco unt of (1.12), R [g- ] is a convex se t. g- will be called f eas ibLe if R [% ] is 
non-e mpty. The se l of a ll feas ib le g- will be de noled by .,2' [~ , 01 ]. In appendix I we give a n exa mple 
of a tra ns port a ti on ne twork s uc h th at for so me ~E~T~, £!d ] , R[SZ; ] contains an infinite num be r of 
ele men ts . 

Note that if (g-', ~'), (g-", ~") sati sfy the constraints (1.12) so does an y convex co mbination 

(g- , :11') == A' (g- ', :11" ) + A"(g- ", !F" ) , A', A" > 0, A' + A" = 1. 
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On the other hand and on account of 41 , 

and equality may hold only if :F' = §P". Consequently, PI is a convex mInImIzation problem in 
.::t'EB~ and, in particular, it is s tri c tly convex in ?l'. Using the theory of convex programming and 
observing that the total cost function depends only on ?!J:, we arrive at the following theorem. 

THEOREM (1.1): Given :Y = (,:§, PJJ , 9&'), there exists a unique §PIE.::t'[;9', PJJ] such that C(§P I ) is the 
minimum of C(:F) over 2'"[;9', PJJ ]. Every element :F1ER[:FI] is a solution of problem PI . 

Thus, problem PI always possesses solutions and in particular it possesses a unique solution 
if and only if R[:Ftl consists of a unique element. 

In the special case where the calf,,) are differentiable functions we can prove the following 
theorem. 

THEOREM (1.2): The flow pattern :FE:!!: is a solution of problem PI if and only if it has the 
following property. For any WEW connected by precisely the paths PI , ... , Pili, these paths can 
be so numbered that 

< ' ( =) = cPm.'ji' , 

fp > 0, 
r r= 1, ... , s, (1.13) 

hJ,.= O, r=s+l, m, 
where we use the notation 

c~(Y:) == L Oa)JC~ (t,) , 
flE:£ 

PROOF OF SUFFICIENCY: Assume that §PE:!£ satisfies (1.13). Let :F +tJ.§PE.::t' be a feasible 
reallocation. The change of the total cost is given by 

tJ.C=L [c"C!r,+tJ.J,,)-c,,(jI/)]' 
(IE:£' 

Applying the mean value theorem and using the fact that the functions c~ (f,,) are (strictly) increasing 
we obtain 

tJ.C ~ L c;,(J")tJ.f,,. k' At. (1.14) 
(IE:£' 

Recalling (1.4), 

tJ.f" = L oaptJ.fp. (1.15) 
IJEfJJ 

Then , 

tJ.C ~ L L oapc~(f,,)tJ.f)J = L tJ.f)Jc~( :F). (1.16) 
aE.:!! pd' "'ElY' 

Note that if fp= 0 , then tJ.fp ~ 0. Thus, using (1.13), 

(1.17) 
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where w is the pair of nodes which is co nn ec ted by p . Recalling that L 11};)= 0, we ob tain from 
(1.16) and (1.17), PE&'" 

which proves that !F is a solution of problem PI. 
Q.E.D. 

PROOF OF NECESSITY: Suppose that !F E:!.t is a solution of problem PI, but there exist paths 

p , q Ef!J w such that Ip > ° and 

(1.18) 

Assume now that a portion 111 off~ is reallocated to the path q. Th e c hange of the total cost is given 

by 

where 

t£ = L o3J Ca(j" - ilj) - ca(fa) ] + Log" [Ca(j;, + ilj) - Ca(]a) ] 
OE Z aE Z 

if a is not co ntaine d in q, 

if a is conta in ed in q, 

and of,q is defin ed in a n analogous fas hion . 

(1.19) 

Applying th e mean value theo re m and recallin g that c;,(j,,) are (s tric tl y) in c reas in g functions 

we end up with 
I1C < { - L o~pc;,(j;,-I1})+ L O~qC;,(f,,+I1/)} 11j. 

.... ·ae!! lIf / 

Now L o~pc;' (j" - 11}) . L of,qc:, (]" + 11}) are co ntinuous fun c tions of ilj. H ence, we may c hoose 
{lE Y (lE .!i' 

a positive I1j([or feas ibility it mu s t be suc h thatJ;) - il/ ~ 0, whence il/~/p) such that 

L o~pc:,(fa - il}) > L o~pc:,(],') - i, 
(IE !/' ae !£ 

L O/;qC:'(f,,+ ilj) < LO;;q C;,(fa)+~ 
{Jf. :f OE :£' 

He nce, 

ilC < - L 09,pc;,(f,,)t:.}+ ~ 111+ L Of,q C~(j,,)l1f+~ I1j. 
(IE !Z' OE 'z 

It is eas ily seen that the above inequality may be written in th e form 

or, using (1.18), 

ilC < { - L OapC;,(f,,)+ L OaqC;,(],,) + 23E } ilj 
(If.!/! (IE!&' 

E 
ilC < - - ill < ° 3 

which is a contradic tion to the assumption that !F is a solution of problem PI. Q.E.D. 
Actually it can be shown that (1.13) are simply the Kuhn·Tucker conditions (see [9, ch. 6J) 

for the minimiza tion problem (1.11), (1.12). However , these conditions have been derive d ind e­
pendently here in order to keep the paper self-contained. 

In the case of the quadratic model, PI redu ces to a quadrati c programmin g problem and 
(1.13) become linear. 

From the co nvexit y of problem PI we can obtain additional information , name ly that the 
solution is stable. To ma ke thi s precise we introduce the followin g defi nition. 
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DEFINITION (1.2): Let E > O. We S(f)! th(fl :FE:!! satisfies (1.1.')) modulo E if and only iffor any 
p, q connecting any wE'll; and such that fp ~ dE , either 

(1.20) 

holds, or else both 

(1.21) 

and 

where r:, d are arbitrary but fixed magnitudes having dimensions of cost and traffic flow , respec­
lively, and included in order to make E dimensionless. 

THEOREM (1.3): Let :Y = (~, EiJ , ~) be a transportation network with twice continuously differ­
entiable cost functions, and :F ' a solution of problem P, [:Y ]. Then there exist numbers K and L 
which depend solely on :Y, such that 

C(:F)- C(:F')< eKE, 

II :F -:F'W == L Ilc, - .1:,1 2 < d2LE, 
aE2' 

for any:F E:!! [:Y ] which satisfies (1.1 3) modulo E, E > O. 

(1.22) 

(1.23) 

PROOF: Assume that :F E:!! satisfies (1.13) modulo E. We set 1l :F==:F ' -:F. As in the proof 
of Theorem (1.2) (see eq (1.16)), we have 

C(:F') - C( :F ) ~ Lllj;)c~( :F ). (1.24 ) 
pElY' 

W e decompose 'lfI , 'lfI='lfI , U 'lfI2 . so that if WE'lfit. then j;J < dE for all PE f!lJ w , whil e if wE'lfI2 , 

then fp ~ dE for at least one PE f!lJw. In particular one of 'lfIt. 'lfI2 may be e mpt y. 

For WE W" , 

Hence 

where KI can be easily es timated in terms of elements of :Y. 

Fix now WE'lfI2, and let f!lJ w = {PI , .. , Pm). Suppose that 

j~,. ~ dE , r= 1, . ., s, andj~,. < dE, r=s+ 1, . .. , mw. 

We write 

and we observe that since :F satisfies (1.13) modulo E, 

c 
1 P-p,. 1 < - E 

d 

C 
II > -- E 
r-P,. d 

, r = 1, ... , s, 

, r=s+ 1, ... , mw. 

It is also easy to obtain an estimate of the form 

<c E 
"" =- IV r-,. d , r = s + 1,. . ., mw 
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where the numbe r E", de pends at most on ,'7 and w. For example 

11.26) 

where IF ;, is th e se t of all WE'Ul2 which are connected by at least one path containing a. Notice also 
thp. useful es timat es 

, r= s + 1 . . , ., mw , 

, r = 1, , .. , m",. 

