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Two linear least squ a res tes t p roblems, both fifth degree polyno mi a ls, have bee n run on more th an 
twe nJ y d iffe rent co mput e r progra ms in orde r to assess th e ir num erica l acc uracy. Among the progra ms 
tes ted were re presentati ves f ro m vari ous sta ti sti ca l pac kages as we ll as some from th e S HA RE libra ry. 
Essenti a ll y fi ve diffe re nt algorithm s were used in the va ri ous progra ms to obta in the coeffi c ients of the 
leas t squ a res fit s. The tests were run on severa l diffe rent comput e rs, in doubl e prec i io n as we ll as 
s ingle precis ion. By co mpa ring the coe ffi c ie nts re port ed , it was found th at those programs us in g 
orthogona l Householde r transform ations or Gra m-Schmidt orthonorm aliza tion we re much more accu­
ra te th an those us ing e liminatio n a lgo rithms. P rogra ms us ing orthogo na l polyno mi als (s uit a bl e onl y 
for po lynomi a l fit s) a lso pro ved to be superior to those us ing e limin ation a lgo rithm s_ O ne program , 
us ing congru enti a l me thods and int eger a rithme ti c, obt a ined exac t so lutions. In a number of progra ms , 
the coeffi cie nts re port ed in one tes t probl e m were sometim es co mple te ly e rroneous, cont aining not even 
one co rrec t s ignificant digit. 

Key words : Co mpute r progra ms; Gram -Schmidt orthogona li za tion; Household e r transformations; 
leas t squares; linear equa tions; orthogona lization; orthogona l polyno mi a ls; regress ion ; 
ro unding error; stepwise regress ion. 

1. Introduction 

Since the time when the electro nic computer began to supplant the desk calculator as the 
chief tool for solving linear least squa res proble ms, numerous leas t squares compute r programs 
have been writte n. Th ese programs have utilized a varie ty of computational algorithm. Because 
le ast squares proble ms are by their ve ry nature frequently ill-conditioned , the nume ri cal accuracy 
achie ved by a least squares progra m s trongly de pe nds upon the c hoice of the al go rithm . Man y 
programs have bee n written which use methods a ppropri ate for desk calc ul ators but in a ppropria te 
for computers_ Ansco mbe IIJ t h% aptly re marked : " T extbooks of sta ti s ti ca l method di s play a won­
derful unanimity in reco mme ndin g computa tional procedures that a re s uited to des k calculators 
but a re pe rilous for co mpute rs. Onl y with some determin ati on can the s tati s ti c ia n brea k himself of 
bad habits and beco me adequ ate ly informed about round-off e rror. " 

The present stud y was undertake n to assess th e num eri cal accuracy of re presentative least 
squares program s from a varie ty of sources. Two tes t proble ms, both fifth degree polynomials, 
have been run on more tha n twe nt y different programs. Included in the s tudy we re programs from 
the BMD Biomedical Computer Progra ms collection , the C-E-I-R Multi -Access Computing Services 
library, the IBM S HARE library , the IBM S ys te m/360 Scie ntific Subroutine package , the Univac 
MATH-PACK and STAT-PACK co llections, and the Project MAC 7094 di s k fil es . A detailed li s t­
ing of the so urces of the progra ms is give n in appendix A, toge ther with a brief description of eac h 
progra m_ 

-I 
I 

Fo r a numbe r of progra ms, th e tes t proble ms were run in double precision as well as in s in gle 
precision_ This, of course, necess itated certain changes in the original program s_ 

The program s included in thi s study used essentially five differe nt algo rithm s: orthogonal 

I Figures in brackets indi ca te the lit e ralllre refe rences a t the e nd of thi s paper. 
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Householder transformations, Gram-Schmidt orthonormalization, orthogonal polynomials, Gauss­
ian or Jordan elimination, and a congruential method with computations in integer arithmetic_ 

Previous studies appraising linear least squares programs and comparing the results of dif­
ferent algorithms have been made by Cameron [9], Freund [20], Bright and Dawkins [7], Zellner and 
Thornber [46], Longley [29] , and Jordan [27]_ The present study differs from the earlier ones mainly 
by including a larger selection of widely used and easily accessible programs. 

