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Two linear least squares test problems, both fifth degree polynomials, have been run on more than
twenty different computer programs in order to assess their numerical accuracy. Among the programs
tested were representatives from various statistical packages as well as some from the SHARE library.
Essentially five different algorithms were used in the various programs to obtain the coefhicients of the
least squares fits. The tests were run on several different computers, in double precision as well as
single precision. By comparing the coefficients reported, it was found that those programs using
orthogonal Householder transformations or Gram-Schmidt orthonormalization were much more accu-
rate than those using elimination algorithms. Programs using orthogonal polynomials (suitable only
for polynomial fits) also proved to be superior to those using elimination algorithms. One program,
using congruential methods and integer arithmetic, obtained exact solutions. In a number of programs,
the coefhicients reported in one test problem were sometimes completely erroneous, containing not even
one correct significant digit.
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1. Introduction

Since the time when the electronic computer began to supplant the desk calculator as the
chief tool for solving linear least squares problems, numerous least squares computer programs
have been written. These programs have utilized a variety of computational algorithms. Because
least squares problems are by their very nature frequently ill-conditioned, the numerical accuracy
achieved by a least squares program strongly depends upon the choice of the algorithm. Many
programs have been written which use methods appropriate for desk calculators but inappropriate
for computers. Anscombe [1|! has aptly remarked: ““Textbooks of statistical method display a won-
derful unanimity in recommending computational procedures that are suited to desk calculators
but are perilous for computers. Only with some determination can the statistician break himself of
bad habits and become adequately informed about round-off error.”

The present study was undertaken to assess the numerical accuracy of representative least
squares programs from a variety of sources. Two test problems, both fifth degree polynomials,
have been run on more than twenty different programs. Included in the study were programs from
the BMD Biomedical Computer Programs collection, the C-E-I-R Multi-Access Computing Services
library, the IBM SHARE library, the IBM System/360 Scientific Subroutine Package, the Univac
MATH-PACK and STAT-PACK collections, and the Project MAC 7094 disk files. A detailed list-
ing of the sources of the programs is given in appendix A, together with a brief description of each
program.

For a number of programs, the test problems were run in double precision as well as in single
precision. This, of course, necessitated certain changes in the original programs.

The programs included in this study used essentially five different algorithms: orthogonal

! Figures in brackets indicate the literature references at the end of this paper.
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Householder transformations, Gram-Schmidt orthonormalization, orthogonal polynomials, Gauss-
ian or Jordan elimination, and a congruential method with computations in integer arithmetic.

Previous studies appraising linear least squares programs and comparing the results of dif-
ferent algorithms have been made by Cameron [9], Freund [20], Bright and Dawkins [7], Zellner and
Thornber [46], Longley [29], and Jordan [27]. The present study differs from the earlier ones mainly
by including a larger selection of widely used and easily accessible programs.

The linear least squares problem may be briefly stated as follows: One has n observations or
measurements of a “dependent’ variable y which are statistically independent with common vari-
ance o2 whose expected values are given by a linear function of the corresponding values of k&
““independent” variables, x1, x», . . ., xx, k < n. In matrix notation we say that the n observations
have expected values E(Y) =X, where Y is an n X 1 vector, X is an n X k matrix, and B8 is a kX 1
vector of unknown coefficients. Assuming that X is of rank £, the least squares estimates of the
coefficients are given by 3= (X'X)~1X'Y. Other quantities of i 1nterest are Y= XB the vector of pre-

dicted values; =Y —Y, the vector of residuals; and 82:—/.‘ (Y=Y)'(Y—Y), an estimate of
the variance o2. "

In running certain programs, modifications were occasionally made to input and output
formats. Other changes were made in five of the programs using elimination algorithms because
the original versions of these programs failed to give solutions to the fifth degree polynomial prob-
lems. In particular, features that may have been intended to prevent execution of computations
subject to excessive rounding error were sometimes bypassed. Details of these changes, and some
remarks on the effectiveness of the features which were bypassed, will be given in section 8.

Four computers were used: the GE 235, the IBM 7094, and the Univac 1107 and 1108. The
1108 which was used is located at the National Bureau of Standards, and the 7094 which was chiefly
used is located at Harry Diamond Laboratories, Washington, D. C. The programs run on the 235,
the 1107 and the Project MAC 7094 utilized consoles at the National Bureau of Standards connected
to computers at other locations.

2. The Test Problems

The two main test problems which were used throughout this investigation are identified as
Y1 and Y2. Both were fifth degree polynomials, with the values of x being the integers 0,1, 2, . . .,
20. The “‘observations,” Y1 and Y2, were calculated from the following equations:

Y1: y=14x+x2+x3+ x4+ x5, x=0(1)20,

Y2: y=1+0.1x+0.01x2+ 0.001x%+ 0.0001x*+ 0.00001x>, x= 0(1)20.

Thus the values of Y1 were integers having from one to seven digits, and those of Y2 were five-
decimal numbers ranging from 1.00000 to 63.00000.

If the least squares solutions were computed with no rounding error, one would obtain

1.
0.1

. BY2=| 01 i
.001
.0001
.00001

B(Y1)=

et et fd  pd

and for both problems the residual standard deviation would be zero.

For some programs the input required was the 21 values of x and y. Some programs required,
in addition, the powers x2, x*, x*, and x° to be entered as input. Other programs required as input
the 6 by 6 matrix X'X and the 6 by 1 vector X'Y. It should be noted that the elements of X'X are
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integers having from 2 to 14 digits, the elements of X'Y for Y1 are 8- to 14-digit integers, and the
elements of X'Y for Y2 are 5-decimal numbers having up to 13 significant digits. The input is listed
in table 9.

The two test problems, Y1 and Y2, were chosen because they are so highly ill-conditioned that
some programs fail to obtain correct solutions while other programs succeed in obtaining reason-
ably accurate solutions. Polynomial problems were chosen because polynomial fitting is an im-
portant type of linear least squares problem which occurs frequently in practice.

The ill-conditioning of the two test problems can be described more explicitly. One measure
of the condition of a matrix 4 is the P-condition, defined as

where \ is the numerically largest eigenvalue of 4 and w is the numerically smallest eigenvalue of
A. (See Newman [34, p. 240]).

For A=X'X, the 6 X6 matrix associated with Y1 and Y2, the P-condition is 4.095 X 10!3, In
this respect, it is similar to the Hilbert matrix of order 10, whose P-condition is 1.603 X 103 (see
Fettis and Caslin [17]). The P-condition of the Hilbert matrix of order 11 is 5.231 X 10'4. The relation
between the Hilbert matrix and the matrix X'X which arises in a polynomial fit is discussed in
Forsythe [18].

Most of the programs which were tested obtained more accurate solutions for Y2 than for Y1.
If we let A denote the 7X 7 matrix

XX
A_[Y’X 0]

we find that for Y2, P(A4)=4.095X10'3, whereas for Y1, P(4) =6.829 X103, indicating that the
system involving Y1 is more ill-conditioned than that involving Y2.

The test problem used by Longley [29] was also highly ill-conditioned. For the 7X 7 matrix
X'X of his problem, the P-condition is 2.361 X 10'*-

3. Summary of the Results

Tables 1 to 6 present a brief summary of the main results. A count, C;, of the number of correct
significant digits in each computed coefficient was obtained as follows:

Let B; (j=1,2,. . .,6) denote the “true” value of the coeflicient—that is, the value computed
with no rounding error. Let [§j denote the value calculated by the computer. Then

"‘l()gm BJ,B—@ 5 if |BJ_BJ| #0 and BJ' #0
J
Ci=4 —logu|Bi—Bil. if |8;—Bj| # 0 and B;=0

D. the approximate number of decimal digits with which the machine computes, if 8;— 3;=0.

The above approach to counting the number of correct digits in a computed value has been
used by Jordan [27] and others.
Tables 1 to 6, in the columns headed “Average Number of Correct Digits™ report

ceIN
: 6;‘ o

From the above definition, a negative count can occur. For example, if 8;=1.0. and 3;= 136.0,
we get Cj=—2.130. This indicates that B; is wrong by roughly two orders of magnitude.
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TABLE 1. Summary of programs run in single precision—8 digits

Average number of Rank Date of run
Com-| Algo- correct digits
Program puter|rithm 2
Y1 Y2 Y1 Y2 Yl Y2
N o 0 e e B R O K C et 1108| HT 4.098 5.368 & 5| 10-18-67 | 10-18-67
BMDO2R........ccooiiiiiiiiii 1108 E —0.106 1.981 12 14| 12-13-67 | 11-17-67
330 BBJORY R ocnrananancosacaonnasoanccastaaass 7094 E 0.742 1.721 8 16 | 12-30—66 1- 3-67
BMDO3R......coooiiiii 1108 E S 0N23 2.287 13 12| 12-18-67 | 12-18-67
| BV k60 qon0om0 0800050000 000RRRaRRIGRE0s 7094 E 1.389 2.312 7 11 4-12-67 4-12-67
DAM .. ..o 1108 E —0.264 2.622 16 9| 3- 5-68 3— 5-68
LINFIT (Miller)........coooviiiiiiiiiiiiieiieieieiaeeen 7094 ? 2250 —0.301 | 21 21 5-17-68 8-15-68
L s 0 e A Aty e o s s 1108| HT 4.528 5.840 1 3| 5-1-68| 5- 6-68
MATH-PACK, ORTHLS ..........ccocooii 1108 | OP 2.118 4.363 6 6| 4-12-68| 4-12-68
I\ o S oo eSO S S O COBECa 0 7094 E —0.140 1.856 14 15| 5-16—-67 5—18-67
OMNITAB (Invert)......oooveeiiiiiiiiiiiiiiie s 7094 E —0.607 1.460 | 17 18| 12— 9-66 | 12— 9-66
(O INTIIEAN 3 ([ FR7E D ho0 000 006 600 600608 6008 080 606 HEaEE0G0S 1108 E —0.907 1.224 19 19| 2-29-68 2-29-68
OMNITAB (Ortho) 7094 | GS 3.954 5.968 4 2| 12— 5-66 | 12— 5-66
OMNITAB (Ortho) 1108 | GS 4.137 5.464 2 4| 10-18-67 | 10-18-67
ORI O (noRteTaty 071 T s 1108 | GS —1.976 0.419 | 20 20| 3- 7-68 3— 7-68
ORTHOL 1108 | GS 3.593 6.197 5 1| 9-10-68| 9-10-68
POLRG 1108 E —0.191 2.280 15 13| 10— 7-68 | 10— 7-68
SPVMTX 1108 E —0.658 1.527 18 17 | 11-14—-67 | 11-14-67
STAT-PACK, GLH...........ccoiiiiiiiiiieieinn, 1108 E 0.066 2.767 103 ¥ 11- 7-67 | 11- 7-67
STAT-PACK, REBSOM.........cccovviniiiiiiinineinn, 1108 E 0.066 2.767 103 73 11- 8-67| 11- 9-67
STAT-PACK, RESTEM..........coooiiiiiiiiiiiinn, 1108 E 0.651 2.407 9 10| 7- 2-68 7- 2-68
WRANE. . 006 000 560 506 609050066056 06650 0060EAEE0GEE0EE0EE0R00EE 7094 E —5.300 —2.871 | 22 22| 6-28-67 6—28-67

a E = Elimination method; GS = Gram-Schmidt orthonormalization: HT = Orthogonal Householder transformations;

OP = Orthogonal polynomials.