Hence 

fflW fflW 

2: LVpc;,(% ) = C~ I (% ) 2: 6.jj,+ 2:fLJJ/~Ip,.=2: fLl,,.6.j;,,.+ 2: fLp,.6.j;,,. 
fJE,J'1l" PE.!I'". r= 1 r= 1 r=s+ I 

{ cl lI' ) (d w E )} >- (dw E ) ~ - scd - (m".- s c max d' "t' E =- mu'C max d' w E . 

From thi s las t in equality. (1.25), and (1.24) we deduce (1.22) for 

I< == 2: 171 /1' max ( (~(' , Ew) + 1<1. 
welf ''l 

11.27) 

We now proceed to th e proof of (1.23). Note that 

with a~ calc ulated at the point % ' and ~2C_ calculated at a fixed intermediate point % ' + ()6.%, 
aj" aj"a/b 

° ~ () ~ 1. Since % ' is a solution of proble m PI and % ' + 6. % = % E::t, then 

On the other hand 

Hence, 

aCI 2: a=- 6./" = 0, 
aeJ fa ~, 

a_2c_ =Ic~<lc,), if a =b, 
af"ajb ° ,if a#- b. 

- - 1 -
C(% )- C(.Y ')=22: c;;(jo) 6.j;t-

(IE ..!' 

Since Co (f,,) are s tri c tly co nvex, th e constant 

c k .. -
d2 == mill Illin C:'Ch,+()Aj;,) 

a • .!/' 0'10. II 

99 

(1.28) 



is positive and (1.23) follows with the help of (1.22) for 

2K 
L == -· 

k 
(1.29) 

Q.E.D. 

The interpretation of the above theore m is th a t the solution of problem P t is stable . We e m­
phas ize he re th at , as follows from the proof, th e constants K , L can be estimated explicitly in 
te rms of known characteri sti cs of the tra nsportation network. Then , apart from its theoreti cal 
importance, the Theore m (1.3) is useful in practi ce sin ce it provides a means of estimating the 
di s tance of a given feasible flow pattern from the solution of problem Pt . An explicit application 
of the above observation will be presented in part 2 of the paper. With these comments we comple te 
the study of problem PI. 

We now proceed to a similar study for probl e m P 2 • W e start by provin g a theorem analogous 
to Theore m (1.2). 

THEOREM (1.4): The flow pattern :F E!L is a solution of problem P2 if and only if it has the 
following property. For any wE'lf/ connected by precisely the paths Pt, . .. , Pili, these paths can 
be so numbered that 

Cp (:F ) = 
1 

= c" (:F ) == Aw ~ ( 1) (:F ) ~ 
S 8+ 1 

fp > 0, ,. r= 1, ... , s, 

f]),.=O, r=s+l . .. , m. (1.30) 

PROOF OF SUFFICIENCY: Ass ume that :!if E!L sati s fie s (1.30). Let p , q be two paths connecting 
the same wEll'" and such that j;J > O. By (1.30) 

(1.31) 

Suppose that a portion tJ..f, of fp , 0 < tJ..I ~ fp , selects the path q. By:F' we denote the res ulting 
flow pattern. Recalling (1.19) we have 

Cq(:F' ) -c,,( :F ) = 2: gQ ,[c(I(j,,+tJ..j) -ca(j,,)] > 0 
a • .:z 

where use has been made of the fac t that c" (],,) is a stri c tl y in creasing fun ction. In parti cular, 
recallin~ (1.31) ~ 

whi ch shows that :F is an equilibrium point In th e sense of Definition (1.1 ). 

The proof of necessity is e ssentially a repe tition of the proof of th e necess it y in Theore m 
(1.2) a nd will be omitted. Q.E.D. 

Th e above conditions are nothing more than the standard ave rage cost equalit y conditions 
an economi s t would ex pect to find in a s ys te m that is optimized by individuals acting indepe nde ntly 
of one another with no regard for total sys te m optimization. Conditions (1 .30) are known (but not 
in full generality) a t least sin ce the time of Pigou's treati se referred to in the introduction. Many 
authors con sider the co nditions the mselves as a definition of proble m P2 . 

Comparing (1.13) with (1.30) , we observe that there exists a remarkable similarity between 
the m. The role of the average cost c]) in (1.30) is played in (1.13) by the marginal cost c~. Starting 
from the above observatiun , we will now show that there exists a close relationship between the 
set of proble ms P t and the se t of proble ms Pt . 
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DEFINITION (1.3): Given P2[g-] = Pd~, '/ , ~~ I . we construct a set of cost jiLnctions 2 '~ in the 
following way. For any aE il! we set 

(1.32) 

Note thai if ~Cl/ satisfies conditions 1,2,3,4-2 , then 21casatisfies conditions 1, 2,3,41• Furthermore, 
21C" is continuously differentiable. The problem PI [~ , !!fl , ~I~] will be called problem PI associated 
with problem P~[~, !!fl , 2~] and wiLL be denoted by Pd~, !!fl , ~~]. 

Similarly, given PI[~' !!fl , 1 ~] where I ~ consists of continuously differentiable functions, we 
construct the set of cost functions 12~ through the use of 

l~Ca(J,,) == ,c~(f(l)f(l' (1.33) 

Note that if lCa(]a ) satisfies conditions 1,2,3,4" then 12Ca(J,,) satisfies conditions 1,2,3,420 The 
problem P2 [~' !!fl , 12 ~ ] will be caLLed problem P2 associated with problem P, [~, !!fl,~ ] and will be 

denoted by P21[~, !!fl , I ~ ]. 
The above give n definition of the associated problem is justified by the following theore m. 

THEOREM (1.5): ( et §P be a solution of problem PA~, !!fl , ~J. Then §P is also a solution of 
problem Pd~, C) , ~]. Similarly if §P is a so lution of problem P,[~, !!fl , ~] with ~ consisting of 
continuously differentiable fun ctions , then §P is also a solution ofproblemP2,r~, C) , 951. 

PROOF: The proof follows from the construction of th e associated cos t fun ctions . In fac t we 
observe that (1.30) writlen for p2 r~g , !!fl , 2~) and (1.13) writte n for Pd~, !!fl , 21~J coinc ide. Similarly 
(1.13) written for Pd~, !!fl , ' 2~) coincides with (1.30) writlen [or P2 1 ~ , !!fl , 1295J. Q.E.D. 

The notion of the associated proble m is very simple but it will be of esse ntial importan ce 
throughout the paper. For example note that Theore m (1.1) and Theorem 0.3) immediately imply 
the following co rrespo ndin g th eorem for problem P2 . 

THEOREM (1.6): Given !T = (~, !!fl , 2~ ) there exists a unique ~ = ~2 (~, !!fl , 2Yi ) such that every 
§P ER[§P ] is an equilibrium solution of problem P2 [ ~, !!fl , 295 ]. Furthermore , this solution is stable 
(in a sense quite analogous to the notion of a stable solution of problem PI induced by Theorem (1.3)). 

PROOF: Consider the proble m P I2 [~, !!fl , 2~ ] ' i.e. the problem PI [~, !!fl , 12~ ] ' and le t §P = §P I 
(~, , 1295 ) be its solution. Obviously, §P is also the unique and stable solution to problem P2 [~, 

!!fl , 2~ ]' 
Q.E.D. 

We will close this section with certain simple observations about the associated proble ms. 
In the case of a quadratic model, the associated problem is also quadratic. More precisely , if 
lc('(ia) = tgafl + hJa then 12Ca(j,,)=g,j1+ h(ja. Similarly if 2Ca(ja)=g,j}+hJa the n 2IC,,(j,,) 
=tg,j;f+h(j". In general, it is obvious that 2 1 2~= 2~ and 121~= 1~ . 