The linear least squares proble m may be briefly stated as follows: One has n observations or 
measurements of a "dependent" variable y which are statistically independent with common vari­
ance u 2 whose expected values are given by a linear function of the corresponding values of k 

'''independent'' variables, Xl, X2, .•• , Xk, k s n. In matrix notation we say that the n observations 
have expected values E(Y) =X{3, where Y is an n X 1 vector, X is an n X k matrix, and {3 is a k Xl 

vector of unknown coefficients. Assuming that X is of rank k, the least squares estimates of the 
coefficients are given by /3 = (X' X) - IX'Y. Other quantities of interest an~ Y = xffi, the vector of pre· 

dicted values; 8= Y-9, the vector of residuals; and s2 =~k (Y -9)'(Y-9l, an estimate of 
n­

the variance u 2 • 

In running certain programs , modifications were occasionally made to input and output 
formats. Other changes were made in five of the programs using elimination algorithms because 
the original versions of these programs failed to give solutions to the fifth degree polynomial prob­
lems. In particular, features that may have been intended to prevent execution of computations 
subject to excessive rounding error were sometimes bypassed. Details of these changes, and some 
remarks on the effectiveness of the features which were bypassed, will be given in section 8. 

Four computers were used: the GE 235, the IBM 7094, and the Univac 1107 and 1l08. The 
1108 which was used is located at the National Bureau of Standards, and the 7094 which was chiefly 
used is located at Harry Diamond Laboratories , Washington, D. C The programs run on the 235, 
the 1107 and the Project MAC 7094 utilized consoles at the National Bureau of Standards connected 
to computers at other locations. 

2. The Test Problems 

The two main test problems which were used throughout this investigation are identified as 
Yl and Y2. Both were fifth degree polynomials, with the values of X being the integers 0 , 1,2, . 
20. The "observations," YI and Y2 , were calculated from the following equations : 

YI: y= I+x+x 2 +x 3 +x 4 +x 5 , x=0(1)20, 

Thus the values of Yl were integers having from one to seven digits , and those of Y2 were five­
decimal numbers ranging from 1.00000 to 63.00000. 

If the least squares solutions were computed with no rounding error, one would obtain 

1 1. 
1 0_1 

,B(Yl)= 1 ,B(Y2) = .01 
1 _001 
1 .0001 
1 _00001 

and for both problems the residual standard deviation would be zero. 
For some programs the input required was the 21 values of x and y. Some programs required, 

in addition, the powers X2, x 3 , x4, and X" to be entered as input. Other programs required as input 
the 6 by 6 matrix X'X and the 6 by 1 vector X'y' It should be noted that the elements of X'X are 
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integers havin g from 2 to 14 digits , the eleme nts of X 'Y for Yl a re 8- to 14-di gi t integers, and the 
elements of X'Y for Y2 are 5-dec imal numbers having up to 13 s ignificant di gi ts. The input is li sted 
in table 9. 

The two tes t problems, Yl and Y2 , were chosen because they are so highly ill-conditioned th at 
some programs fa il to obtain correct solutions while other programs succeed in obtaining reaso n­
ably accurate solutions. Polynomial problems were chosen because polynomial fittin g is an im­
portant type of linear least squares problem which occurs frequently in practice. 

The ill-conditioning of the two test problems can be described more explicitly. One measure 
of the condition of a matrix A is the P-condition, defined as 

P(A) = I ~ I 

where 'A is the numerically largest eigenvalue of A and 11- is the numerically smallest eigenvalue of 
A. (See Newman [34, p. 240]). 

F or A =X'X, the 6 X 6 matrix associated with Yl and Y2 , the P-condition is 4.095 X 10 13 • In 
thi s res pec t, it is similar to the Hilbert matrix of order 10, whose P-condition is 1.603 X 10 13 (see 
F etti s and Caslin [17]). The P-condition of the Hilbert matrix of order 11 is 5.231 X 1014 • The re lation 
between the Hilbert matrix and th e matrix X'X whi c h ari ses in a polynomi al fit is discussed in 
Fors ythe [18]. 

Most of the progra ms whi c h were tes ted obtained more acc urate solutions for Y2 tha n for Y1. 
If we let A de note the 7 X 7 matrix 

= [X'X X'Y] 
A Y'X 0 

we find that for Y2 , P (A) = 4.095 X 10 13, whereas for Yl , P(A ) = 6.829 X 10 13 , indicating that the 
syste m involving Yl is more ill·conditioned tha n that involvin g Y2. 