TABLE 2. Summary of programs run in single precision—9 digits

Average number of Rank Date of run
Com-| Algo- correct digits
Program puter|rithm 3
Y1 Y2 Y1l Y2 Y1 Y2
ILTINEHETIEAAS o oanen000065005000000000560000056000000G035C 235 E 0.905 2.894 5 6 (12— 1-67 |12— 1-67
LSCF——*** i, 235 E 0.308 2.483 7 7 |12-28-66 |12—-28-66
235| GS 4.102 6.354 1 1| 1-25-67 1-25-67
235 OP 3.349 5.922 2 2| 2-19-68 2—-19-68
235 E 1.402 213 3 3 |12-30—-66 1- 5-67
235 E 0.612 2.920 6 5 [11-30-67 |11-30-67
259 E 1.169 3.183 4 4| 1- 3-67 1- 3-67

2 E = Elimination method: GS = Gram:Schmidt orthonormalization: OP = Orthogonal polynomials.

TABLE 3. Summary of programs run in double precision— 16 digits

Average number of Rank Date of run
Com-| Algo- correct digits
Program puter|rithm 2
Y1 Y2 Y1 Y2 Y1 Y2
BV (5 7094 | E 6.953 6.230 2 2| 1- 5-67 | 1- 5-67
DPVMTX........ 1107 E 7.882 9.959 1 1N RIE23=67 1-23-67

2 E = Elimination method.
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TABLE 4. Summary of programs run in double precision— 18 digits

Average number of Rank Date of run
Com-| Algo- correct digits
Program puter|rithm ¥
Y1 Y2 Y1l Y2 Yl Y2

1108| HT 12.667 15.322 4 4 110-19-67 1-29-68
... 1108 E 9.645 12.865 7 7| 4-17-68 4-17-68
...| 1108 E 9.368 11.791 9 10 | 9-10-68 9-10-68
.| 1108 E 9.744 13.484 6 6| 2-27-68 2-27-68
1108| HT 14.643 16.293 1 1| 7-22-68 7-22-68
1108| OP 12.098 14.461 5 5 [10-16-68 |10-16-68
1108 GS 13.188 15.514 &) 3| 1-29-68 1-29-68
1108| GS 7.963 10.354 11 || &= 7= 3— 7-68
...[1108| GS 13.212 15.604 2 2 | 9-25-68 9-25-68
...[ 1108 E 9.290 11.806 10 9 |10— 7-68 |10— 7-68
.| 1108 E 9.494 12.019 8 8| 7- 1-68 7- 1-68

4 E= Elimination method; GS= Gram-Schmidt orthonormalization; HT = Orthogonal Householder transformations;
OP = Orthogonal polynomials.

TABLE 5. Summary of programs run in single precision (8 digits) with inner products accumulated in double precision

(18 digits)
Average number of Rank Date of run
Com-| Algo- correct digits
Program puter|rithm 4

Yl Y2 Y1 Y2 Yl Y2
... 1108 | HT 3.506 6.530 8 1|10-18-68 | 10-18-68
. 1108 HT 8.000 6.279 1 3| 4-30-68 5- 6-68
1108 | GS 3.904 6.459 2 2 |10-21-68 | 10-21-68

2 GS = Gram-Schmidt orthonormalization; HT = Orthogonal Householder transformations.

TABLE 6. Summary of program run in multiple precision integer arithmetic

Average number Date of run
of correct digits
Program Com-| Algo-
puter|rithm #
Y1 Y2 Y1 Y2
SOLVER.....oo e 1108| C Rational form © % 7-16-68 7-16—68

Floated form 18.000 | 17.347

a C= Congruential method.

For two programs reported in table 1, BMDO3R run on the 7094 and DAM run on the 7094,
the count for several coeflicients was made in a different manner. The BMDO3R program printed
the coefficients in a fixed-decimal format, with five decimals. The DAM program used a floating-
point format with only three decimals printed. A coefficient printed as 0.00010, when the true
coefficient was 0.0001, was given a count of 2, and 0.100E01, when the true coefhicient was 1.,
was given a count of 3. In such cases the assigned count may have been too small, since the coeffi-
cients may have been calculated accurately to more digits than were printed. In running these
two programs on the 1108, the output format was changed so that eight significant digits were
printed.
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Each of the tables (1 through 6) summarizes a set of results for a particular machine preci-
sion—38, 9, 16, 18, etc. digits. Within each table the various programs are ranked for each of the
two test problems, with rank 1 denoting the best performance according to the count C.

Table 1 includes single precision (8-digit) programs run on two different computers, the 7094
and the 1108. It was felt that combining the results from two computers was justified in view of the
similar performance of the four programs which were run on both computers. These four programs
were BMDO3R, DAM, OMNITAB (using INVERT), and OMNITAB (using ORTHO). The average
number of correct digits for the two test problems from the 1108 agrees with the corresponding
average from the 7094 to within 0.9 digits except in the case of Y1 run on DAM, where the difference
is 1.653. This larger difference may possibly be attributable to modifications in the program. Further-
more, other test problems have been run on OMNITAB (using ORTHO) on both computers, and
again the results were quite similar.

The symbols in the Algorithm column of the tables denote the following:

C Congruential method, integer arithmetic
E Elimination method

GS Gram-Schmidt orthonormalization

HT Orthogonal Householder transformations

OP  Orthogonal polynomials.

From time to time at a given computer installation changes are made in hardware and software
with the result that a particular job run on two different days may not produce identical numerical
output. For this reason the date of the computer runs is included in the tables.

Details (individual coefficients and counts) supporting tables 1 through 6 are given in ap-
pendix B.

4. Programs Using Orthogonal Householder Transformations

LLSTSQ is a program written by Peter A. Businger using orthogonal Householder transforma-
tions. This algorithm is described by Golub [21] and Businger and Golub [8]. The program applies
a sequence of orthogonal transformations to the n by & least squares matrix X to obtain a decomposi-
tion X =R, where R is upper triangular and Q'Q = [.. A pivoting strategy is used so that at each
step the column with the largest sum of squares is reduced next. Once an initial solution is obtained,
the program iterates to obtain a (possibly) improved solution.

Of all the programs using floating-point arithmetic included in this study, LSTSQ appears to
have given the best performance. In table 4, which reports the performance of eleven double preci-
sion programs, we see that LSTSQ ranked first for both Y1 and Y2. In table 1, which reports the
performance of 22 single precision programs, we see that LSTSQ obtained rank 1 for Y1 and rank
3 for Y2. Ranks 1 and 2 for the Y2 problem were obtained by ORTHOL and OMNITAB (using
ORTHO), two programs using Gram-Schmidt orthonormalization which will be discussed more
fully in the next section. Table 5 reports the performance of three programs which used single preci-
sion arithmetic except for the accumulation of inner products, where double precision arithmetic
was used. Here we see that LSTSQ ranked first for Y1 (having a perfect score of 8.000) and ranked
third for Y2. In the two instances just mentioned where LSTSQ ranked third for Y2, we see that
the difference separating it from the top-ranking program is small, being 0.357 in table 1 and 0.251
in table 5.

Golub and Businger recommend that all inner products be accumulated in double precision.
By comparing tables 5 and 1 we see that when LSTSQ included this feature, the average counts
increased from 4.528 to 8.000 for Y1 and from 5.840 to 6.279 for Y2. With all operations performed
in double precision (see table 4), the counts increased to 14.643 and 16.293, respectively.

The other program using Householder transformations was ALSQ, written by G. W. Stewart,
II. This program contains no pivoting and no iteration. In tables 1, 4, and 5 we see that ALSQ
performed not quite as well as LSTSQ which included these features, except in one instance. In
this one instance, Y2 in table 5, we note that its performance was slightly better than that of LSTSQ.
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By examining tables 1 and 5, one may see the effect of accumulating inner products in double
precision versus accumulating them in single precision. As one would expect, ALSQ did better
in computing the coeflicients of Y2 when the double precision accumulation was included. For
Y1, surprisingly, we see that ALSQ lost accuracy with this feature included. A look at the details
of the program revealed how this phenomenon occurred. After the matrix X has been decomposed
to obtain QR (as described earlier), the coefficients are computed by back-substitution. The first
coefficient to be computed is Bs (the coefficient for the fifth-degree term), and this is obtained
from one arithmetic operation, a division. Correctly calculated to ten digits, this division is
2 OTE 1. In the single precision version, the coefficient was calculated as
21011.77901 T ’ ’ '

B 2%: 1.0000000 (to 8 significant digits) (1)

whereas in the version with inner products accumulated in double precision the calculation was

A~ 21011.761
=" —1 00 ). Sionifc: ool
Bs 51011753 1.0000004 (to 8 significant digits) (2)

We note that in (1), both the numerator and denominator in question are farther from their true
values than in (2). but they are closer to each other, so that Bs in (1) happens to be closer to the
true value of Bs. Subsequently. Bs enters into the calculations of the five other coefficients with
the result that all the coefficients for Y1 from the single precision version are slightly more ac-
curate than those from the version using double precision inner products.

5. Programs Using Gram-Schmidt Orthonormalization

ORTHO is a program written by Philip J. Walsh using a Gram-Schmidt orthonormalization
process. This algorithm is described by Davis and Rabinowitz [13], [14], Davis [12], and Walsh
[42]. ORTHO exists as a FORTRAN program, an ALGOL procedure, a BASIC program, and as a
routine of the OMNITAB program (see Hilsenrath, et al., [23]), where it is called by the commands
FIT and POLYFIT.

Starting with the n X k£ matrix X, the Gram-Schmidt process of ORTHO obtains ¢=XT"'"!
andB=T"" 10'Y, where T' ! is upper triangular and ¢'¢ = I). This algorithm includes a feature of
reorthonormalizing the vectors of ¢, proceeding from a first approximation ¢; to a (usually) better
approximation ¢;. From table 1 it is clear that this reorthonormalizing is vital to the algorithm, for
ORTHO’s good performance in handling Y1 and Y2 deteriorated when this iteration was omitted.
For Y1, the count of correct digits dropped from 4.137 to—1.976, and for Y2 the drop was from 5.464
to 0.419. In table 4, also, we see that in double precision the omission of the iteration resulted in
a loss of about five correct digits for both problems.

The LSFITW*** program, written in BASIC, listed in table 2 also uses the ORTHO algorithm.
The computer used for running the programs of table 2 works with about one more decimal digit
than the computers covered in table 1. so one would expect more accuracy from LSFITW***
than from OMNITAB (ORTHO). We find slight improvement for Y2, but no improvement for Y1.
Of the seven programs reported in table 2, LSFITW*** ranked 1 on both problems. Note that
there are no Householder transformation programs included in table 2.

The ORTHO program was also run in a version using single precision except for the accumu-
lation of inner products, where double precision was used. In table 5 we see that there were three
programs in this category, and for both problems ORTHO ranked second. Its performance on
Y2 improved by about one digit compared to the performance of the ORTHO version using strictly
single precision. On the Y1 problem, however, there was a slight loss in accuracy. Actually, three
coeflicients gained accuracy and three lost accuracy, with a net loss in the average count. (A
similar loss which occurred with ALSQ was discussed in the previous section.) In ORTHO, the
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final calculation to obtain the coefficients B is the matrix multiplication 3= (T") ~'a, where (")~
is an upper triangular matrix such that (7")-'7T-'=(X'X)-', and a=T-'X"Y. Nearly all of the
nonzero elements of (7')~! and a were more accurately computed when inner products were
accumulated in double precision than when this feature was omitted. In the three coefficients of
Y1 which lost accuracy, an examination of the details showed that in the individual multiplica-
tions involved in the matrix multiplication, the version using double precision for inner products
was always more accurate than the strictly single precision version. But in the final addition of
the various products. where the terms have alternating signs, there was heavy cancellation and the
errors combined in such a way that the B8;’s from the single precision version happened to be closer
to the true values of the coefhicients than those computed with double precision accumulation of
inner products.