A natural problem is the following: Suppose tha t a network ~ is given. Characterize the type 
of 95 for which the solutions of problem PI [~, !!fl , 95 ] coincide with the solutions of problem P2 [~, 
!!fl , ~ ] for every !!fl . Such cases are extremely desirable because in the m the pattern created by 
the individuals acting in their own self interests coincides with the pattern most economical for 
the total society. We have already seen that the solutions of the associated problem P2 [~, !!fl , ~ ] 

coincide with the solutions of the associated problem P I2 [~, !!fl , ~] . In consequence, the solutions 
of problem PI [~, !!fl , ~ ] will coincide with the solutions of problem P2 [~, !!fl , ~] if and only if they 
coincide with the solutions of problem PI2[~, !!fl , ~ ]. 

Recalling (1.32), we conclude that th e solutions of problem PI [~, !!fl , ~ ] coincide with the 
solutions of problem Pd~, !!fl , ~] if 

(1.34) 
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where YJ is an arbitrary positive constant , the same for all (If:£, . Integral equation (1.34) has the 
following solution: 

Ca (fc,) =c&h (1.35) 

where c~ is an arbitrary co ns tant. In order for C,,(!n), as given by (1.35), to satisfy conditions 1,2, 
3, 41 or 42 , we res tri c t c?" YJ so I hat c~,> 0, (fE£', YJ > 1. Actua ll y (1.35) gives the most genera] type 
of cos t functions which guarantee co in c ide nce of the so lutions of PI[~' £», 'it' ] with those of P2[~' 

£», 'it' ] for an arbitrary ~. It should be noted , though, that for s pecial ne tworks the class of such 
fun ction s ca n be broadened. 

2. Development of Algorithms for the Solution of the Problems PI and P2 

2.1 . Generalities 

In this section we develop algorithms for the solution of problem PI [ff ]. Obviously if such an 
algorithm is available, the solution of problem P2 [ff ] can be obtained as th e solution of a PI prob­
lem , namely the associated proble m P21 [ff ]. 

Roughly , th e method of solution can be described as fo llows: Starting from an initial feasible 
flow pattern we co nstru ct a sequence of feas ible flow patterns which converges to the optimal 
solution. 

To be precise , we introduce the notion of an "equilibration operator." 
A map 

will be called an equilibration operator associated with WE'If! if it sends % E.'!Z into % ' E2' such that 

f~ =j~ 
unless PEfJP w. 

A map 

will be called an equilibration operator associated with a transportation network ff, if E can be 
fa c tored , 

E =Ew" 0 . .. 0 EWi (2_1) 

where {WI, .. _, w,,} = 'If! and EWi is an equi libration operator associated with Wi. 

We now give our de finition of an algorithm. 
DEFINITION (2.1): Let ff be a transportation network and E an equilibration operator associ­

ated with ff. We will say that E induces an algorithm for the solution of problem PI [ff] if for any 
%(O)E2', 

n~ OO (2.2) 
where 

n = 1,2, . . (2 _3) 

and % 1 is a solution of problem PI. 
The followin g theore m gives suffi cient conditions for an equilibration operator to induce an 

algorithm for th e solution of proble m PI. 
THEOREM 6 (2. 1): Let ff be a transportation network and E an equilibration operator associated 

with ff and having the following properties: 

(1) E%=% for some % E2' implies that % satisfies (1.13) for all WE'If!, so that %=%1. 
(2) E is a continuous mapping from 2' to 2'. 
(3) C(E.%) ~ C(%) for all % E2'. 
(4) C(E%) = e(%) for some % E2' implies that E.% = % . 

6 A proof of convergence along simi la r lines has bt:en communica ted independently to us by W. A. I-lo rn of the Nat ional Bureau of S tanda rds. 
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Then E induces an algorithm f or the solution of problem PI [.r ] . 
PROOF: Let !F(O)E.fl' a nd !FIll ) == E"!F (O), 11 = 1, 2, . . . We have to prove tha t 

n ---7 00 . (2 .4) 

We firs t p rove th a t eve ry conve rge nt s ubsequ ence {!F l llk )} of {!FUll} con ve rges to a soluti on !FI 
of PI [.r]. In fac t , le t 

k ---7 00. 12.5) 

S in ce .fl' is closed , !FE.fl'. Th e seque nce {C (!F III ) } is d ecreasin g and bounded from below by 0, 
he nce is conve rgent. B y Cauchy's theore m , give n E > 0, 

ifk ~ k l ( E ) . 

S in ce C(!F ) is co ntinuous, lim C(!F( lIk ) = C( !F ). He nce 
A~x 

if k ~ k~(E). Furth e rmo re, th e co ntinuity of C( !F ) im plies the ex is te nce of 0, so me s uc h th at 

On th e othe r hand, s ince E is a co nti n uous map ping, give n 0 > ° the re ex is ts 7) (0) s uc h th a t 

Fin a ll y, fro m (2.5) it follows th at give n 7) > 0 , th e re ex is ts k3( 7) ) such th a t 

S uppose now th a t k ~ max {kl (E), k2 (E). k:I (7) (o,» }. Combinin g the above res ults we obtain 

But the left-h a nd s ide of th e a bo ve ine qu alit y is inde pe nde nt of k a nd hence 

C(E!F ) -C (!F ) = O, 

whe nce!F is a so lution of proble ms PI b y (4) a nd 0 ). 
We now proceed to the proof of (2 .4). S uppose that it is fal se. The n there exists a positive 

number 0 aJld a s ubsequence {!FIll".)} s uch that 

I I !F l llk') -!F I I I == ~ 11},,"k)-};n l > 0. (2 .6) 
liE / 

The sequ e nce { !Flllk)} is boun ded. By th e theo re m of Bolza no-Weierstrass th e re ex is ts a con­
ve rging s ubsequ e nce {!FIll ,,}} . As proved above 
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where :F, is a solution of problem PI. In particular, 

/-'> X 

and this is a contradiction to (2.6). 
Q.E.D. 

The above theorem provides a criterion for establishing that a given equilibration operator 
indu ces an algorithm for the so lution of proble m PI. A limitation of the usefulness of the theorem 
may arise from the fac t that it is not always easy to check whether assumptions 1-4 are satisfied. 
The following proposition simplifies this problem. 

THEOREM (2.2): Let {Ew: WEW"} be a collection of equilibration operators associated with the 
pairs of connected nodes of a transportation network 3 . Suppose that for every WEW", Ew satisfies 
the fo! Lowing conditions. 

(1') Ew:F =:F for some :F Efl' implies t.hat :F satisfies (1.13) for this fixed w. 
(2') Ew is a continuous mapping from ::t to ::t . 
(3') C(Ew:F)~C(:F)forall:FE::t. 
(4') C(Ew:F) = C(:F) for some .'!hfl' implies that Ew:F=:F. 

Then any equilibration operator associated with 3 and constructed by composition of the above 
collection {Ew:WE'tr} satisfies conditions 1-4 of Theorem (2.1). 

PROOF: Assumption 1 follows easily from l' and the structure of an equilibration operator 
associated with a pair of nodes. Assumpti6n 2 is an obvious consequence of 2 ' . Similarly 3 follows 
immediately from 3'. Finally 4 follows by a combination of 3' and 4'. 

Q.E.D. 
The above theorem reduces the problem of checking conditions 1-4 of Theorem (2.1) to the 

much simpler problem of checking conditions 1'-4' of Theorem (2.2). 
Sometimes an equilibration operator E associated with a transportation network satisfies 

conditions 1 and 2 of Theorem (2.1) but it does not satisfy (or at least we cannot prove that it satis­
fies) conditions 3 and 4. Then of course we do not know whether E induces an algorithm for the 
solution of P, [3]. Nevertheless the sequence {P:F(O)} may lead to the solution of problem 
P, [3 ] as shown by the following theorem, the proof of which is similar to the proof of Theorem 
(2.1). 