The tes t proble m used by Longley [29] was also highly ill-conditioned. For the 7 X 7 matrix 
X'X of hi s problem , the P-condition is 2.361 X 10!!1. 

3. Summary of the Results 

T ables 1 to 6 present a brief s ummary of the main res ults. A count , Cj , of the numbe r of correct 
si gnificant digits in each computed coe fficie nt was obtained as follows: 

Let {3j (j = 1, 2, . .. ,6) de note the "true" value of the coe fhc ient- that is, the value c9mputed 
with no rounding error. Let ffij de note the value calculated by the ,;omputer. Then 

- loglo I {3j ~/3j I, if l{3j - ,Bj I oF 0 and {3j oF 0 

Cj = - log,o l{3j- /3jl, if l{3j- ,Bjl oF 0 and {3j= O 

D, the a pproximate number of decimal digits with which the machine computes , if {3j - /3j = O. 

The above approach to counting the number of correct digits in a computed value has been 
used by Jord a n [27J and others. 

T ables 1 to 6, in the columns headed "A verage Number of Correct Digits" report 

From the above de finiti on, a negative count can occur. For example, if {3j = 1.0, a nd /3j = 136.0, 
we get Cj .= - 2.130. This indicates that /3j is wrong by roughly two orders of magnitude. 
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TABLE 1. Summary of programs run in single precision-B digits 

Com· Algo· 
Average number of 

correct digits 
Rank Date of run 

Program puter rithm "f-----,----f--,---+------,---

Yl Y2 Yl Y2 Yl Y2 

ALSQ ... .. .. .... . .. . ....... . . . .. . ..... .. . .. . . .. .. ..... ... . ... . ll08 HT 4.098 5.368 3 5 10-18-67 10-18- 67 
BMD02R ... . .. . . . .. . . .. .. .. .. .. .... .. .... . .. ........ .... .. .... ll08 E - 0.106 1.981 12 14 12-13- 67 11-17-67 
BMD03R .. .. .. ..... . ... . ....... . . .. . .. .. .. ... .. . . . . .... ....... 7094 E 0.742 1.721 8 16 12- 30- 66 1- 3-67 
BMD03R .... . ............ .. . ............. .. ..... . . . . .. .. ...... ll08 E - 0.123 2.287 13 12 12-18- 67 12-18-67 
DAM ...... ...... ... ............ .... .... ..... ........ ... ... ... 7094 E 1.389 2.312 7 11 4-12- 67 4- 12-67 
DAM ..................... . ... . . .... ....... ... .. ... ...... .. ..... ll08 E -0.264 2.622 16 9 3- 5-68 3- 5-68 
UNFIT (M ill e r) . ....... . ...... .. ...... . . ... ...... ... . .. . .... 7094 ? -2.756 -0.301 21 21 5- 17- 68 8-15-68 
LSTSQ .... . ... .. ...... .. ... ...... .... .... .... ... .. ...... ll08 HT 4.528 5.840 1 3 5- 1- 68 5- 6-68 
MATH·PACK, ORTHLS .... .................. ... . .. ... . . 1108 OP 2.ll8 4.363 6 6 4- 12- 68 4- 12- 68 
MPR3. . ... ...... .... .................... ... ... ... .... ..... 7094 E - 0.140 1.856 14 15 5- 16- 67 5-18-67 
UMNITAB (Invert) ... .. : ... ..... ... . ... ... .. .. .. . . ... .. .. 7094 E -0.607 1.460 17 18 12- 9-66 12- 9-66 
OMNITAB (Invert) .. .... .. . .. . .. . . .. ......... .. . .. ....... ll08 E - 0.907 1.224 19 19 2-29-68 2-29- 68 
OMNITAB (Ortho) ... . . .................................... 7094 GS 3.954 5.968 4 2 12- 5- 66 12- 5-66 
OMNITAB (Ortho) ............ . ... . .. ... . .. . . . . .. . ...... .. . ll08 GS 4.137 5,464 2 4 10-18- 67 10- 18- 67 
ORTHO (no iteration} ............ ...... .. . . ....... . .... .. ll08 GS - 1.976 0.419 20 20 3- 7- 68 3- 7-68 
ORTHOL. ............. ... . . .. . . . . . . . . ... . . . ... . . .. .. ..... .. . . ll08 GS 3.593 6.197 5 1 9- 10- 68 9- 10~68 
POLRG ........ . . . ............. . .. . ..... . .......... . ..... .. ... ll08 E -0.191 2.280 15 13 10- 7-68 10- 7- 68 
SPVMTX ... ...... .......... .. ... ................ . . . .. .. . . .... llO8 E - 0.658 1.527 18 17 11- 14- 67 ll-14-67 
STAT.PACK, GLH ....................... ... ..... .. ..... . . ll08 E 0.066 2.767 lot 