ORTHOL is a program using a modification of the Davis-Rabinowitz algorithm written by
James W. Longley and Roger A. Blau [30]. It differs from Walsh’s ORTHO in two respects:
(1) the iteration procedure includes the dependent variable as well as the independent variables,
and (2) before any other operations are applied to the matrix X, from each element of each vector
of X. the truncated mean of that vector is subtracted. (The “truncated mean” denotes the largest
integer less than or equal to the mean if the mean is nonnegative, and the smallest integer greater
than or equal to the mean if the mean is negative.) ORTHOL obtained the top rank for Y2 in single
precision, but ranked fifth for Y1 (table 1). In double precision (table 4), it ranked second on both
problems.

6. Programs Using Orthogonal Polynomials

Since the two test problems are both polynomial fits, we were able to test programs in which
the algorithm used orthogonal polynomials. This method, described by Forsythe [18], is attractive
because it generally requires many fewer operations than other methods.

Two such programs were included in this study. One was the UNIVAC 1108 MATH-PACK
routine, ORTHLS (see Programmers Reference [40]). The other was POLFIT, an anonymous
program written in BASIC.

In tables 1, 2, and 4 we see that the performance of the orthogonal polynomial programs is
not as good as that of the Householder transformation and the Gram-Schmidt programs (with itera-
tion), but the performance is better than that of any of the programs using elimination algorithms.
This finding is in agreement with the results of Bright and Dawkins [7] who ran a number of poly-
nomial test problems via two methods: matrix inversion using a Gauss-Jordan reduction, and
orthogonal polynomials. In all cases they found the orthogonal polynomial method superior.

7. A Multiple Precision Integer Arithmetic Program Using Congruential Methods

Morris Newman, in his paper “‘Solving Equations Exactly’” [35] described a congruential
method for finding the exact solution of a system of linear equations 4x="5b where the elements of
A and b are all integers. His FORTRAN program SOLVER will solve systems in which A4 is a square
matrix at most 100 by 100 and the elements of 4 and b are numerically less than 102°. This method
is not at all sensitive to the condition of 4, but it can be time-consuming for large systems.2 The

solution is printed in two versions: (1) x= dot d) & where z is a vector of integers and the deter-
e

minant det A is an integer, and (2) x in floated double-precision format, accurate to about 17 digits
on the 1108

The two test problems, Y1 and Y2, were run on this program, as indicated in table 6. The
input required was the matrices X'X and X'Y. Since the elements of X'Y for Y2 are not integers,
it was necessary to multiply these numbers by 100,000 before obtaining the solution.

2 The running time on the Univac 1108 for the solution of ¥'1 and Y2 was 11 seconds, including 5 seconds for compilation of the program. The six problems de-
scribed in the latter part of this section, all having 6 X 6 systems, required 14 seconds, including 4 seconds for compilation. To solve a 20 X 20 system, the worst pos-
sible case requires about 30 seconds, and an ‘“‘average” case takes less time. For a 40 X 40 system, an average case requires about one minute, and the worst possible
case requires about six minutes. A “bad™ 100 X 100 case might require 40 minutes or more running time.
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Having a program which produces exact solutions, we can determine what will happen to the
solution when we round the input, the elements of X'X and X'Y. These elements for Y1 are integers
having no more than 14 digits. Six additional problems were run in which the input was succes-
sively rounded to 13, 12, 11, 10, 9, and 8 significant digits. The effect of this rounding was to change
the solution dramatically. In table 7, which gives the solutions to these six problems (rounded to
10 decimals), we see that “small” changes to the elements of X'X and X'Y produce “large” changes
to the solution, S.

At first glance, the fact that the coefhicients calculated for the problem having input rounded
to 13 significant digits agree with the coefficients obtained from unrounded input to only 4, 5, 6,
or 8 digits seems quite surprising. But with a few simple calculations we can see why the agreement
is no better than it is. First, referring to table 9, we note that there is only one 14-digit number in
X'X, and since this ends with a zero, rounding to 13 significant digits leaves X'X unaltered. In
X'Y only the last element has 14 digits. Here, 25,537,373,767,266 was rounded to 25,537,373,767,270.
Let B= (b;j), i, j=1, . . ., 6, denote the inverse of X'X and let (¢;)=X"'Y,j=1, . . ., 6. Consider
Bi. the first coefficient. We have
,él - [)11([1 F 1)12112 aF })1311:; -+ 1)14(]4 i [)15(15 ar [)Hi([ﬁ: 2 b]jl{j+ bm(I(;-

=
The only quantity which is affected by changing from unrounded data to rounded data with 13
significant digits is gs. Now

bis=—28,046,715,376,452,025,326,796,800/(Det X'X), where

Det X'X=1,677,193.579,511,831,114.,542.448,640,000. Since ¢s= 25,537.373,767.266 we have
bisgs=—716,239.453,512,581,907,404.,696.,441,196,473.,548.800/(Det X'X).

Also,

E bijqi= 716,239,455,189,775.,486.,916,527,555,738,922,188,800/(Det X'X).

In combining the last two numbers, one positive and the other negative, we see that the first
eight dig,itq of the two numerators are identical, so that the numerator of 8, has eight fewer digits

than has 2 bijqj or bisgs.
In sulvmtlr for B. from input rounded to 13 significant digits, we have g = 25,537,373.,767,270
so that
bieqs=— 716,239.,453,512,694.,094.,266,202,249,297,780,736,000/(Det X'X).

The numerator here dlffer% from the numerator of bisqs in the thirteenth significant digit, but

after combining this with 2 01;q; and losing eight significant digits, we obtain
j=1

= ; bijg;+ bisds
_ 1,677,081,392,650,325,306.441,141,452,800
1,677,193,579,511,831,114,542 448,640,000

=0.99993 31104 (to 10 decimals).

There are similar losses of significant digits in calculating the other coefficients.
A rigorous presentation of the sensitivity of the solution of a system of equations Ax= b with
respect to variations in A and b is given in Wilkinson [43, p. 91] and Wilkinson [44, p. 189].
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TABLE 7. Exact solutions to approximate problems

The column A(N) gives a count of the number of digits in the solution of (X'X)8=X"Y for input rounded to N digits which are in agreement with the solution for un-
rounded input. The unrounded input (elements of XX and X'Y) consisted on integers having no more than 14 digits.

Solution for unrounded Solution for input A(13) Solution for input A(12)
input rounded to 13 sig. digits rounded to 12 sig. digits
1. 0.99993 31104 4.175 0.99672 54481 2.485
1. 1.00015 06443 3.822 1.00718 28792 2.144
1. 0.99994 21662 4.238 0.99727 93936 2.565
1. 1.00000 79679 5.099 1.00037 12813 3.430
1. 0.99999 95470 6.344 0.99997 90427 4.679
1. 1.00000 00091 8.043 1.00000 04168 6.380
Avg.=5.287 Avg.=3.614
Solution for input A(11) Solution for input A(10)
rounded to 11 sig. digits rounded to 10 sig. digits
1.06051 32874 1.218 0.91988 69708 1.096
0.86927 95602 0.884 1.19460 48731 0.711
1.04911 27057 1.309 0.92297 46106 1.113
0.99333 63623 2.176 1.01080 85953 1.966
1.00037 44589 3.427 0.99937 78148 3.206
0.99999 25798 5.130 1.00001 25555 4.901
Avg. =2.357 Avg.=2.166
Solution for input A(9) Solution for input A(8)
rounded to 9 sig. digits rounded to 8 sig. digits
3.70810 09327 —0.433 —24.56199 35653 —1.408
—4.34362 06781 —0.728 52.60541 27451 = L7138
2.92257 14823 —0.284 —17.89853 20445 —1.276
0.74656 29295 0.596 3.52648 11096 —0.403
1.01394 46989 1.856 0.85941 47174 0.852
0.99972 81121 3.566 1.00276 62377 2.558
Avg.=0.762 Avg.=—0.232
L

8. Programs Using Elimination Algorithms

The majority of the programs tested in this investigation used some form of an elimination
algorithm. Although this was the most popular method, it was the least successful. None of these
programs performed as well as those using Householder’s transformations, Gram-Schmidt ortho-
normalization (with iteration), or orthogonal polynomials.

Within this class of programs, there were several variations in the method of obtaining the
least-squares coefficients. In some cases, the matrix X'X was inverted. after which the inverse
was postmultiplied by X'Y to obtain BZ (X'X)~'X"Y. In one program the matrix

A:[X'X X'Y] was inverted. Here, the inverse is
0 1

A-1= [ X'X)-1 —é} Another program inverted the matrix Z'Z
0 1

where the vectors of Z were obtained from the vectors of X by subtracting the mean of each vector
from every element of that vector. A number of programs obtained the solution by inverting a matrix
of correlation coeflicients. The five stepwise regression programs made use of matrix partitioning
in connection with inverting a matrix of correlation coefhicients.

8.1. Stepwise Regression Programs

The five stepwise regression programs were BMDO2R, MPR3, the STAT-PACK program
RESTEM, WRAP, and STAT20***. They all, to a greater or lesser extent, follow Efroymson’s
algorithm [16]. Tables 1, 2 and 4 give the results of these five programs.

68



The BMDO2R program is described in BMD Biomedical Computer Programs [15]. The
UNIVAC 1108 STAT-PACK Program RESTEM is described in the Programmers Reference
[41]. The two programs, MPR3 and WRAP, are both from the SHARE library [26]. The former
was written by M. A. Efroymson and the latter was written by M. D. Fimple. The program
STAT20*** is included in the C-E-I-R Multi-Access Computer Service library, and a brief writeup
on how to use the program is given in C-E-I-R’s “Library Programs Documentation” [10].

In running the two test problems on three of the stepwise programs, namely BMDO2R,
RESTEM and STAT20***, calculations stopped before the solutions were obtained. In all three
programs, computations stopped in the Y2 problem after x, x?, x*, x> and a constant term had
entered the regression equation. In the Y1 problem, BMDO2R and STAT20*** stopped after
x4, x* and a constant term had entered, and RESTEM stopped after x> and a constant term had
entered. In order to obtain the coeflicients for the fifth degree equations, certain features of these
three programs had to be bypassed.

In the printout of RESTEM and STAT20*** obtained from the original (unaltered) programs,
there were no clues to indicate that there was a rounding error problem. The initial runs of the
BMDO2R program, however, printed the messages “ERROR TERMINATION IN SQRT ROU-
TINE” and “SQRT CALLED AT SEQUENCE NUMBER 01032 OF MAIN PROGRAM.” These
messages were produced by the computer system, not by the BMDO2R program. They indicated
the nature of some of the trouble —that the argument of a certain square rpot function was nega-
tive. The initial BMDO2R runs furnished another clue of computational difficulties. The output
of this program includes various calculated F- values which are needed for entering and removing
variables from the regression. In both Y1 and Y2, there were one or more F-values (labeled “F TO
ENTER™) which were negative.

It was found that the RESTEM and STAT20*** programs had also calculated negative F-
values, and checks involving F-values had to be bypassed in order to obtain the fifth degree solu-
tions. Moreover, in the RESTEM program it was necessary to change the value of “minus infinity”
from —103% to —103* before satisfactory results could be obtained for any least squares problem.

WRAP, the program with the lowest rankings in table 1, computed coefhicients which were
exceptionally far from the true values. These coefficients are listed below.