THEOREM (2.3): Suppose that an equilibration operator E satisfies conditions 1,2 of Theorem 
(2.1). Suppose further that for some choice of :F(O) the sequence {E ":FUl )} converges as no-'>CtJ. Then 
{E ":F(tI)} converges to the solution :F'1l of the problem PI. 

REMARK (2.1): We have seen that an equilibration operator E which induces an algorithm for 
the solution of problem P, enables us to calculate through (2.2) the unique :F, associated with a 
problem P,[3 ]. Then we know that R[:F,] is the set of solutions of problem PI. The calculation 
of an element of R [:Fd , given :F" amounts to finding a solution to the system (1.1), (1.4), which 
might be accomplished by phase 1 of the Simplex method. This requires a rather tedious calculation. 
However , as shown in the proof of Theore m (2.1), some elements of R [:F,] can be obtained directly 
from the algorithm as limits of the convergent subsequences of {E" :F(O)}. In particular, if R[:F,] 
consists of a unique element then 

REMARK (2.2): The s tability res ults of Theorem (1.3) can be e mployed here in order to estimate 
//:F , - E":F(O)//, n = 1, ... , and thu s they provide a means for deciding whether the approxi­
mation is satisfac tory , in which case the algorithm is terminated. In fact the estimation of the 
smallest E modulo whi c h E":F(O) satisfies (1.13) can be obtained for example by a method com­
municated to us by Alan Goldman and which is given in appendix 3. Then a use of estimates 
(1.22), (1.23) reveals the accuracy of the aprpoximation. 

Recall that the proof of Theore m (1.3) involved an estimate of the form 

__ //2d2 _ -
"P:F(O) - :F , ~ ~ d rCIP:F(O))- CI:FdL 
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----------------------------- -------

which e nables us to estimate the converge nce of {E/I~(oI} 111 terms of the conv erge nce of 
{C(E/I~(oI)}, Thus when we apply the algorithm it is sufficient to ins pect the seque nce of the 
success ive valu es of the total cost. From the rate of convergence of thi s seque nce we can judge 
the rate of con vergen ce of the seque nce {E/I~(O) } , 

It is conve ni ent to introdu ce here the co nce pt of disjoint paths. Let wE'UI. The set 9 w will be 
ca ll ed disjoint if th ere is no (fE£' whi c h is contained in more than one pE9 /1" ' 

A ne twork .if wi ll be c a ll ed simple if 9 w is disjoint for every wE9 w. 

In th e followin g paragra ph s we will cons truct two equilibration operators El!sj, E ndsj and we 
will di scuss und e r what cond itions they induce algorithms for the solution of problem PI . These 
operators will be introdu ced first for the quadratic model and then the definition will be extended 
to the case of ge ne ral conve x cost fun ctions. In partic ular Edsj can be applied more naturally to 
s impl e ne tworks while E/ll!sj has bee n designed for application to nonsimple ne tworks , for which 
E(/sj need not induce an algorithm for the so lution of problem PI. 

2.2. The Quadratic Model 

Let 3' = (~if , '/ , 'G') be a tran s portation ne twork with qua drati c cost fun c tion s, 

According to (2.1), in ord er to de fin e th e equiLibra tion operators Ed~i' E"dSj assoc iated with th e 
give n .Y it is s uffi c ie nt to de fin e the ir fa cto rs EWj, E::~sj, respecti vely, for e very wdfl' . 

a . The Equilibration Operator Edsj for the Quadratic Madel 

We s tart by motivatin g the definiti on ofE~~~j, Let wEf!' s uch th a t :Yw = {P I, . . . J Pili} is di sjoint , 
and co nside r any .JP E::.r , By :J if. we denot e th e s ubse t of l' s uc h that 

Le t us seek th e e le ment ~' E ::.rr,. whi ch 

minimizes CI ~ ') over J f:, . 12.7) 

In orde r to so lve thi s minimization proble m it is convenie nt to introduce the followin g notation. 

gp,. == L OoP/ga, 
lIE / 

/-Lp,.(~ ) == L o"p,.[2g"j" + ha], 
[l.EJ' 

Without loss of gene ra lity assume that 

h" ,(] ) ~ . .. ~ lip I ~ ). 
III 

12.8) 

12.9) 

12.10) 

A comparison with (1.13) leads to the conclusion that the solution ~ ' of (2.7) satisfies the 

following equilibrium condition: 

tLpl + 2gp I (["1-Ip) = = /-Lps + 2gps (f~s - Ips) ~ /-LPS+I + 2gPs +1 (f~S+ 1 - Ips+ l) 

L£,. =dw • 
/Jrf.Y'w 

£',. > 0, r = 1,. ., s, £' r = 0, r = s + 1, . . . , Tn . (2.11) 
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On account of (2.10), (2.11)1 reads 

and the solution of (2 .11 ) gives 

I ' - Mw-hpr 
p,.- 2 , r=l, . .. ,s, 

gp,. 

j~r=O, r=s+l , . . . ,m, (2.12) 
where 

(2.13) 

Thus :}P ' may be calculated through (2.12), (2. 13) , provided that the criti cal index s is known. 
We now give a procedure for the evaluation of s. From (2.11), (2.12) we obtain the condition 

(2 .14) 

Let 
i' 

2dw+ "LhpjgPh-
k = l M:;' = ---,."--'----, r = 1, . . ., m. (2.15) 

"L 1/gPh-
k= l 

The index s for which Mi:- sati sfies (2 .14) is the critical one. The existence of a unique s having this 
property follows from the existence of a unique sol ution to the minimiza tion problem in question. 
Nevertheless, we de mon strate separately the existence a nd uniqueness of such an s, using the 
following identiti es which are of interes t in themselves: 

(2.16) 

r = t 

(M:;'-M;;, l) "L l/g]Jk =l/g pr (h pr -M:;'), (2.17) 
k= l 

or 
,. 

(M:;'- M :;'- l)"L l/g pk = l/g pr (h pr - M :;'- l). (2.18) 
k= l 

Let S be the set of indices such that rE S if and only if M:;, > hp ,.. From (2.16) it follows that 

1ES. Suppose that rES. The n M :;, > h pr. From (2.17) M :;'- l > M :;'. Thus h pr_1 ~ h pr < M:~ < M :;'- l , 

i.e., (r - 1)E S and he nce 1,2, ... , rES. Let s be the maximum index in S. Then hps < M~. Further­

more, e ither s =m or s+l,S which impli es hpS+ 1 ~M:/ I . Using (2 .17), (2. 18), we conclude that 

M t,+ 1 ~ hpS+ 1 implies M t, ~ M t,+I, which in turn implies M~ ~ hps+ l. Thus the existe nce of a unique 

s has been established and another method of construction of s (as the maximum index in S) has 
been given. 

S umm ari zing, to ca lc ul a te the solution g; ' of the minimization problem (2.7) we apply the 
followin g procedure: 

(1) We calculate the quan titi es gp,. , hp,.(5 ), r= 1, .. . , m. 

(2) We arrange hp I :}P ) in nondescendin g order an d we relabel them according to this order. 
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(3) We calculate M:~, r = 1, ... , m from (2.15). 

(4) If M illJ( hpm we set s = m. If M ill ~ hpm , we find the unique index s s uch that hps < M~v ~ h PH I ' 

(or equivale ntly such that hps < Mt, and hps+' > Mt,+' ). 

(5) W e calc ulate/~,., r = 1, ... , m, using formula (2.12). 

Suppose now that wEfI/ with 9/1' disjoint. We define E?:,P by 

(2.19) 

where % ' is the solution of the minimization problem (2.7) for the given % . This definition induces 
the definition of EelS) for simple networks with quadratic cost fun c tions. 