?l 
ll- 7-67 ll- '7- 67 

STAT-PACK, REBSOM ..... .. .. . ... .. ........... ... . . ... ll08 E 0.066 2.767 lot 11- 8- 67 ll- 9-67 
STAT-PACK, RESTEM ...... . . .. .. .. ..... . ... . . .. ....... ll08 E 0.651 2.407 9 10 7- 2- 68 7- 2- 68 
WRAP. ................................ .. ........ . .. . ... .. ..... 7094 E -5.300 -2.871 22 22 6-28- 67 6-28-67 

a E = Elimination method ; GS = Gram·Schmidt orthonormalization; HT = Orthogonal Householder transformations; 
OP = Orthogonal polynomials. 

TABLE 2. Summary of programs run in single precision-9 digits 

Average number of Rank Date of run 
Com· Algo· correct digits 

Program puter rithm a 

Yl Y2 Yl Y2 Yl Y2 

LINFIT*** .......................... . ..................... ... 235 E 0.905 2.894 5 6 12- 1- 67 12- 1-67 
LSCF--*** ....... .... .......... . .... . ...... .. . .. ..... ....... 235 E 0.308 2.483 7 7 12-28- 66 12-28-66 
LSFITW**~ ................................................. 235 GS 4.102 6.354 1 1 1- 25- 67 1- 25- 67 
POLFIT .. . ... .. ............. .. . .... . ... . . ... . .. . . ... . ... . . ... 235 OP 3.349 5.922 2 2 2- 19- 68 2-19-68 
SIMEX -* *~ .. ....... ....... .. ...... ....... ... . .. ...... .. .... >235 E 1.402 3.213 3 3 12-30-66 1- 5- 67 
STAT20**~ ........ . ........ .. .. . . .... ..... .. . .. . ... .. .. .. .. . 235 E 0.612 2.920 6 5 11-30- 67 11-30::'67 
STAT21**~ .. ...... ... . ......................... .. ........... 235 E 1.169 3.183 4 4 1- 3-67 1- 3-67 

a E = Elimination method; GS = Gram~Schmidt orthonormalization; OP = Orthogonal polynomials. 

TABLE 3. Summary of programs run in double precision-i6 digits 

Average number of Rank Date of run 
Com· Algo· correct digits 

Program puter rithm a 

Yl Y2 Yl Y2 Yl Y2 

BMD05R ........ .. ... . .. ... .. . ... . . .... . . . .. ... . .. . . ... ...... 7094 E 6.953 6.230 2 2 1- 5- 67 1- 5-67 
DPVMTX ... . . .. ...... ....... .. ..... . . . . ........... . .... . ... ll07 E 7.882 9.959 1 1 1- 23-67 1-23-67 

a E = Elimination method. 
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TABLE 4. Summary of programs run in double precision - i 8 digits 

Average number of Rank Date of run 
Com- Algo- correct digits 

Program puter rithm ' 