Y1l Y2
True [i Computed 23 Truei} Computedi}
1. 2991622. 1. — 33.84546
1. — 6065892. 0.1 71.54880
1. 2218821. .01 —26.16913
1. —296194.5 .001 3.493256
1. 16462.20 .0001 —0.1936966
1. 182205731 .00001 003812985

Since WRAP performed so poorly on the two test problems, Y1 and Y2, some other test
problems were run in order to verify that the program could handle problems which were not so

badly conditioned. Let Ul(k) and U2(k) be defined as follows:
Ulk): y=1+x+x2+. . . +xk,

U2(k): y=14+0.1 x+0.01 x2+. . .+ 10-kxk,

Taking x=0(1)20, k=1, 2, 3, 4, the y-values were calculated for Ul (k) and U2(k). Using these calcu-
lated y’s as input, it was found that the coeflicients for degrees 1, 2, and 3 computed by the WRAP
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program had some accuracy, but those for degree 4 were computed inaccurately. The results for
degrees 3 and 4 are given below.

U1(3) U2(3)
True B Computed B True B Computed B
1. 18223297 I, 1.000416
1. 0.8286224 0.1 0.09971083
Il 1.022150 .01 .01003707
1L, 0.9992682 .001 .0009987662
Ul(4) U2(4)
True /:? Cumpuledi} True [3 Computed ,23
1. —1731.1589 Il 0.8673919
% 852.1714 0.1 .2555575
1. —193.1382 .01 —.02548887
Il 15.94353 .001 .003731290
I 0.6330207 .0001 .00003291620

8.2. Other Programs Using Elimination Algorithms

Two other BMD programs were tested. The BMDO3R program, Multiple Regression with
Case Combinations, inverts a matrix of correlation coefficients. BMDO5R, Polynomial Regression,
inverts the matrix Z'Z where the vectors of Z are formed from the vectors of X by subtracting the
mean of each vector from every element of that vector. All the crucial operations of BMDO5R,
such as the forming of inner products and matrix inversion, are carried out in double precision.
The performance of BMDO3R and BMDO5R is shown in tables 1, 3, and 4.

DAM is a general-purpose computer program for data processing and multiple regression
written by Rudolf R. Rhomberg, Lorette Boissonneault, and Leonard Harris, International Mone-
tary Fund [36]. In running the two test problems on DAM on the 1108, computations stopped after
a fourth degree polynomial was fitted, and the message “INSUFFICIENT NUMBER OF OBSER-
VATIONS OR DATA ARE ALL ZEROS, PROGRAM CANNOT COMPUTE EQUATION 5~
was printed. It was found that a computed variance was zero and that this condition causes the com-
putations to stop. By bypassing the checks on this computed variance, results for fifth degree
fits were obtained. On the 7094, however, the fifth degree results were reached without any such
difficulties. DAM’s performance on the two computers is given in table 1.

Two lines of table 1 report the results from OMNITAB on the 7094 and the 1108 where the
matrix commands INVERT, MMULT, and MTRANS were used. Here the 21 pairs of (x, y) values
were read into the computer, the powers of x were generated, the matrices X'X and X'Y were
obtained via MTRANS and MMULT, the inverse of X'X was obtained via INVERT, and B8 was
then obtained via MMULT. The solutions were far less accurate than those obtained from OMNI-
TAB by using the command POLYFIT which calls on the ORTHO routine.

The program POLRG is the polynomial regression program of the IBM System/360 Scientific
Subroutine Package [24], [25]. This program calls four subroutines, GDATA, ORDER, MINV,
and MULTR, in the course of obtaining the least squares coefficients and other quantities of interest.
These subroutines perform the following operations:

(1) GDATA generates the powers of the independent variable, finds means and standard
deviations, and sets up a correlation matrix.
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(2) ORDER chooses a dependent variable and a subset of independent variables from a larger
set of variables.

(3) MINV inverts the correlation matrix using the “standard Gauss-Jordan method.”

(4) MULTR computes the regression coefficients and related quantities, such as the sum of
squares attributable to the regression and the sum of squares of deviations from the regression.

We see from table 1 that the single precision version of POLRG obtained rather low scores
on both test problems. A double precision version of POLRG was also run, and the performance
here as reported in table 4 was comparable to other programs using similar elimination algorithms.

The user of POLRG specifies m, the highest degree polynomial to be fitted, and the program
automatically reports the results of fitting polynomials of successively increasing degrees, starting
with the first degree. If there is no reduction in the residual sum of squares between two successive
degrees of polynomials, the program stops the problem before completing the analysis for the
highest degree specified. In running both test problems, Y1 and Y2, in single precision the analysis
stopped after degree four, and in lieu of a fifth degree polynomial fit, the message “NO IMPROVE-
MENT” was printed. In order to complete the calculations for the fifth degree, the checks on
“improvement” were bypassed. In the double precision version, fifth degree results were obtained
without any such alterations.

The Programmer’s Manual for the IBM System/360 Scientific Subroutine Package [25] con-
tains some warnings regarding the accuracy of computations. The reader is informed that the ac-
curacy of the computations in many of the routines is highly dependent upon the number of signifi-
cant digits available for arithmetic operations. It is pointed out that matrix inversion and many of
the statistical subroutines fall into this category, and that the user may, therefore, wish to use double
precision versions of these routines. (The programs are so constructed that conversion to double
precision is an easy matter.) An appendix of the manual classifies the subroutines of this package
into three categories. These are: (1) subroutines having little or no effect on accuracy, (2) sub-
routines whose accuracy is dependent on the characteristics of the input data, and (3) subroutines
in which definite statements on accuracy can be made. Only one of the four subroutines called by
the POLRG program, namely ORDER, is in the first category. The other three subroutines, GDATA,
MINV and MULTR, fall in the second category. In connection with this second category we read
that it cannot be assumed that the results are accurate simply because subroutine execution is
completed.”

A more explicit statement is given in connection with the subroutine GDATA. Here there is
a comment in the program stating that if m, the highest degree polynomial to be fitted, is equal to
5 or greater, single precision may not be sufficient to give satisfactory results. Since the manual’s
test problem for POLRG specifies m =4 and has 15 data points, one might infer that satisfactory
results would be obtained for this problem. This is not the case, however. In the solution to this
problem given on page 410 of the manual, the intercept term for the polynomial regression of degree
4 is reported to be —5.26735. An accurate calculation shows that this term is actually — 6.04262,
so that the reported term had no correct significant digits. The four reported regression coefficients
were correctly computed to only one or two digits. Furthermore, the sum of squares of deviations
from the regression is reported to be 128.85156, whereas it is actually 17.67310. This error is
also propagated into the calculation of the mean square, the F' value, and the improvement in terms
of sum of squares. The calculated values of ¥ were found to be correct to one, two or three sig-
nificant digits, with the residuals correct to one digit or less.

In concluding this digression concerning the accuracy of the test problem accompanying a
particular program of a particular package, we note a remark given in the Programmer’s Manual
under “Purposes and Objectives of the Package”: “While this package may provide many of the
tools necessary to solve the more commonly encountered problems in engineering and science,
there is no intent to imply that these subroutines represent the current state of the art in statistics
or numerical analysis.”

The programs SPVMTX and DPVMTX appearing in tables 1, 3, and 4 use single and double

precision versions, respectively, of the same algorithm. These two programs were adapted by
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Sally T. Peavy, National Bureau of Standards, from two subroutines in the SHARE library: A. R.
Sadaka’s 7090-F1 3180INV1 Single Precision Matrix Inversion with Selective Pivoting and A. R.
Sadaka’s 7090-F1 3181INV2 Double Precision Matrix Inversion with Selective Pivot. Mrs. Peavy’s
adaptations of these programs included accuracy checks on the computed inverse. A brief descrip-
tion of these accaracy checks is in order. Let 4 be the input matrix to be inverted and Z the result
of the inversion. Let E=1—AZ. LL.et B=(b;;) be an n X n matrix, and let N(B) be a norm defined
in any of the following ways:

Mw#(g

bij

i J

N»(B)=n max |bis]

2\ 1/2
) (the Euclidean or Frobenius norm)

N;;(B): miax E Ibij| .
=i

In order to guarantee that Z be a good approximation to A-!, it is only necessary to have
N(Z) N(E) N(Z) N(E)
1—N(E) 1-N(E)
N3, and provides upper bounds on the error in the elements of the computed inverse. See Newman

[34, pp. 227-230] and Taussky [38, pp. 284—286] for a fuller discussion of the norms described

above.

The matrix which was inverted by SPVMTX and DPVMTX in solving the two test problems

was

small. This quantity, , is computed for each of the three norms Ny, V., and

[X'X X'Y

X'X)1 —é]
0 1 :

] whose inverse is [ 0 1

In the single precision solution. the three bounds for Y1 were, respectively, — 160, — 940,
and — 140, and those for Y2 were —2.2, — 7.0 and — 2.7. If an accurate inverse had been obtained,
the error bounds would have been small positive numbers. That the bounds were negative is a
clear warning that the computed inverses, including B, are not accurate. The double precision
1108 solution obtained the bounds 0.00048, 0.0075, and 0.00046 for Y1, and 0.000000039, 0.00000064,
and 0.000000087 for Y2. In both problems these bounds are quite conservative. In the solution
of Y1, the largest error in the elements of (X'X)~!is 5.5 X 10~13, and the largest error in the éj’s is
5.5X 1077, In the solution of Y2, the largest error in the elements of (X'X)-!is again 5.5 X103,
and in the Bj’s is 3.3 X 1013,

The 1108 version of OMNITAB now uses the SPVMTX routine for matrix inversion and prints
out the smallest error bound. OMNITAB reported the smallest error bound for the inverse of
X'X to be —6, a negative number. This was in agreement with the results from inverting X'X
via the FORTRAN program SPVMTX where the three error bounds were given as —1.7, — 6.0
and —2.1.

Each of the two STAT-PACK programs, GLH, General Linear Hypotheses, and REBSOM,
Back Solution Multiple Regression, has its individual features, but for the two test problems the
solutions were carried out in the same manner, so that the coefficients obtained from the two pro-
grams were identical, as is indicated in table 1. Both programs invert X'X by calling a matrix
inversion subroutine called JIM which uses a Gauss-Jordan elimination scheme with maximal
column pivoting and row scaling. The GLH program has an option whereby the user can enter
restraints in the case X'X is not of full rank. The REBSOM program has the feature that the user
can enter an F-value to be used as a criterion for removing variables from the regression after an
initial solution has been computed.

An error was found in the REBSOM program in the calculation of the variance of Y. After
estimating k coefficients (including possibly a constant term) from n observations, the formula

DA
used for the variance of Y is var YZ%}i—kE%. The denominator of this formula should read
n—k rather than n—k —1.
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The BASIC program LINFIT***  available in the C-E-I-R Multi-Access Computer Service,
A g . XX XY . 2 .
in order to obtain 8, inverts the matrix A= Y'X Sy whose inverse, if it exists, is

)14 BB —B
X'X)-1+ : i
SRS ¥ 7 S S 25

_B' 1
5yi—Y'Y  3SpE—Y'y

When Y =Y. the matrix A4 is singular. In the two test problems Y=Y, and the matrix 4. if it were
formed in the computer without any rounding error, would be singular. But 4, for Y1 and Y2, con-
tains 14-digit numbers, whereas the GE 235 computer works with approximately nine-digit num-
bers, so that rounding of the elements of A4 is inevitable, and the version of 4 contained in the
computer is not singular. An “inverse” was obtained, and from this 8 was immediately computed.
Table 2 gives the results.