Note that (2.7) simply states that % ' = E'f,~j% sa ti sfi es (1.13) for th e pair w. Thus , if E~tsj% 
=%, % satisfi es (1.13) for the pair w, i.e. , E?,p satisfies co ndition l ' of Theo re m (2.2). Condition 
2' of the same theo rem follows immediately from the co ntinuity of the fun ction s in volved in (2.12). 
Finally, co ndition s 3'.4' are also satisfied since % ' = E1JJ% minimizes C( % ') over th e se t :!Z ,{,'. 

By Theore ms (2.1), (2.2) it follows that E <Is) induces an a lgorithm for a simple ne twork with 
quadratic cos t fun c tions. 

W e s hould emphas ize he re that th e e ffec tive ness of the solution of the minimization problem 
12.7) is du e esse ntially to the assumption of the di sjointness of 9 11' and of the quadraticity of 
{ CaC~,) : ([E f }. 

We now proce ed to ex te nd the de finition of E'(;j) in th e case for whi c h 9 w is not di sjoint. Note 
that th e minimizati on proble m (2.7) is meaningful e ve n in thi s case. Th e solution of thi s proble m 
would provide a natural ex te ns ion of the de finition of E~Y to cases where 9 lV is not di sjoint. Un· 
fortunate ly an e ffective so luti on of thi s proble m does not see m possible. Thus we devise the foll o w· 
ing kind of ex te nsio n: 

We choose to calc ulate 

by followin g the s te ps (1) , (2) , (3), (4). and (5) described above. 
This is clearly possib le s ince thi s procedure, though motivated for di sjoint 9 "., does not de· 

pend in its definiti o n on th e assumption of di sjointness. In this way we retain th e simplicity of the 
calc ulations . Let us s how that the condition l ' of Theorem (2.2) is sati s fi ed. Suppose that 

M,c- hp . 
%'= Ew%=% for so me .FEfZ. From (2.12),j;),. = /;,.= 20' " r= l , . . . , s, andj;),.=j;;,~ O , 

b P,. 

r= s+ 1, ... , m. Th en, recallin g (2 .9) and (2.10), /Lv,. = M lV , r = 1, ... , s, /Lp,. ~ M lV, r = s + 1, ... , m. 
Now observe that fJ.-IJ,. is the (rea l) marginal cost along th e path p,.. Hence the equ ilibrium equations 
(1 .13) are sati s fi ed for wand the proof of condition l ' is complete. Furthermore, we can prove, as 
before, that the condition 2' of Theorem (2.2) remains valid. On the other hand , the motivation 
which was present in the case of di sjoint 9 w and whic h was justified by the proof of the validity of 
conditions 3',4'. of Theorem (2.2) is not prese nt any more . Thus. it is not obvious that conditions 
3', 4' are still satisfied, and we have to go through the following lengthy calc ulation in order to 
c heck whether th ey are valid . 

Let us set ll% = % ' - % . The change of the total cost is given by 

C(%')-C(% ) = 2: [g,,(J,, + llj;,)2+h,,(f,, + llj~) -f'aJ,; - h,,!,,] = L f'"lln 
ae2' (If.!/' 

+ L [2gJ,,+h,,]llf,, = 2: llj~ L [2g,j,,+h,,]Oap + L f'"lln 
flE.L jJE9'u· (IE.? (fEY 

= L ,V;)[2gpj;) + hp ] + L g"llffi 
fJE::P,.. (IE!!' 
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where use has been made of (2.9). Thus 

C(%') -C( % ) = -2 L gp/:"'/J,+ L /:"'j;)[2gp/~ + hpJ + L f!,,,/:,,,n· 
fJE9 PEY' (lEY' 

By (2.11) 

S 111 111 

L /:",j;),.[2gp/~+ hpJ = 111" L /:"'jpl' - L (- /:"'J;),.)h p , ~ 1111/' L /:"'jpl' = O. (2.20) 
IJE9 r'= 1 I'=s+ I 1'= 1 

He nce , 

C(%') -C(% ) ~ L f!,,,/:"'n -2 L gp/:"'./J. 
aeY pdP 

Recalling the Definition (2.8) of gp. and (1.4), 

C( % ') - C( % ) ~ L gu {[ L ouP/:"'!;,)" -2 2: OaAt;~}. 
(/£.51' fJf.;:Pu· p Eff /<. 

(2.21) 

We want to study now the sign of C(% ') - C(%). It is convenie nt to consider links of a special 
type. A link ([ will be called simple, double. or total with respect to tv de pe nding upon whether a is 
contained in precisely one, two or all of the paths of 9 w. Note that if 9 w is disjoint. then all links 
contained in 9 w are simple. 

Suppose now that a is a s imple link contained in a path pEl? w. The n, 

(2.22) 

with equality holding if and only if /:",J;) = O. 
Let ([ be a double link contained in two paths p, qE9/1" Then , 

g,,{[ L O"p/:",J;,y-2 L O(/p/:",j2}=g"{[/:",J;)+/:"'fqF-2[/:"'n+/:"'n]} = -gl/(/:",J;)-/:,,,j;I)2~0 (2.23) 
pe f!J' w P€Y'u 

with equality holding if and only if /:"'jp = /:",j;I' 
Suppose finally, that a is a total link with respect to w. Then, 

gl/{[ 4 o(/p/:",jpT -2 L oap/:",ft} = -2g l/ L /:"'n) ~ 0 
PE(!I>w PE Y' !l" Pf.& Il" 

(2.24) 

with equalit y holding if and only if /:"'jp = 0, PEY'w. 

Thus (2.21) implies that. if all links contained in 9 w are s imple and/or double and/or total 
links, then 

C(%') -C( % ) ~ O. (2.25) 

Two paths of 9 w wi II be called directly connected if they share at leas t one double link (w ith 
res pect to w); will be called connected if they can be joined by a finit e sequence of direct connec­
tions . We now introduce the following definition. 

DEFINITION (2.2): The se t 9 /1' will be called almost disjoint if the following conditions are 
sa tisfi ed. 

(1) All links contained in 9 /1' are simple , double, or total with r es pect to w. 
(2) Any two paths of 9 "., which consist exclusively of double links and are connec ted only to 

paths consisting exclu s ively of double links . must be conn ected to each other . 
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If fYJ/I' is almos t di sjoint for all WE W. the tran s portation ne twork will be ca ll ed almost simple. 
In particular a simple ne twork is also almost s imple . 

Ass ume now that fYJ/I' is almost disjoint. Th e n 12.25) is satisfied. ]n addition , we claim th at 
equality can hold onl y if t:. %= O. In fac t , s uppose that f'quality holds in (2.25). From (2.22) , 12.24) 
it follow s that 

t:.j;, = 0 

III the case wh ere PE/!I'1O contains at least one simple and/or total link. Let p , qEfYJw be two paths 
which are direc tly co nnected. On account of 12.23). 

t:. j,) = t:. fq. (2.26) 

It is clear that th e n the validity of 12.26) extends to the case where p and q are connected . Thus 
t:.j;) = 0 even for all fJE fYJw which are connected to a path containing a s imple and/or total link. In 
,)rder to co mple te the proof it remains to consider the set 9 ,:' of path s in fYJ/I ' co ns is tin g exclu sively 
of double links and not co nnec ted to any path containin g s impl e and/or total links. On account 
of th e de finition of almost disjointness , if p , qdY<., th e n p and q are cO I1lH'cted in whi ch case 

(2.27) 

Recall th e conse rv ation eq uation 

2: t:.j~ = 2: t:.j;, = O. 12.28) 
fJE jJu fJE .1',:. 

Using (2 .27), (2 .28) we dedu ce that t:.I = 0, i. e ., 12.25) hold s as equality only if t:. .JP= O. 