Yl Y2 Yl Y2 YI Y2 

ALSQ . ... ......... .. ..... ...... .. ....... 1I08 HT 12.667 15.322 4 4 10- 19- 67 1- 29- 68 
BMD02R ... ... ....... ... .. .. .... .... .... ... .......... .. .... .. 1I08 E 9.645 12.865 7 7 4- 17- 68 4- 17- 68 
BMD05R ....... . . .. ..... ... .......... ..... .... ...... ... .. ... . 1I08 E 9.368 11.791 9 10 9- 10- 68 9- 10- 68 
DPVMTX .... . .. ......... ....... .... .... .. .. ..... ... .... .. .. . 1I08 E 9.744 13.484 6 6 2- 27- 68 2- 27- 68 
LSTSQ ..... .. ...... . .. ... ... .. .. ... ... ............ . 1I08 HT 14.643 16.293 1 1 7- 22-68 7- 22- 68 
MATH-PACK, ORTHLS .... . .. ..... ... . . . ...... .. ...... . 1I08 OP 12.098 14.461 5 5 10- 16- 68 10- 16- 68 
ORTHO ......... . .. ...... . ... . ..... .. . ........ .. .. .. .... .. .... 1I08 GS 13.188 15.514 3 3 1- 29-68 1-29- 68 
ORTHO (no ite ration) ... ....... ..... .. .... ............... 1I08 GS 7.963 10.354 1I 1I 3- 7-68 3- 7- 68 
ORTHOL .. . . .. ...... ... .......... . .. .. .. ... ... .... . .. ... ..... 1I08 GS 13.212 15.604 2 2 9- 25- 68 9- 25- 68 
POLRG .... ... ............ .... ... .......................... .. 1108 E 9.290 11.806 10 9 10- 7- 68 10- 7- 68 
STAT·PACK, RESTEM .... .... .. .. ........ .. ... ...... .. . 1I08 E 9.494 12.019 8 8 7- 1- 68 7- 1- 68 

" E= Elimin ation method' GS = Gram·Schmidt orthonorm alization; HT= Orthogonal Householder transformations; 
OP = Orthogonal polynomials.' 

TABLE 5. Summa.ry of programs run in single precision (8 digits) with inner products a.ccumula.ted in double precision 
(/8 digits) 

Average number of Rank Date of run 
Com- Algo- correct digits 

Program pule r rithm ' 

YI Y2 Yl Y2 Yl Y2 

ALSQ .... .. .. .. . . ..... . . .. . . .. . . .... ... ... . .. . . .. . . .. . . .. . .. 1108 HT 3.506 6.530 3 1 10- 18- 68 10- 18- 68 
LSTSQ .. ... .. .. ... ... . ....... . . . . . . . . . . . . . . . . . . ., . . . . . . . 1108 HT 8.000 6.279 1 3 4- 30- 68 5- 6- 68 
ORTHO .. .. ... .. .. . ..... . .. . . .. . .. . . . . .... ... .. .... .. . .. . . .. 1108 GS 3.904 6.459 2 2 10- 21- 68 10- 21- 68 

a GS = Gram-Schmidt. orthonormalization ; HT = Orthogonal Householder transformations. 

TABLE 6. Sum.ma.ry of program run in multiple precision integer arith.metic 

A verage number Date of run 

Program 
of co rrect digilS 

Co m· Algo-
pute r rithm a 

Yl Y2 Yl Y2 

SOLVER .......... ..... .. .. .. .. .. . ... .. .... .. . ... ... . .. . . . 1108 C Rational form 00 00 7- 16- 68 7- 16- 68 
Floated form 18.000 17.347 

a C = Congruential method. 

For two programs reported in table 1, BMD03R run on the 7094 and DAM run on the 7094, 
the co unt for se veral coefficients was made in a different manner. The BMD03R program printed 
the coeffi cien ts in a fixed-decimal format , with five decimals. The DAM program used a floating­
point format with only three decimals printed. A coefficient printed as 0.00010, when the true 
coeffic ie nt was 0.0001, was given a count of 2 , and 0.100£01 , when the true coefficient was 1. , 
was give n a count of 3. In such cases the assigned count may have been too small, since th e coe ffi­
c ients may have been calculated accurately to more digits than were printed. In running th ese 
two program s on the n08, the output format was changed so that eight significant di gits were 
printed. 
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Each of the tables (1 through 6) summarizes a set of results for a particular machine preci­
sion-S, 9, 16, IS, etc. digits. Within each table the various programs are ranked for each of the 
two test problems, with rank 1 denoting the best performance according to the count C. 