A third problem was used to test the program LINFIT*** Here we had
1 0 5 6 4 4 12 20

i 1 0 4 Y= 5 andid— 4 8 6 18
1 2 1 4 12 6 46 64
2. 2 ) 20 18 64 102

The last column (row) of A4 is the sum of the three preceding columns (rows), so that A4 is clearly
singular. Unlike Y1 and Y2, this problem is such that the elements of 4 have fewer than nine

digits. An “inverse” was obtained by LINFIT***
2 5/

a a a—a
a a a—a

a a a —a

, however, and was printed as

where a=3.67091 X 107.
—a—a—a a

To obtain the inverse of A4 in this program, the matrix command MAT Q= INV(4) is used.
This command inverts the matrix 4 by using an elimination method with row pivoting (Kurtz [28]).
The method is described in section 1.2 of Stiefel [37].

LSCF--*** is another BASIC least squares program available in the C-E-I-R Multi-Access
Computer Service. Here the solution, B, is obtained by inverting X'X and then post-multiplying
the inverse by X'Y. Table 2 shows that LSCF-- *** ranked below the other programs of this table.
The inverse of X'X is obtained by using the matrix command INV, the same command as was used
in LINFIT#***,

The SIMEX-*** program originated at the Naval Ordnance Laboratory. The input required
for this program was X'X and X'Y, since SIMEX-*** solves n equations in n unknowns. An elimina-
tion algorithm is used to obtain the solution. The input for this program was limited to nine signifi-
cant digits. Recalling the results of table 7 which gave the exact solution for the Y1 problem when
input data was rounded to nine digits, it is not surprising that the average number of correct digits
for Y1, reported in table 2, is only 1.402. This lies between the “accuracy’ achieved by the nine-digit
and ten-digit problems of table 7.

The BASIC program STAT21*** obtains (X'X)~! and [3 by applying Jordan elimination to
X'X and X'Y; the results appear in table 2.

The LINFIT program included in table 1 is one of eighteen statistical routines described in
On-line Analysis for Social Scientists by James R. Miller [32]. This library of routines exists in the
Project MAC 7094 disk files. The two test problems were run on the LINFIT program on a time-
shared computer via a remote console communicating with Project MAC. A description of Project
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MAC may be found in Crisman [11]. Miller states that “these routines may be used without exten-
sive prior training in mathematics, statistics, or computer operations,” but in view of LINFIT’s
poor performance on these two problems, it appears that there may be pitfalls in using this program.
The method used by the LINFIT program is unknown. By conjecture, it has been included in this
section among programs using elimination algorithms.

9. Results from a Problem Having a Nenzero Standard Deviation

In the two test problems, Y1 and Y2, treated thus far, the residual standard deviation was
zero. A third test problem, Y1*, is one where the standard deviation is nonzero. This problem
was run on five programs in both single and double precision to see whether the fact that a least
squares fit has a standard deviation of zero might be a factor influencing the accuracy of
computations.

The values of Y1* were derived from the values of Y1 by adding 2.0 to the Y1 value when x
is even and subtracting 2.0 from the Y1 value when x is odd. The input for ¥'1* is listed in table 9.
A fifth degree polynomial fit for the Y1* problem has the solution (to 16 decimals)
2.0459627329192547

0.1815856777493606
B 1*)= | 1.1701440301521066
0.9870776685960425
1.0003230582850989
1.0000000000000000

e =i

with the residual standard deviation equal to 2.3251684.

TABLE 8. Comparison of results from two problems: one with nonzero standard deviation (Y1*) and one with zero standard
deviation (Y1)

All problems were run on the 1108 computer

Single Precision (8 Digits)

Average number of | Rank Date of run
Program Algorithm 2 correct digits
Yl Y1 el il e Y1
BMDOZR ... oot E 0.464 | —0.106| 4| 4| 12-19-67 |12-13-67
LS TS it HT 3.485 4.528| 2| 1|10-15-68 | 5- 1-68
MATH-PACK, ORTHLS.......ccoiiiiiiiiiieieiiieenen opP 2.053 2.118| 3| 3|10-15-68 | 4-12—-68
OMNITAB (O1tho).....ovveiiiiiiie e e e GS 3.711 4.137| 1| 2|10-15-68 {10-18-67
POLRG ... ..o cieiutiieeeeeeeaeneensnaasacananssaaenseosannsnss E —0.074 | —0.191| 5| 5| 10-15-68 |10— 7-68

Double Precision (18 Digits)

Average number of | Rank Date of run
Program Algorithma correct digits

YAl Y1 Y14 Y1 VAL Y1
LI DXOPA 3.0 coomasmnotinanasnanont oot cooarontanaaossms Boameomemons E 9.657 9.645| 4| 4| 4-17-68 | 4-17-68
TESTRS () RSV PO HT 13.913 14.643! 1| 1|10-16-68 | 7-22-68
MATH-PACK, ORTHLS .........ccoiiiiiiiiiiiiieeee oP 12.079 12.098| 3! 3| 10-16-68 [ 10-16—68
ORTHO ... GS 13.136 13.188| 2| 2| 3-27-68 | 1-29-68
1210 ) ) 31 o oo onnnon Bamc a0 OO0 B0 oo A OB S 0T E 9.270 9.290f 5| 5| 10-17-68 | 10— 7-68

? E= Elimination method; GS= Gram-Schmidt orthonormalization; HT = Orthogonal Householder transformations; OP= Orthogonal polynomials.
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TABLE 9. Input for fifth degree polynomials

X Y1 Y2

0. 1. 1.00000

1% 6. 1.11111

2. 63. 1.24992

& 364. 1.42753

4. 1365. 1.65984

5. 3906. 1.96875

6. 9331. 2.38336

7. 19608. 2.94117

8. 37449. 3.68928

9 66430. 4.68559

10. 111111. 6.00000

Il 177156. 7.71561

12. 271453. 9.92992

13. 402234. 12.75603

14. 579195. 16.32384

15: 813616. 20.78125

16. 1118481. 26.29536

17. 1508598. 33.05367

18. 2000719. 41.26528

19. 2613660. 51.16209

20. 3368421. 63.00000

Matrix X'X
21. 210. 2870. 44100. W

210. 2870. 44100. 722666.
2870. 44100. 722666. 12333300.
44100. 722666. 12333300. 216455810.
722666. 12333300. 216455810. 3877286700.
12333300. 216455810. 3877286700. 70540730666.

Matrix XY for Y1

13103167.
229558956.
4106845446.
74647573242.
1373802809082.
25537373767266.

Matrix XY for Y2

310.39960
5058.55410
87258.40800
1549291.38666
28043466.66600
514843723.46850

65.

362.
1367.
3904.
9333.
19606.
37451.
66428.
111113.
177154.
271455.
402232.
919197
813614.
1118483.
1508596.
2000721.
2613658.
3368423.

722666.
12333300.
216455810.
3877286700.
70540730666.
1299155279940.

13103169.
229558976.
4106845866.
74647581842.
1373802985062.
25537377366266.

12333300.
216455810.
3877286700.
70540730666.
1299155279940.
24163571680850.

Table 8 summarizes the results, comparing the accuracy of the coefficients for Y1* with
the corresponding accuracy for Y1. We see that the results for the two problems are quite similar,
in both single and double precision. The largest differences occurred with the program LSTSQ
in single precision, where the average number of correct digits was 4.528 for Y1, and the average
for Y1* was 3.485, a decrease of 1.043.

On the basis of this comparison it appears that the fact that the standard deviation was zero
in the test problems did not appreciably affect the accuracy of computations.

(1) Computational procedures appropriate for desk calculators may be perilous for computers.

10. Concluding Remarks

(2) Of the four procedures using floating-point arithmetic which were included in this study.
orthogonal Householder transformations and Gram-Schmidt orthonormalization proved to be the

best. Orthogonal polynomials ranked next. Elimination methods were the least successful but

the most popular. The multiple precision integer arithmetic procedure using congruential methods

was unique in obtaining exact solutions.

338-397 O-69—2
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(3) Some other algorithms apparently of high quality which have been published in the last
few years were not included in this study. These include:

(a) Bauer [2],
(b) Bjorck and Golub [6].
(¢) Bjorck [5].

Bauer [2] gives an ALGOL procedure using iterative refinement for finding the least squares
solution of XB=Y, where X is n Xk (k=< n) of rank £ and Y is n X p. The procedure is based on
the decomposition of X into UDR where U is n Xk with orthogonal columns, D= (U'U)"!, and
R is upper triangular. This decomposition yields a triangular system RB=U'"Y which is solved by
back substitution. The reduction to RB=U"Y is carried out by a Gaussian elimination scheme,
but with a suitably weighted combination of rows used for elimination instead of a single row.

Bjorck and Golub [6] and Bjorck [5] (see also Bjorck [3], [4]) give two least squares algorithms
with certain common features. Both take advantage of the fact that X'8= 0, where 8 is the vector
of residuals, to obtain the solution 8 in XB=Y from the augmented system of n+ k equations:

v olls]=Lo]

Both algorithms include & as well as B in the iterative refinement procedure.

The two algorithms are based on (i) orthogonal Householder transformations, and (ii) a modified
Gram-Schmidt orthogonalization process.

Both the classical Gram-Schmidt orthogonalization process and the modified Gram-Schmidt
orthogonalization process, as described by Bjorck [3], decompose the matrix X into QR where Q'Q
is diagonal and R is upper triangular. In the classical procedure, at the ith stage, the ith column
vector is made orthogonal to each of the i —1 previously orthogonalized column vectors; this is

done for column indices i =2, 3, . . .. k. In the modified procedure which Bjirck uses, at the ith
stage, the (k—i+ 1) column vectors indexed i, i+1, . . ., k are made orthogonal to the (i —1)-th
column vector; this is done for column indices i =2, 3, . . .. k. Jordan [27] shows why the modified

procedure is superior to the classical procedure. Bjorck [3] states that his modified Gram-Schmidt
procedure is equivalent to Bauer’s method using weighted row combinations mentioned above.
The algorithms for both the orthogonal Householder transformation method and the modified
Gram-Schmidt method are generalized to handle the case where X is of less than full rank. In this
case linear constraints are entered.

The papers of Bjorck [3, 5] and Bjorck and Golub [6] discuss the number of operations and the
storage requirements of their least squares algorithms.

(4) Programmers who have been writing least squares programs, especially for statistical
packages, have often not been taking advantage of the advances in this area made by numerical
analysts in recent years.

(5) The importance of accumulating inner products in double precision cannot be overstressed.
A number of recent papers on least squares computations have emphasized this point. These
include Businger and Golub [8], Bauer [2], Golub and Wilkinson [22], Bjorck and Golub [6], and
Bjorck [5]. On many third-generation computers which have double precision built into the hard-
ware, double precision arithmetic is quite efficient.

(6) Iterative refinement is another valuable feature of recent algorithms. The three algorithms
described in remark (3) above all include this feature. Four programs included in the present
study (LSFITW*** LSTSQ, ORTHO, and ORTHOL) made effective use of iterative refinement.
Golub and Wilkinson [22], who discuss this topic, also mention that the condition number of X'X
is approximately the square of the condition number of X, so that it is advantageous to work with
X rather than X'X whenever possible. Moler [33] and Forsythe [19] discuss the details of iterative
refinement in connection with solving n X n systems of linear equations.
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(7) The users of least squares programs can take certain precautionary steps to gain an
awareness of whether or not a rounding error problem exists. Various suggestions were made in
the previous studies of Cameron, Freund, Zellner and Thornber, and Longley. These suggestions
included the following:

(a) Run test problems where the coefficients are known.

(b) Transform the data (e.g., by subtracting means).

(c) Do the calculations several times, scaled differently each time.
(d) Shuffle the columns of X and run the problem more than once.
(e) Check whether X'8=0.

(f) Use double precision arithmetic.

(8) Another check on the accuracy of least squares coefficients, suggested by Joseph M.
Cameron, is the following. After carrying out the usual fit of Y to £ independent variables, do a
second fit, taking ¥ (the predicted values) and refitting to the % original independent variables.
If there were no rounding error at all, one would obtain exactly the same coefhicients from the refit
as from the original fit, and the standard deviation of the refit would be zero. The extent to which
the second set of coefficients agrees with the original set can give one some information about the
severity of rounding error.