Combining th e above res ults with th e Theore ms (2. ] ), (2.2) we reac h the followin g co nclu s ion. 
TH EO REM (2.4): The equilibration operator E,(sj induces an IIlgorithm wh ich solves problem. 

PI for almost simple networks , with quadratic costji.lIlctions. 
Actuall y, thi s res ult is the bes t possible in the se nse th at the re ex is t networks with triple 

link s for whi c h th e ope rator E,(sj does not indu ce an algorithm whi ch so lves problem PI for arbi­
trary initial % (0) An exampl e of s uc h a ne twork is give n in appendix 2. Nevertheless, recall that 
E\(~j sati s fi es conditions 1',2' of Th eore m (2.2) for a rbitrary fYJ1o' From Th eorem (2.3) it follows that 
if {E!}S)% IO)} conve rges th e n it will converge to th e solution % 1 of problem Pl. In consequence, 
it is worthwhile to try an appli cation of E dsj even for ne tworks whic h are not almost s imple. 

In order for a n algorithm to be appropriate for application in practice, it is not e nough that 
it converges; it must converge rapidly. We have the following evidence about rapid convergence 
of the algorithm induced by Edsj in the case of almost simple networks. W e consider the tes t ne t-

" work of figure 1 (with 60 paths) whic h is almost simple, but is not simple: 

" f..---f---7 " 

FIGURE 1. 

We have developed a computer program which solves proble m PI for this 
network by application of Edsj . We have calculated the solution for a very 
wide range of demands and choice of the initial di stribution. We have 
observed extremely rapid convergence. More specifically if g, h, were 
the average values of ga, ha, aE 2 , and d is the average demand in the 

ne twork, we chose ~ entering in Definition (1.2) equal to 2gd + h, and after 

5 iterations the flow pattern satisfied eqs. (1.13) modulo 10- 5. Furthermore, 
we have treated the same network algebraically and have shown that 

decreases with the speed of a geometric progression with a ratio less than 1. 
With these observations we conclude the discussion of the equilibration ope rator Edsj for 

transportation networks with quadratic cost functions. 
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b. The Equilibration Operator Endsj for the Quadratic Madel 

In this section we introduce an equilibration operator Endsj which does induce an algorithm 
for the solution of problem P, for arbitrary transportation networks with quadratic cost functions. 

Fix some WEW. The motivation of the introduction of E'!Jsj is similar to that of ErIJ}. Namely, 
E'lf!sj will be selected to be a minimization operator of C(!F) but over a set less broad than the 
set fZ f: defined earlier. 

Let !F EfZ . We define !F ' == E'lf!sj!F by the minimization problem 
minimize C(!F '), over §P' E!zf: where !zf:, to be defined , is a subset of fZ't containing §P. 

(2.29) 

Note that the minimization problem (2.29) is very similar to (2.7). Such a definition of E'fvdsj 

guarantees automatically that condition 3 ' of Theorem (2.2) is satisfied. The main difficulty is 
that we must select the set !z: in such a way so that conditions 1 I, 2', 4' of Theorem (2.2) are 
also satisfied while, at the same time, the solution of (2.29) can be obtained in an elegant way.7 

The marginal cost on a path tE f!lJ w corresponding to the flow pattern §P is given by fl-Pr(§P) 

of (2.9) with Pr= t. 
Let p, q Ef!lJ w be defined by 

12.30) 

We define the set ;if: by 

.ir:; == {,F EfZ : f~= Jr, unless t = II , q}, (2.31) 

' g; 
We now define E':"dsj Y == §P' as the solution of the minimization problem (2.29) over fZ /(' as 

selected above. 
The calculation of §P' = Elbdsj §P amounts to the calculation of the two new flows J;,. J~, 
Let us define 

(2.32) 

where the incidence symbols 8Zp , 8gq have bee n defined by (1.19). 
The minimization problem (2.29) leads to the following equilibrium conditions analogous to 

(2.11): 

f~+ f~ = J~+ J~, 12.33) 

j~ ~ 0. f~ ~ 0, 

with the understanding that, if (2.33), holds as a strict inequality, then the second one of (2.33h 

must hold as an equality , and conversely, if both (2.33h hold as strict inequalities , then (2.33), 
must hold as an equality . The so luti on of (2.33) is given by 

J.Lq( !#) - J.Lp( % ) 
f~ = fp+ ~-'c-:--'c-:-'!"""!:"'':--'-

2(~+g~) 

1 If we selected fi!=tt! we would be led to the minimization problem (2.5).~ In thi s case we know that (2.29) does not have an elegant solution unless 9'u. is 
disjoint. This observation emphasizes tht: fact that the selec tion of an appropriate !E!fis not easy. 

s if Jl attains its minimum for more than one path, then se lect fJ as any of those paths. 

9 If f.l attains it s maximum for more than one path . then selec t q as any of those palhs. 
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(2 .34) 

or by 

}~ = 0, 12.35) 

Thu s , th e selection of i~has led to a minimization proble m (2.29) whose solution c an be 
c alcul a led e ffi c ie ntly throu gh (2 .34) or (2.35). 

We now proceed to prove that Ev""sj satisfies the condition s 1'- 4' of Theore m (2.2). From (2 .33) 

it is clea r that E:'J'sj§p = §P if and onl y if /-Lp( §P ) = /-Lq (5 ) (reca ll th a i );/ > 0). 
The paths p , q have been selec ted so that for a ny tE9 w wilh}; > 0, 

Thu s, if r;v"dsj§P=:fr, th e n a ll paths tE9 ". withf, > 0 have the same marginal cost and the eq uilibrium 
conditions a re satisfi e d for w. He nce E[f;"Sj sati sfies condition l ' of Th eore m (2 .2). Co ndition 2' is 

obvious ly sati s fi ed . 
Let us now ca lc ul ate !:::..C == C( §P ) - C(E~,(/sjg; ). Obviou s ly !:::..C is give n by 

!:::..C = L o~p[g,J;7+ h,j,, - gJ~2 _ h J,;J + L of,,/[g,j;f + h'/II - g,i,? - h,j:,] 
(le Y aE Y 

Note th a t in the fir s t s umJ,, -I~ =h, -f~, while in th e second s umJ,, -f,; =f'l -f~ . He nce, recall· 
ing also th e de finitjon (2 .32) of gZ, gft , we ge t 

where 

/-LZ == L oZp[2g,j" + h ll ], 

(IE.!!' 

/-Lft == L of,q[2g,j" + haJ . 
(/E:I' 

By (2.33Jt, h, -};; = - (fq - f~)· He nce 

= [/-LZ + 2gZU;; - j;,) - /-LG - 2gft(f,; - fq) ] (j~ - j~) + (gZ + gel (h) - .I;;) 2. 

But /-LZ - /-L# = /-Lp - /-L,/. Th e n , using (2.33)1 and the fac t that};, - f; ~ 0, we obtain 

!:::..C ~ (gZ + gft) (j~ - j~) 2 ~ 0 
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12.38) 

12.39) 

(2.40) 



with equality holding only if j~ = ff!. i.e., if £'fffj% = % . Hence co nditions 3', 4' of Theorem (2.2) 
are satisfied. Combining the above results we reach the following conclusion: 

THEOREM (2.5): The equilibration operator Endsj induces an algorithm which solves problem PI 
for an arbitrary transportation network with quadratic cost functions. 

We wish to compare the algorithms induced by the equilibration operators Edsj, E ndsj and to' 

point out their corresponding advantages. We prefer to postpone this comparison until Edsj , E"dsj 
have been extended to cover the case of nonquadrati c cos t fun ctions. This extension is the subject 
of the next section. 