Table 1 includes single precision (S-d igit) programs run on two different computers, the 7094 
and the 1l0S. It was felt that combining the results from two computers was justified in view of the 
similar performance of the four programs which were run on both computers. These four programs 
were BMD03R, DAM, OMNITAB (using INVERT), and OMNITAB (using ORTHO). The average 
number of correct digits for the two test problems from the 1l0S agrees with the corresponding 
average from the 7094 to within 0.9 digits except in the case ofYl run on DAM, where the difference 
is 1.653. This larger difference may possibly be attributable to modifications in the program. Further­
more, other test problems have been run on OMNIT AB (using ORTHO) on both computers, and 
again the results were quite similar. 

The symbols in the Algorithm column of the tables denote the following: 
C Congruential method, integer arithmetic 
E Elimination method 

GS Gram-Schmidt orthonormalization 
HT Orthogonal Householder transformations 
OP Orthogonal polynomials. 

From time to time at a given computer installation changes are made in hardware and software 
with the result that a particular job run on two different days may not produce identical numerical 
output. For this reason the date of the computer runs is included in the tables. 

Details (individual coefficients and counts) supporting tables 1 through 6 are given in ap­
pendix B. 

4. Programs Using Orthogonal Householder Transformations 

LSTSQ is a program written by Peter A. Businger using orthogonal Householder transforma­
tions. This algorithm is described by Golub [21] and Businger and Golub [S]. The program applies 
a sequence of orthogonal transformations to the n by k least squares matrix X to obtain a decomposi­
tion X = QR , where R is upper triangular and Q' Q = J... A pivoting strategy is used so that at each 
step the column with the largest sum of squares is reduced next. Once an initial solution is obtained, 
the program iterates to obtain a (possibly) improved solution . 

Of all the programs using floating-point arithmetic included in this study, LSTSQ appears to 
have given the best performance. In table 4, which reports the performance of eleven double preci­
sion programs, we see that LSTSQ ranked first for both Yl and Y2. In table 1, which reports the 
performance of 22 single precision programs, we see that LSTSQ obtained rank 1 for Yl and rank 
3 for Y2. Ranks 1 and 2 for the Y2 problem were obtained by ORTHOL and OMNIT AB (using 
ORTHO), two programs using Gram-Schmidt orthonormalization which will be discussed more 
fully in the next section. Table 5 reports the performance of three programs which used single preci­
s ion arithmetic except for the accumulation of inner products, where double precision arithmetic 
was used. Here we see that LSTSQ ranked first for Yl (having a perfect score of 8.000) and ranked 
third for Y2. In the two instances just mentioned where LSTSQ ranked third for Y2, we see that 
the difference separating it from the top-ranking program is small, being 0.357 in table 1 and 0.251 
in table 5. 

Golub and Businger reco mmend that all inner products be accumulated in double precision. 
By comparing tables 5 and 1 we see that when LSTSQ included this feature, the average counts 
increased from 4.52S to 8.000 for Yl and from 5.840 to 6.279 for Y2. With all operations performed 
in double precision (see table 4), the counts increased to 14.643 and 16.293 , respectively. 

The other program using House holder transformations was ALSQ, written by G. W. Stewart, 
III. This program contains no pivoting and no iteration . In tables 1, 4, and 5 we see that ALSQ 
performed not quite as well as LSTSQ which included these features, except in one instance. In 
this one instance, Y2 in table 5, we note that its performance was slightly better than that of LSTSQ. 

64 



By exam inin g tables 1 and 5, one may see the e ffect of acc umulatin g inne r products in double 
precision versus accumulating them in single prec ision. As one would expec t , ALSQ did be tt e r 
in computing th e coe ffi cients of Y2 when the double precision accumulation was in cluded. F or 
YI, surpri s in gly, we see that ALSQ lost accuracy with this feature include d. A look at the de tail s 
of the program re vealed how this phenomenon occurred. After the matrix X has been decomposed 
to obtain QR (as described earlier) , the coefficients are computed by back-substitution. Th e fir s t 
coe ffici e nt to be computed is f36 (the coefficient for the fifth-degree term) , and this is obtained 
from on e arithm eti c operation , a division. Correctly calculated to ten digits , this division is 
21011.77901 
21011. 77901 

1. In the single precision version , the coefficient was calculated as 

f3' 21011. 714 1 0000000 8"fi d" ) 1; = 21011.713 = . (to slgnl c ant Iglls (1) 

wh ereas in the versIOn with inner produ cts acc umulated in double precision the calcu lation was 

f3' 21011. 761 1 0000004 8 " fi d " ) 1; = 2101].7053 = . (to sl gnl cant Iglt S . (2) 