A number of test problems were run on the 7094 and the 1108 in order to investigate the rela-
tionships among the coefficients of the original fit, those of the refit, and those one would obtain
if there were no rounding error. The test problems consisted of 55 polynomials with various ranges
of x, various degrees from 1 to 8, and various coefficients. All 55 were run in both single and double
precision on the 7094, and twelve of them were run in single and double precision on the 1108.

In these test problems, the following result was obtained: If the coefhicients from the refit
(denoted by b) agreed with the coeflicients from the original fit (/}) to an average of more than three
digits, and if the elements of X'X and X'Y can be represented in the computer without rounding,
then the number of digits in B; in agreement with b;(j=1. . . .. k) was approximately the same
as the number of correct digits in 8;. More precisely, whenever the two conditions just stated were
met, it was found (with one exception) that the number of digits in ,éj in agreement with those of
bj(i)|in double precision was within 1.0 of the number of correct digits in éj, and (ii) in single pre-
cision was within 2.0 of the number of correct digits in ﬁ, for all j. The one exception occurred in
a sixth degree polynomial with x=—10(1)10. In the double precision run the two sets of coefficients
agreed to an average of about 12.5 digits, and the elements of X'X and X'Y had at most 13 sig-
nificant digits; here B, agreed with b, to 16 digits but was correct only to about 13 digits.

(9) Efforts to provide comparative data on the amount of computer time required by the
various programs included in this investigation, as well as comparisons of storage requirements,
were unsuccessful. The programs which were included in this study originated from many sources,
and they exhibited considerable variation with respect to what quantities were calculated as well
as with respect to the methods of calculation. The program ALSQ, for example, at one end of the
spectrum, calculated simply the coefhicients, the residuals, the predicted values, and the residual
sum of squares for the requested fifth degree polynomial. The single precision version of ALSQ
required eight seconds to process both test problems on the 1108; the storage requirements were
709 memory cells for the code and 323 for the data. The double precision version of ALSQ processed
both problems in seven seconds, requiring 715 memory cells for the code and 618 for the data.
Nearer the other end of the spectrum was the Biomed program BMDOSR. The output here con-
sisted of the coefhicients and their standard deviations for polynomial fits of degrees 1, 2, 3, 4, 5,
an analysis of variance for degrees 1, 2, 3, 4, 5, predicted values and residuals for degree 5, a
plot of observed and predicted values for degree 5, and means and correlation coefhicients of the
input data. This program (computing some operations in double precision) required 20 seconds
on the 1108 to process the two test problems; the storage requirements were 3,119 memory cells
for the code and 15,168 for the data. It becomes evident that an intercomparison of running time
among the different programs is not meaningful.
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Moreover, in repeated runs of a particular program there is fluctuation from run to run in the
amount of time required. For example, on the same day three separate jobs were submitted to be
run on OMNITAB (using the command POLYFIT) on the 1108, with the followinglresults:

(a) Y1 alone: 8 seconds.

(b) Y2 alone: 12 seconds.

(c) Y1 and Y2 together: 8 seconds.
The 1108 version of OMNITAB requires about 50,000 memory cells for storage. The run times given
here include unknown components of time for operation of the computer system.

Although one would expect a double precision version of a particular program to require more
time than a single precision version, there were several instances on the 1108 where double pre-
cision required less time than single precision.

It was outside the scope of this investigation to make a detailed comparison of algorithms with
respect to efficiency of computation time and storage requirements. Similarly, no comparative
examination of the outputs provided by the programs was made. Rather, this study focused atten-
tion on the performance of existing programs.

(10) In any mathematical calculation carried out on a computer, it is desirable to know whether
an accurate solution has been obtained or whether the result of a calculation is contaminated by
rounding error to such an extent that it is worthless. This goal has been achieved in some areas.
Martin, Peters, and Wilkinson [31], in their paper giving an algorithm for solving Ax= 150, where
A is an n X n positive definite matrix and b is an n X p matrix, state that their procedure “either
produces the correctly rounded solutions of the equation Ax=5 or indicates that 4 is too ill-condi-
tioned for this to be achieved without working to higher precision (or is possibly singular).” Sim-
ilarly, Wilkinson’s program [45] for the solution of an ill-conditioned system of equations Ax=1b,
where 4 is nX n, “gives either a solution of the system which is correct to working accuracy
or alternatively indicates that the system is too ill-conditioned to be solved without working to higher
precision and may even be singular.”

It appears that the goal set out above has now been achieved in the linear least squares pro-
gram of Bjorck and Golub [6]. The authors state that their procedure may be used to compute
accurate solutions and residuals to linear least squares problems, but that the procedure will fail
when X modified by rounding errors has less than full rank, and that it will also fail if X is so ill-
conditioned that there is no perceptible improvement in the iterative refinement. The user is easily
informed of these situations.

I would like to express my appreciation to Joseph M. Cameron who suggested this investiga-
tion and made many valuable contributions, to Joan R. Rosenblatt for helpful discussions, and to
Joseph Hilsenrath, Russell A. Kirsch, and Thomas Hoover for use of their time-shared computer
facilities to run several problems. Thanks are due to Gene H. Golub, Stanford University, for his
constructive remarks. The assistance of James Doyle, Univac Division, Sperry Rand Corporation,
in debugging one program is also appreciated.

11. Appendix A. Sources of the Programs, With Brief Descriptions

ALSQ. A FORTRAN IV subroutine to solve the linear least squares problem, written by G. W.
Stewart 11, Union Carbide Corp., Oak Ridge, Tennessee (present address: The University of Texas,
Austin, Texas). This program uses a modification of the Businger-Golub algorithm [8].

BMDO2R, Stepwise Regression. One of the Biomedical Computer Programs, written in FOR-
TRAN [15].

BMDO3R, Multiple Regression with Case Combinations. One of the Biomedical Computer
Programs, written in FORTRAN [15].

BMDOSR, Polynomial Regression. One of the Biomedical Computer Programs, written in FOR-
TRAN [15].
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DAM. A general purpose computer program for data processing and multiple regression, written
in FORTRAN by Rudolf R. Rhomberg, Lorette Boissonneault, and Leonard Harris, International
Monetary Fund [36].

DPVMTX. A double precision FORTRAN IV program for inverting a matrix or solving a set of
linear equations. To a program from the SHARE library (7090-F1 3181INV2 Double Precision
Matrix Inversion with Selective Pivot, written by A. R. Sadaka [26]), Sally T. Peavy. National
Bureau of Standards, incorporated accuracy checks.

LINFIT. A program which fits a linear function to collected data via least squares. Optional
constraints may be applied to the fitting coefhicients to make them nonnegative, add to a constant,
etc. One of eighteen statistical routines written by James R. Miller [32]. This library of routines
exists in the Project MAC 7094 in the disk files of user number T169 2750.

LINFIT*** A program written in BASIC for linear least squares curve fitting and computing
correlations. Origin: Dartmouth College, Hanover, N.H. Available in the C-E-I-R Multi-Access
Computer Services library [10].

LSCF --***_ A least squares polynomial curve fitting subroutine written in BASIC. Origin: Dart-
mouth College, Hanover, N.H. Available in the C-E-I-R Multi-Access Computer Services library
[10].

LSFITW#*##_ A least squares curve fitting program written in BASIC. Adapted by John B. Shu-
maker, National Bureau of Standards, from Philip J. Walsh’s ORTHO algorithm [42]. Available
in the C-E-I-R Multi-Access Computer Services library [10].

LSTSQ. A FORTRAN IV subroutine which solves for X the overdetermined system AX=8 of
m linear equations in n unknowns for p right-hand sides. Written by Peter Businger, Computation
Center, University of Texas (present address: Bell Telephone Laboratories, Murray Hill, N.J.),
using the Businger-Golub algorithm [8].

MATH-PACK, ORTHLS, Orthogonal Polynomial lLeast-Squares Curve Fitting. One of the
Univac 1108 MATH-PACK programs, written in FORTRAN V [40].

MPR3, Stepwise Multiple Regression with Variable Transformations. A FORTRAN II program
written by M. A. Efroymson, Esso Research and Engineering Co., Madison, N.J., using the Efroym-
son algorithm [16]. Available in the SHARE library: 7090-G2 3145MPR3 [26].

OMNITAB, a general-purpose computer program for statistical and numerical analysis. Devel-
oped at the National Bureau of Standards by Joseph Hilsenrath et al. [23]. Now available in an
A. S. A. FORTRAN version, OMNITAB allows the user to communicate with a computer in an
efficient manner by means of simple English sentences.

ORTHO. A program written by Philip J. Walsh, National Bureau of Standards (present address:
University Computing Co., East Brunswick, N.J.), which uses a Gram-Schmidt orthonormaliza-
tion process for least squares curve fitting. ORTHO exists as an ALGOL procedure [42], a FOR-
TRAN program, a BASIC program (see LSFITW*** above), and as a routine of OMNITAB [23],
where it is called by the commands FIT and POLYFIT.

ORTHOL. A modification of the Davis-Rabinowitz orthonormalization algorithm [12, 13, 14],
written in FORTRAN II by James W. Longley, Bureau of Labor Statistics, Washington, D.C.,
and Roger A. Blau, Bureau of Labor Statistics and Carnegie-Mellon University, Pittsburgh, Pa.
[30].

POLFIT. An anonymous program written in BASIC for least squares polynomial curve fitting
using orthogonal polynomials.

POLRG, Polynomial Regression. One of the programs of the IBM System/360 Scientific Subroutine
Package written in FORTRAN 1V [24, 25].

SIMEX-***_ A program written in BASIC for solving n simultaneous equations in n unknowns.
Origin: Naval Ordnance Laboratory, Silver Spring, Md. Available in the C-E-I-R Multi-Access
Computer Services library [10].

SOLVER. A FORTRAN program written by Morris Newman, National Bureau of Standards, for
obtaining the exact solution of the system 4X =B, or the inverse of a matrix 4, by congruential
methods [35]. The elements of 4 and B must be integers.
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SPYMTX. A single precision FORTRAN IV program for inverting a matrix or solving a set of
linear equations. To a program from the SHARE library (7090-F1 3180INV1 Single Precision
Matrix Inversion with Selective Pivoting, written by A. R. Sadaka [26]), Sally T. Peavy, National
Bureau of Standards, incorporated accuracy checks.

STAT-PACK, GLH, General Linear Hypotheses. One of the Univac 1108 STAT-PACK programs,
written in FORTRAN V [41].

STAT-PACK, REBSOM, Back Solution Multiple Regression. One of the Univac 1108 STAT-
PACK programs, written in FORTRAN V [41].

STAT-PACK, RESTEM, Stepwise Multiple Regression. One of the Univac 1108 STAT-PACK
programs, written in FORTRAN V [41].

STAT20***, A program written in BASIC for stepwise multiple linear regression. Written by
Thomas E. Kurtz, Dartmouth College, Hanover, N.H. Available in the C-E-I-R Multi-Access Com-
puter Services library [10].

STAT21***, A program written in BASIC for multiple linear regression with detailed output.
Written by Gerald Childs, Dartmouth College, Hanover, N.H. Available in the C-E-I-R Multi-Access
Computer Services library [10].