2.3 . The General Model 

In this section, we will extend the definitions of the eq uilibration operators Edsj • E"dsj to the 
case of a general transportation network :Y = ('8i, § , 'if). We will assume that c a is twice continuously 
diffe re ntiable for all IIESt'. 

Note that the minimization problems (2.7), (2.29), through which the operators E(t;jj , E:'vdsj have 
been introduced for the quadratic model, are well set also for the general model. Thus it appears 
that the proper extension of £\',fj. Evl·,j would be obtained through the same minimization prob­
lems set for general cos t functions. However, a review of the theory described in section 2.2 indi­
cates that the simplification induced by the assumption of quadratic cost functions lies in the fact 
that for such cost functions the equilibrium conditions (2.11), (2.33) corresponding to (2. 7), (2.29), 
respectively , are linear. This fact permits a very effective and elegant solution for both minimization 
proble ms (2.7), (2.29). 

In the case of general convex cost functions , the equilibrium conditions are in general non· 
lin ear and hence a simple solution of problems (2.7),12.29) is no longer possible. In order to devise 
a working extension of the definition of E,lsj. E"dSj for the general model we use the following 
considera tions: 

By Taylor's theorem, if j;, is c lose to ja, 

Cl/(j;,) == CI/(ja) +C~(ja)(j;, -jl/) +tc~(f,,) (j~-ja)2.· (2.41) 

In particular, for quadratic CI/C!II) =f;,j,?+ hia. 

C,,(j~) = c,,(f,,) + (2gJ" + h(l) ,(j;' -fa) + ga(j;,- jo)2. (2.42) 

Comparing (2.41) with (2.42) we observe that the quadratic cost function g,,(fo)j;'2 + halja)j;' which 
approximates the general cost func tion calf;,) in the neighborhood of ja has coefficients 

(2.43) 

(2.44) 

Using as a motivation this observation, give n % E:!l' we construct the collection of quadratic 
cost functions 

(2.45) 

We now defi ne Ed,f,j Iresp. E(J,(/sj) by identifyingl;:'\.I~j%(resp. E,~~sj% ) for the transportation net­
work :Y = ('8i , 9 , 'if ) with £i~sj% (resp. E':vdsj% ) for the transportation network g; = ( ~lj, § , %.), 
the latter being well defined since 'fj'~ consists of quadratic cost functions. In other words, 
% ' == EjLSj% (resp. % ' == E::,dsj% ) will be calculated through (2.12), (2.13) (resp. (2.34) or (2.35)) 
where 

gf! (% ) == ~ L oupc';,(fn), 
aE.!£ 

(2.46) 

112 



ILp ( /F ) == L oapc:,lf,,) , (2.47) 
(fE..? 

h p ( ~?P ) == ILII (,Y')- 2gp ( /F ) j~. (2.48) 

1 -
g2 ( /F ) == "2 L oZpc'~(1,,) . 

a£!I' 

(2.49) 

He nce the de finiti on of Ed.,j. Elldsj has been exte nded to transportation n etworks with general 
convex cos t fun c tions. 

The nume ri ca l ap plication of these operators to a given Y Efl' follows precise ly th e same 
pattern as in the case of the quadratic model , th e only differe nce being th at the coeffici ents gp, 
hp, ILII .. t4 are not co nstants any more but should be cal c ulated a t every s te p. 

It re main s to exa min e unde r what conditions Ed,,;' F: ndsj do indu ce a lgo rithm s for the so lution 
of probl e m fJ). As in t he case of t he qu adrati c mode l, co nditions 1',2' of Theore m (2.2) a re sat is fi ed. 
It is intuiti ve ly ex pec ted tha t 3',4' of the sa me th eo re m are more apt to be valid if the approxima· 
ti on of C(ij' by '0y is fa ithful , th a t is if ca (J,,) is s uffi c ie ntl y close to a quadratic function , aE2!. This 
id ea has bee n ve rifi ed for simple ne twork s in [101. wh er e we give s uffi cie nt co ndition s so th at 
E,,:~j sa ti s fi es 3'.4'. We will go here through a s imil a r a na lys is for th e operator E;;dsj in th e case of 
a ge ne ra l net work. 

Fix IUE'lI/" and le t .FEfl'. We se t /F ' == E::dsj/F. The cha nge of the total cos t 

(2.50) 

is giv(' 11 by 

dC = L o~"[ c,,lf,,) - c,,(j:,) ] + L O~(JCalf,, ) - c"lf,;)] 12.51) 
ne / (I E J 

whe re fJ , qE.;!l", are the paths which a re "eq uilibrated." Applying T aylor's theorem, 

d C = - L o~p [c;,lf,,) (l, - 1,,) + ~ c;; (j,,) (j,; - j~)2] 
fiE /" 

- - - 1 ~--- L 011'1 [c:, (1" ) U;: - I,,) +"2 C~ (.fa) (.f:, - 1" ) 2] 
(If. / 

with /" between 1" a nd .1;. No te that in th e first s um J,, -J:, =j;)-f~ while In the seco nd s um 
1,, - J:, = j~/ -j~. 

L et us se t 

IL~ = IL~ ( /F ) == L ogqC~U;, ), 
a€. / 

, 1 "-
A p = A P(C1b) - - '" <>p "(1,) g(, - f!,q.7 - 2 L.J uaqCa a ~ 

ae / 

;}2 == g2(g;- ) = ~ L 08pc;;lf,,) , 
Uf.!l' 

113 

(2.52) 

(2.53) 
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+ [2 0<1- 0'(1 + 2oP - ;:;.p] U' - r')2 
b p bp "'1 bq IJ J p 12.56) 

where o·q uP stand for o-q( :F ) o-P( :F ) as defin ed by (249) On account of the definition of E"dsj t""fJ~ l:'""q op' b q • • - w • 

we have the equilibration condition (2.33)1 written in the form 

(2.57) 

where use has been made of the obvious equation 

Combining (2.56) with (2.57) and the fact that/;, - /;; ~ 0 we obtain 

t£ ~ [2 o·q - D-Q + 20-1' - if/l] U" - f ' ) 2 - bp b/l b q bq P p. (2.58) 

From this last result we deduce that conditions 3' , 4' of Th eorem (2.2) are met if 

Jo-q( :F ) - uq(.%) + :2.fYlJ( F ) - u.p( .% ) > 0 -bp bp bq . Mq (2.59) 
for all possible :F, .T. 

A sufficient condition for the validity of (2.59) is that 

(2.60) 

for all possible/a, la, af,2'. Suppose that we know thatt,,/~, are limited in some interval/a. Then 
fa will also be limited within I a. Condition (2.60) is obviously satisfied if 

. " (f-) 1 " (f-) mlnc" > -2maxca . 
la la 

(2.61) 

Thus, if (2.61) is valid for all af,2' , then E';;,ds j satisfies conditions 1',2',3',4' of Theorem (2.2) for 
any wltfl'. Using Theorems (2.2) and (2.1) we reach the following conclusion: 

THEOREM (2.6): Let .Y = (~, £2, 't5' ) be a (general) transportation network. If condition (2.61) 
is satisfied for all a€!l', then the equilibration operator E ndsj induces an algorithm for the solution 
of problem P2[.Y]. 

Actually condition (2.61) states that the oscillation of the function c~ (/a) on Ia is not very large, 
or in other words, that calla) is sufficiently close to some quadratic function on Ia. Thus Theorem 
(2.6) is in accordance with the intuitive idea cited before. 

In order to put the assertion of Theorem (2.6) into practical use we have to find intervals Ia 
with the propertv s tated above. 

Using the feasibility condition (1.1) we conclude that we may take 

1,, = [<Po , <p,,] 
where 

~2.62) 

(2.63) 
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Here'lYu stands for the set of all we'lY which are connected by at least one path p co ntaining the 
link a , and W" stands for the set of all we'lYa with respect to which a is total (ifWa = ~, the n cpa == 0). 

Note that (2.61) is more apt to be satisfied if fa is "small." Actually the f a, as give n by (2 .63), 
are the best possible (i.e. , the smallest poss ible) if we are to expect a converge nt seque nce 
{E::ds?(O)} for every %"(O)e!Z. In practice , though, we are merely interested in knowin g whe the r 
{E~dSj%"(O)} conve rges for a specific %"(0) , namely the one selected as the startin g point. If we r eo 
stric t ourselves to this problem, then it is possible, at least for special types of ne tworks, to obtain 
fa which are proper subsets of the fa given by (2.63) and hence are preferable. 

C oncluding this section, we want to emphasize that a very large subset of the set of cost fun c· 
tions which satisfy conditions 1,2,3,4, of section 1.3 do satisfy also (2.61), and hence the operator 
E ndsj in duces an algorithm for the solution of problem P l for a very wide class of transportation 
networks. We al so want to emphasize that it is worthwhile to try to solve problem PI by means of 
one of the operators Edsj or E lldsj e ven if conditions 3 ', 4' of Theorem (2.2) are not met. In fact we 
ha ve shown thaI the above operators always satisfy conditions 1, 2 of Theorem (2.1) and hence, 
accordi ng to Theorem (2.3) , if {E" %"(O)} converges , then it will converge to a solution of problem Plo. 

2.4. Comparison Between E dsj and Endsj 

From the theoretical (Joint of view E'"lsj is superior to Edsj since it can be used for the solution 
of proble m PI even in the case of not (almos t) simple networks. From the practical poin t of view, 
though, Edsj also has some adva ntages. In fact E~sj equilibrates the wh ole set of paths 910 but does 
so perfec tl y only if 910 is disjoin t. On the other hand E:~dSj equilibrates onl y the two " mos t un · 
bala nced " pa ths but does so perfectl y in all cases. It is clear that in the case of a network which 
is not almos t simple we mus t a ppl y E ll dsj . 

In the case of a n almost s imple netw ork we advise the appli cation of E lldsj if most of the unks 
are si mple and 910 contains many (more tha n two) paths for a t least one we'lY. O n the othe r ha nd, 
we advise the a ppli cation of Edsj in the case of a network in whi c h 910 contain s fe w (of the order 
of two) paths for a ll we'lY and there are relati ve ly numerous double a nd/ or total links in the network. 

Xz 

x, 

3 . Appendix I. A Network With a Nontrivial R [§ ] 

We co nsider the ne twork of fi gure 2 with links 
x, 

x, 

FIGU RE 2. 

and path s 

Let d be the demand associated with the pair (XI, X7). For this network 
we have 

\0 Such examples have been cOllslruckJ. 
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Ivs ~ 0, s=l, ... ,4. (1.1) 

The feasibility conditions on :F read: 

las ~ 0, s= 1, ... ,8, 

(1.2) 

Suppose now that :F is given such that (1.2) are satisfied. 
Assume first that at least one of the fa is 0. Then it can be shown that there exists a unique 

solution of (1.1), i.e., in this case, R [~ contains a unique element. 
On the other hand, if !J: is such that /', > 0, s = 1, ... , 8, then it can be shown that the 

S _ 

solutions of (1.1) form a one parameter family, i.e. R [ :F ] is a convex subset of a one dimensional 
vector space. 

4. Appendix II. An Example of a Network Which is not Almost Simple and for Which 
fdsj Fails 

In this appendix we present an example which shows that the assertion of Theorem (2.4) is 
the best possible. To be precise, we consider the network of figure 3 with links 

x, 

0, 

and paths 

x, 

FIGURE 3. 

Let d be the demand associated with the pair (XI, X5) large enough so that all paths operate 
at a nonzero level. We assume that the cost functions are quadratic of the form 

where 

hal = 3h, h"2 = ha4 = has = ha,,= h"7= h, h"3= 2h, 

with arbitrary g> 0, h ~ 0. 
Note that the link az is triple and hence this network is not almost simple. Thus Theorem 

(2.4) does not guarantee that {Easj :F(O)} converges. In fact we will prove the following interesting 
result. The sequence {Easj :F(O)} converges only if the initially chosen :F(O) satisfies fg) = l;vI where 
:Fl is a solution of problem PI. 
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To prove this r esult select :FE:!!'. W e want to calculatel::.};},=J~, -};) ,. h will turn out be low 
that hp , is the s mallest of the hp ,.. From (2.10), (2.12), 

Proceeding to the calcul ation and using (2 .8), (2.9), (2.10) and the obvious relations 

we e nd up with 

Whence, from (2.13), 

where use has been made of 

Substituting into (Il.l) we obtai n 

M = 13gd+6h-8g};}, 
2 

Suppose now that we apply Edsj on :F' . Let I::.:F' "" Edsj:F' - :F' . From (1l.2), 

13d - 16(};},+I::.};}.) = 13d-16};J'_21::._ =1::._ -21::.- =_1::._ 
8 8 '.IP, '.IP, '.IP, '.II"· 

Thus, {Edsj:F(O)} will cycle unless :F(O) has been chosen in such a way that I::.f})~) = O. 11 

(ILl) 

(11.2) 

5. Appendix III. Calculation of the Smallest Number Modulo Which a Flow Pattern 
Satisfies the Equations of Equilibrium 

In this appendix we present a procedure whi c h enables us to calculate the smallest number 
E moduk which a given flow patte rn :F satisfies the equilibrium equations (1.13).12 

Fix WE'W', and let/!, . .. , j." be the flows on the paths of 9 w and c;, ... , C;1l the correspond­
ing marginal costs. We want to find the minimum of the values of Ew such that for any p, q in 
{I, . . . , m} , if };} ;?! dEw, then either 

I c~-c~1 < cEw/d holds, or both of c~ < c~+cEw/d and/q < dEw hold. 

II Note thai if tlfN: l= O we can a ppl y Theorem (2.4), since a2 becomes then total for the ne twork emergi ng by the omiss ion of Ihe path PI _ 

12 This me thod has been kind ly communicated to us by Alan Goldman. 
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This last disjunction is equivalent to an exclusive disjunction: either Ie;, - e~ I < eEw/ d holds, 
or /q < dEw and e~ - e~ < eEw/d ~ Ie;, - e~ I hold, with the last condition equivalent to the conjunction 
of e~ < e~ and eEw/d ~ e~ - e~. 

N umber so that 0 = /0 ~ /1 ~ . . . ~ j,,,. We ask whether it is possible to choose Ew in the 
interval (Ji/d, Ji+dd]. For such an Ew , the requirement is that if p > t, then for each q either 
Ew> (d/e) I e~-e~ I, or q ~ t and e;, < e~ and Ew ~ (d/e) (e~ -e~). That is, if p > t, then (a) q> t 
im plies Ew > (d/ e) I e~ - e~ I, while (b) q ~ t and e;,;3 e~ imply the same conclusion. Since this is 
to hold for all p > t, we see that (a) is equivalent to 

Ew> (d/e) max{ I e~-e~ I:p > t, q > t}= (d/e) [maxp >te;- minQ>te~], (III.l) 

while (b) is equivalent to 

Ew> (d/e) max{ e~ - e~:q ~ t < p, c;, ;3 e~} = (d/e) max{maxp>te~ - minQ'" te~, O}. (III.2) 

Combining (111.1) and (111.2), and noting that the lower bound for Ew in (111.1) is nonnegative, we get 

where e';'in= min {c;, . .. , e;/I} . But (III. 3) can hold, for an E w in interval (fi/d,Ji+dd], if and 
only if 

(III. 4) 

Thus th e infimum of the allowable E LV ·values is Ji/d for the smallest t such that (III. 4) holds. 
We set 

E = mm Ew 
we 7r 

and obviously this E is the smallest number modulo which (1.13) are satisfied by :F. 
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