WRAP, Weighted Regression Analysis Program. A FORTRAN II program written by M. D.
Fimple, Sandia Corp., Albuquerque, New Mexico. Available in the SHARE library: 7090-G2 3231
WRAP [26].
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APPENDIX B

DETAILS FOR TABLE 1 —— SINGLE PRECISION (8 DIGITS)

ALSQ

BETA-HAT (Y1)

1.0228963
.99553592
.99941321

1.0001108
.99999613

1.0000000

BMDO2R
BETA-HAT (Y1)
-17.13281
39.34436
-13.26675
2.92344
.89241
1.00212

BMDO3R

BETA-HAT (Y1)

394 .23438

—16.00000
28.00000
—1.00000
1.00000
1.00049

BMDO3R
BETA-HAT (Y1)
5161 .95310
40.000000
4.0000001
.50000000
.89062500
.99804688

DAM
BETA-HAT (Y1)
2820
.460
2920
1.03
- IS
1.00

DAM
BETA-HAT (Y1)
26 .798895
—-53.926606
21.511053
-1.7723664
1.1553755
299692726

AVERAGE =

AVERAGE =

AVERAGE =

AVERAGE =

AVERAGE =

AVERAGE =

COUNT
-1.258
-1.584
-1.154

.968

COUNT
=898
=230
-1.431

3.310

.742

COUNT
—2.642
SISO

.301
.961
2 . T0Le)

= . L]

COUNT

.268
.097
.523
.523
.000

NN

1.389

COUNT
-1.412
-1.740
=, Sl

.809

—.264

BETA-HAT (Y2)

1.0000002
.10000037
.0099998263
.0010000220
.000099998902
.000010000020

BETA-HAT (Y2)
.99954
.10098775
.0096306379
.0010499504
.000097199970
.000010055379

BETA-HAT (Y2)

1.04353
.10083
.01013
.00101
.00010
.00001

BETA-HAT (Y2)

1.07353
.10131836
.010009766
.00099945068
.000097751617
.0000099837780

BETA-HAT (Y2)
1.000
.101
.00975
.00103
.0000982
.0000100

BETA-HAT (Y2)

1.0000993
.099779484
.010084331
.00098840467
.00010065825
.0000099868524

EXAMPLE 1
COUNT
6.699
5.432
.760
.658
1959
1699

(SN

5.368

EXAMPLE 2
CONT
3.337
.G05
.433
.301
.553
. 257

N - =N

1.981

EXAMPLE 3
COUNT
i, sfe
RO St
. 886
.000
.000
.000

NN N

IR

EXAMPLE 4
COUNT
.134
.880
.010
.260
.648
90

DWW

2.287

EXAMPLE 5
COUNT
4.000
2.000
.602
.523
.745
.000

N

2. S

EXAMPLE 6
COUNT
4.003
2.657
.074
.936
.182
.881

NN

PN622



|
| DETAILS FOR TABLE 1 —— SINGLE PRECISION (8 DIGITS)
\
|
\

LINFIT (MILLER) 7094
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
7360 .000 -3.867 1.074
-16598.000 -4.220 -.066
6379.500 -3.805 .074
-877.906 -2.944 -.008
50.989 =l GEE) .001
.000 .000 .000
AVERAGE = -2.756 AVERAGE =
LSTSQ 1108
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
.99973875 3.583 B9958 995
1.0006891 3.162 .10000011
.99970413 3.529 .0099999484
1.0000452 4.345 .0010000083
.99999718 5.550 .000099999460
1.0000001 7.000 .000010000012
AVERAGE = 4.528 AVERAGE =
MATH-PACK 13.5, ORTHLS, ORTHOGONAL POLYNOMIAL CURVE FITTING 1108
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
.94458008 1.256 $99999909
1.1799316 .745 .10000322
.91607666 1.076 .0099984696
1.0135651 1.868 .0010002495
.99912310 3.057 .000099983743
1.0000196 4.708 .000010000364
AVERAGE = 2.118 AVERAGE =
MPR3, STEPWISE MULTIPLE REGRESSION, SHARE LIBRARY 3145MPR3 7094
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
—20.24219 =1L, &2 .99933
43 .49164 -1.628 .1013436
—-14.37052 -1.187 .009510736
3.03207 -.308 .001065033
.88800 .951 .00009639953
AL OOZIE) 2.660 .00001007054
AVERAGE = -.140 AVERAGE =
OMNITAB, USING THE MATRIX COMMANDS MTRANS, MMULT, INVERT 7094
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
=Bl CIEELE) -1.968 .99780273
136.00000 -2.130 .10278320
—-48.000000 -1.690 .0086669922
5.5000000 —-.653 .0011596680
.75000000 .602 .000092506409
1.0063477 2O .000010177493
AVERAGE = -.607 AVERAGE =
OMNITAB, USING THE MATRIX COMMANDS MTRANS, MMULT, INVERT 1108
BETA-HAT (Y1) COUNT BETA-HAT (Y2)
—220.65660 -2.346 .99512554
316.45422 —2.499 .10715805
-96.578077 =1l CfEEE) .0077479167
10.859373 -.994 .0012353163
.52858572 .327 .000088502186
1.0087148 2.060 .000010213975
AVERAGE = -.907 AVERAGE =

82

EXAMPLE 7
COUNT
1L, L5l
-.220
-.806
-.954
—-.954

.000

- . 501

EXAMPLE 8
COUNT
7.523
8959
.287
.081
.268
S92

oo or ;g

5.840

EXAMPLE 9
COUNT
.041
.492
.815
.603
.789
.439

BARRNNDO

4.363

EXAMPLE 10
COUNT
3.174
282
.310
.187
.444
.152

DN

1.856

EXAMPLE 11
COUNT
2.658
1.555

.875

.T97
IPSID 5!
IRoN!

1.460

EXAMPLE 12
COUNT
2.312
1.145

.647

.628

8950
1.670

1.224



DETAILS FOR TABLE 1 —— SINGLE PRECISION (8 DIGITS)

OMNITAB. USING

ORTHO SUBROUTINE

BETA-HAT (Y2)
.99999949
.10000013
.0099999756
.0010000018
.000099999866
.000010000004

BETA-HAT (Y2)
.99999990
.099999700
.010000125
.00099998200
.00010000109
.0000099999778

BETA-HAT (Y2)
.98419483
.13523918

-.0034660707
.0028495983

—.0000049256487
.000012094996

BETA-HAT (Y2)

1.0000000
.099999778
.010000041
.00099999654
.00010000013
.0000099999984

BETA-HAT (Y2)
.98438931
.10009000
.010146444
.0010054175
.000099141363
.000010021910

BETA-HAT (Y2)

1.0014403
.097101737
.011047948
.00086162069
.00010761766
.0000098514820

BETA-HAT (Y1) COUNT
1.0012817 28892
.99780273 2.658
.99932861 3.173
1.0001755 3.756
.99998569 4.844
1.0000004 6.398
AVERAGE = 3.954
OMNITAB, USING ORTHO SUBROUTINE
BETA-HAT (Y1) COUNT
1.0064697 2. NG
.99902344 3.010
.99975586 & (G2
.99996948 4.515
1.0000100 5.000
.99999968 6.495
AVERAGE = 4.137
ORTHO, WITH RE-ORTHOGONALIZATION OMITTED
BETA-HAT (Y1) COUNT
-1216.5426 -3.085
2752.0557 -3.439
-1057.0931 =58025
146.97336 -2.164
-7.3080225 —.919
1.1663037 S TATAS)
AVERAGE = -1.976
ORTHOL
BETA-HAT (Y1) COUNT
.99784447 2.666
.98687472 1.882
1.0029743 2.527
.99961372 3.413
1.0000213 4.672
8939939960 6.398
AVERAGE = 3.593
POLRG, IBM SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE
BETA-HAT (Y1) COUNT
-1823.8047 -3.261
28.622013 -1.441
-3.6844511 =&l
3.0450442 —.311
.93157484 1.165
1.0004238 3.373
AVERAGE = -.191
SPVMTX
BETA-HAT (Y1) COUNT
64.191025 -1.801
-134.65426 =2 1E2
51.859977 — 1706
-5.8942945 —.838
1.3872223 A2
.99232943 72 L)
AVERAGE = -.658

83

7094

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

EXAMPLE 13
COUNT
6.292
5.886
.613
.745
.873
§S98

()¢ ¢ e

5.968

EXAMPLE 14
COUNT

7.000

5.523
4.903
4.745
4.963
5.654

(o4}

.464

EXAMPLE 15
COUNT
1.801

.453
= k)
—. 267
-.021

o &)

.419

EXAMPLE 16
COUNT

8.000

5.654
5.387
5.461
5.886
6.796

6.197

EXAMPLE 17
COUNT

1.807

3.046
1.834
2.266
2.066
2.659

2.280

EXAMPLE 18
COUNT
2.842
1.538

.980

.859
1 UL
1.828

1.527



DETAILS FOR TABLE 1 —— SINGLE PRECISION (8 DIGITS)

STAT-PACK 8.13,
BETA-HAT (Y1)
-11.970093

27.245361
-8.5661011
2.2717514
.92961073
1.0013784

AVERAGE

COUNT

=l
=1.

113
419

.981

-.104

=

2152
.861

.066

GLH, GENERAL LINEAR HYPOTHESIS
BETA-HAT

(Y2)
99989064
10018034
0099404901
0010073970

.000099610348
.000010007344

STAT-PACK 9.2, REBSOM, BACK SOLUTION MULTIPLE REGRESSION
COUNT

BETA-HAT (Y1)
SINS009
27.24536
-8.56610
2, 2SS
192961
1.00138

AVERAGE

STAT-PACK 9.1,
BETA-HAT (Y1)
-1.5703125

7.5583214
-1.5695286
1.3551083
.97985181
1.0004015

AVERAGE

=l
=il

19
2

113
419

SEL
.104

152

.860

.066

COUNT

.410
o BT
.410

.450

—

.696
. 396

.651

BETA-HAT (Y2)

.9998906
.1001803
.009940490
.001007397
.00009961035
.00001000734

RESTEM, STEPWISE MULTIPLE REGRESSION
BETA-HAT (Y2)
1.0002102

.099611598
.010136487
.00098222795
.00010097076

.0000099811599

WRAP, WEIGHTED REGRESSION, SHARE LIBRARY 3231WRAP
COUNT

BETA-HAT (Y1)
299116225
-6065892 .
2218821 .
—-296194 .5
16462 .20
—-322.5731

AVERAGE

DETAILS FOR

LINFIT
BETA—HAT
2.76639
-2.72473
2.38633
.812925
1.01048
299993

(Y1)

AVERAGE

LSCF
BETA-HAT
={5) 415
=72
=8,
0.
.957031
.999023

(Y1)

AVERAGE

=5,
=[5,
=62
=50
-4.
=2

= =f.

476
783
346
472
216

.510

300

COUNT

. 247
.571
.142

.728

.980
.684

.905

COUNT

.813
.114
.602

.000

.367
.010

.308

84

BETA-HAT
1.00006

BETA-HAT

BETA-HAT (Y2)
—33.84546

71.54880

—-26.16913

3.493256
—.1936966
.003812985

TABLE 2 —— SINGLE PRECISION (9 DIGITS)

(Y2)

.0998764
.010045
.000994014
.000100332
.00000999350

(Y2)
2959895
M0S9HE2
.00991058
.000970840
.0000993013
.00000997260

1108

AVERAGE

1108

AVERAGE

1108

AVERAGE

7094

AVERAGE

235

AVERAGE

235

AVERAGE

EXAMPLE 19
COUNT
ROBIlt
.744
.225
o LS
.409
.134

[CARRACRR VIRV IRV IR O]

0 TASH(

EXAMPLE 20
COUNT
.961
.744
$225
1131
.409
.134

[CARRAVIRC IR VIRV 2]

20761

EXAMPLE 21
COUNT
67T
.411
.865
.750
.013
.725

VN - W

2.407

EXAMPLE 22

COUNT
-1.542
-2.854
-3.418
-3.543
-3.287
-2.580

-2.871

EXAMPLE 1
COUNT
o 2
.908
. 347
.223
RAHS)
.187

WM D

2.894

EXAMPLE 2
COUNT
o S/l
1625
.049
.535
.156
.562

NN HHNDNW

2.483



DETAILS FOR TABLE

2 — SINGLE PRECISION

(9 DIGITS)

LSFITW 235 EXAMPLE 3
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999130249 3.061 .999999897555 6.990
.99761963 2.623 .0999999824213 6.755
1.00102997 2.987 .0100000116561 5.933
.999854088 3.836 .00099999815736 5.735
1.00000715256 5.146 .000100000104819 5.980
.999999890104 6.959 .00000999999813838 6.730
AVERAGE = 4.102 AVERAGE = 6.354

POLFIT 235 EXAMPLE 4
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.99387360 2.213 .9999999618158 7.418
1.00894165 2.049 .1000000573928 6.241
.99534607 2.332 .0099999622960 5.424
1.000703812 3.153 .00100000655382 5.184
.9999548197 4.345 .000099999526381 5.325
1.000000998378 6.001 .0000100000114824 5.940
AVERAGE = 3.349 AVERAGE = 5.922

SIMEX 235 EXAMPLE 5
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.74226 8129 .999966 4.469
-.313568 =118 .100063 3.201
1.44267 .354 .00997838 2.665
.944463 1.255 .00100276 2.559
1.00294 2.532 .0000998520 2.830
.999945 4.260 .0000100028 3.553
AVERAGE = 1 402 AVERAGE = 3.213

STAT20 235 EXAMPLE 6
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
4.70801 —-.569 1.00006 4.222
-6.48121 -.874 .0998837 2.934
3.72065 —.435 .010042 2.377
.638874 .442 .000994436 2.255
1IO19 9 1.700 .000100307 2.513
.999609 3.408 .00000999400 3.222
AVERAGE = .612 AVERAGE = 2.920

STAT21 235 EXAMPLE 7
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
2.089 —.037 1.00003 4.523
-1.11166 —.325 .0999349 3.186
1.75217 .124 .0100234 2.631
.901511 1.007 .000996913 2.510
1.00539 2.268 .000100170 2.770
.999895 & SIE) 00000999668 3.479
AVERAGE = 1.169 AVERAGE = 3.183
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DETAILS FOR TABLE 3 —- DOUBLE PRECISION

(16 DIGITS)

BMDOSR 7094 EXAMPLE
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.0000003 6.523 .99999998 {8699

.99999920 6.097 .10000004 6.398
1.0000002 6.699 .0099999798 5.695
.99999996 7.398 .0010000031 5.509
89999999 7.000 .000099999792 5.682
199999999, 8.000 .000010000004 6.398
AVERAGE = 6.953 AVERAGE = 6.230

DPVMTX 1107 EXAMPLE 2
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.000000206882520 6.684 1.000000000006017 L 220

.9999995965200948 6.394 .09999999998899705 9.958
1.000000145134836 6.838 .01000000000383598 9.416
.9999999808270597 IS .0009999999995039349 9.304
1.000000001057576 8.976 .0001000000000269390 9.570
.9999999999793303 10.685 .000009999999999479781 10.284

AVERAGE = 7.882 AVERAGE = 9.959

DETAILS FOR TABLE 4 —— DOUBLE PRECISION (18 DIGITS)

ALSQ 1108 EXAMPLE 1
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.000000000005630 11.249 1.00000000000000000 18.000

.9999999999933983 11.180 .0999999999999999140 15.065
1.000000000002151 11.667 .0100000000000000339 14.470
.9999999999997248 12.560 .000999999999999995720 14.368
1.000000000000015 13.824 .000100000000000000224 14.650
89999959999999999/7 15.520 .00000999999999999999580 15.376

AVERAGE = 12.667 AVERAGE = 15.322

BMDO2R 1108 EXAMPLE 2
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.9999999968749762 8.505 1.000000000000007 14.155
1.000000006749235 8.171 .09999999999998616 12.859
.9999999974683392 8.597 .01000000000000481 12.318
1.000000000342994 9.465 .0009999999999993756 12.205
.9999999999807494 10.716 .0001000000000000339 12.470
1.000000000000381 12.419 .000009999999999999342 13.182

AVERAGE = 9.645 AVERAGE = 12.865

BMDOSR 1108 EXAMPLE 3
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.00000000634827302 8.197 1.00000000000007691 13.114

.999999987016701379 7.887 .0999999999998442950 11.808
1.00000000476533960 8.322 .0100000000000568478 11.245
.999999999362724245 9.196 .000999999999992425020 SISO DA
1.00000000003545420 10.450 .000100000000000420311 11.376
.999999999999302617 12.157 .00000999999999999174930 12.084

AVERAGE = 9.368 AVERAGE = 11.791

DPVMTX 1108 EXAMPLE 4
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.9999999971390853 8.543 899959999899958958 15.693
1.000000005557233 8.255 .1000000000000033 13.481
.9999999980049357 8.700 .0099999999999983" 12.790
1.000000000263132 9.580 .0010000000000002¢ 12.607
.9999999999855033 10.839 .0000999999999999¢ 7 12.826

1.000000000000283 12.548 .00001000000000000 1 13.509

AVERAGE = 9.744 AVERAGE = 13.484
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DETAILS FOR TABLE 4 —— DOUBLE PRECISION (18 DIGITS)

LSTSQ 1108 EXAMPLE 5
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999999999999999464 15.269 1.00000000000000000 18.000
.999999999999943084 13.245 .0999999999999999950 16.284
1.00000000000004282 13.368 .0100000000000000021 15.683
.999999999999991067 14.049 .000999999999999999710  15.538
1.00000000000000068 15.169 .000100000000000000017  15.771
.999999999999999985 16.761 .00000999999999999999970 16.480
AVERAGE = 14.643 AVERAGE = 16.293

MATH-PACK 13.5, ORTHLS, ORTHOGONAL POLYNOMIAL CURVE FITTING 1108 EXAMPLE 6
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999999999992709829 11.137 .999999999999999901 15.997
1.00000000001946887 10.711 .100000000000000225 14.648
.999999999991466379 11.069 .00999999999999988980 13.958
1.00000000000133404 11.875 .00100000000000001872 13.728
.999999999999915178 13.071 .0000999999999999987360 13.898
1.00000000000000188 14.727 .0000100000000000000292 14.535
AVERAGE = 12.098 AVERAGE = 14.461

ORTHO 1108 EXAMPLE 7
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999999999997051 246 11.530 .999999999999999946 16.242
1.00000000000051159 12.291 .0999999999999999970 16.488
1.00000000000034817 12.458 .0100000000000000078 15.109
.999999999999897859 12.991 .000999999999999998330  14.777
1.00000000000000760 14.119 .000100000000000000121  14.918
.999999999999999820 15.740 .00000999999999999999720 15.550
AVERAGE = 13.188 AVERAGE = 15.514

ORTHO, WITH RE-ORTHOGONALIZATION OMITTED 1108 EXAMPLE 8
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999999858679196051 6.850 .999999999998151750 11.733
1.00000031785242527 6.498 .100000000004101749 10.387
.999999878054865120 6.914 .00999999999843660520 9.806
1.00000001679285067 7.775 .00100000000021433129 9.669
.999999999045590670 9.020 .0000999999999878591650  9.916
1.00000000001908297 10.719 .0000100000000002421209 10.616
AVERAGE = 7.963 AVERAGE = 10.354

ORTHOL 1108 EXAMPLE 9
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
.999999999999754768 12.610 1.00000000000000000 18.000
1.00000000000255572 11.592 .100000000000000036 15.444
.999999999999179468 12.086 .00999999999999998660 14.873
1.00000000000011276 12.948 .00100000000000000191 14.719
.999999999999993318 14.175 .0000999999999999998880 14 .950
1.00000000000000014 15.863 .0000100000000000000023 15 .640
AVERAGE = 13.212 AVERAGE = 15.604

POLRG, IBM SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE 1108 EXAMPLE 10
BETA-HAT (Y1) COUNT BETA-HAT (Y2) COUNT
1.00000011110114428 6.954 1.00000000000136645 11.864
.999999990457514712 8.020 .0999999999999411990 12.231
1.00000000321449412 8.493 .0100000000000305940 11.514
.999999999544922239 9.342 .000999999999995547370  11.351
1.00000000002322160 10.634 .000100000000000227181  11.644
.999999999999491835 12.294 .00000999999999999416480 12.234
AVERAGE = 9.290 AVERAGE = 11.806
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DETAILS FOR TABLE 4 —— DOUBLE PRECISION

STAT-PACK 9.1,
BETA-HAT (Y1)
1.00000000453928806

i,

1.

DETAILS FOR TABLE

ALSQ

.999999990379828084

00000000358299878

.999999999516629162

00000000002705048

.999999999999465664

BETA-HAT (Y1)

1

1

1

.0366969
.99202651
.99865498
.0003119
2999981°1'9
.0000004

LSTSQ
BETA-HAT (Y1)

1

1
i
1
1

.0000000
1999939999
.0000000
0000000
.0000000
.0000000

ORTHO

BETA-HAT

1

i,

i

DETAILS FOR TABLE 6 —- MULTIPLE

(Y1)
.0027425
.99674778
0013667
.99983171
0000096
199999981

SOLVER
BETA-HAT (Y1)

I

S e

AVERAGE =

5 —— SINGLE PRECISION
ACCUMULATED IN DOUBLE PRECISION

AVERAGE =

AVERAGE =

AVERAGE =

00000000000000000

.00000000000000000
.00000000000000000
.00000000000000000
.00000000000000000
.00000000000000000

AVERAGE =

COUNT
8.343
8.017
8.446
9.316
10.568
WE AT

9.494

COUNT
.435
.098
.871
.506
N726
. 398

DB WD

3.506

COUNT
.562
.488
.864
.T74
.018
.T21

D OTWWND NN

3.904

COUNT
18.000
18.000
18.000
18.000
18.000
18.000

18.000

88

(8 DIGITS).

BETA-HAT
o SEEEEREL)
.10000004
.0099999798
.0010000032
.000099999794
.000010000004

BETA-HAT
1999999999999999995
203939999999999999995
100229999999999999996
1000999999999999999996
.0000999999999999999996
.0000100000000000000000

(18 DIGITS)

RESTEM, STEPWISE MULTIPLE REGRESSION

BETA-HAT

1.00000000000004872
.0999999999999056810
.0100000000000336338
.000999999999995591090
.000100000000000241649
.00000999999999999530180 12.328

(Y2)

BETA-HAT (Y2)

1.0000001
.099999869
.010000017
.00099999901
.00010000003
.0000099999999

(Y2)

BETA-HAT (Y2)

1.0000003
.099999898
.010000011
.00099999974
.000099999980
.000010000001

(Y2)

1108

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

1108

AVERAGE =

PRECISION INTEGER ARITHMETIC

1108

AVERAGE =

EXAMPLE 11
COUNT
13.312
12.025
11.473
11.356
11.617

I2MOIS)

WITH INNER PRODUCTS
(18 DIGITS)

EXAMPLE 1
COUNT
7.000
5.883
5.770
6.004
6.523
8.000
6.530

EXAMPLE 2
COUNT
.000
.398
.695
.495
.686
.398

o OO oo

6W27S

EXAMPLE 3
COUNT
.523
- XNt
#9569
.585
N699
.000

O e NG NS e )}

6.459

EXAMPLE 1
COUNT
17.159
17.187
17.169
17.294
17.276
18.000

17.347
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