W e not e that in (1) , both the num e rator and de nominator in qu es tiun are farth er from the ir true 
va lues than in (2) , but they are c lose r to eac h oth er , so th a t PI; in (1 ) happe ns to be close r to the 
true valu e of PI;. Subseque ntl y, ~Ii e nte rs into the c alculation s of th e five oth e r coe ffi c ie nt s with 
the res ult that a ll the coe ffi c ie nt s for YI from th e s ingl e precis ion ve rs ion are s li ghtl y more ac ­
curate than those from the vers ion us in g doub le prec is ion inn e r produ cts . 

5. Programs Using Gram-Schmidt Orthonormalization 

ORTHO is a program writte n by Philip J. Walsh us in g a Gram-S c hmidt orthonormalization 
process . This a lgorithm is desc ribed by Davis and Rabinowitz [1 31, [14j , Davis [I2J, and Wals h 
[42]. ORTHO exis ts as a FORTRAN program , an ALGOL procedure, a BASIC program, and as a 
routine of the OMNITAB program (see Hilsenrath, et aI. , [23]), where it is called by the commands 
FIT and POLYFIT. 

Starting with the n X k matrix X, the Gram-Schmidt process of ORTHO obtain s <p=XT /- I 
and P = T' - l<p/Y, where T' - I is upper triangular and <p' <p = h. This a lgorithm include s a feature of 
reorthonorma li zing th e vec tors of <p , proceeding from a firs t approximation <pj to a (u sually) be tte r 
approximation <pj . From table 1 it is cle ar th a t thi s reorthonorma li zin g is vital to the a lgorithm , for 
ORTHO's good performan ce in handlin g Yl and Y2 de te riorated wh en thi s ite ration was omitted. 
For Yl , the count of correct di gits dropped from 4 .137 to - 1.976, and for Y2 th e drop was from 05 .464 
to 0.419. In table 4 , al so, we see that in doubl e prec is ion th e omi ssion of the ite ra tion result ed in 
a loss of about fiv e correct digits for both proble ms. 

The LSFlTW *** program , writte n in BASIC , li s ted in table 2 al so uses th e ORTHO a lgorithm. 
The compute r used for runnin g th e programs of table 2 works with about on e more decimal digit 
th an the compute rs covere d in table 1, so one wou ld expect more acc uracy from LSFITW*** 
than from OMNITAB (ORTHO). We find slight improvement for Y2, but no improvement for Y1. 
Of the seve n programs reported in table 2, LSFlTW*** ranked 1 on both problems. Note that 
th ere are no Householder transformation programs included in table 2. 

Th e ORTHO program was also run in a version using single precision except for the accumu­
lation of inner products, where double precision was used. In table 05 we see that there were three 
program s in this category, and for both problems ORTHO ranked second. Its performan ce on 
Y2 improved by about one digit compared to the performance of the ORTHO version us in g s tri c tly 
s ingle precision. On the Yl problem, however, there was a slight loss in accuracy. Actually. three 
c oeffi cie nts ga ined acc urac y and three lost accuracy, with a net loss in the average count. (A 
s imilar loss whieh occ urred with ALSQ was discussed in the previou s seetion.) In ORTHO, the 

65 



final calculation to obtain the coefficients i3 is the matrix multiplication i3 = (T') - lex, where (T')-I 
is an upper triangular matrix such that (T') - IT- I = (X 'X) - I , and ex=T-IX'Y. Nearly all of the 
nonzero elements of (T') - I and ex were more accurately computed when inner products were 
accumulated in double precision than whe n this feature was omitted. In the three coefficients of 
Yl which lost accuracy , an examination of the details showed that in the individual multiplica­
tions involved in the matrix multipli cation , the version using double precision for inner products 
was always more accurate than the s tri ctly single precision version . But in the final addition of 
the various products , where th e te rm s have alte rnating signs , there was heavy cancellation and the 
errors combined in such a way that the ~/s from the single precision version happened to be closer 
to th e true values of the coeffi cients than those computed with double precision accumulation of 
inne r products. 

ORTHOL is a program using a modification of the Davis-Rabinowitz algorithm written by 
James W. Longley and Roger A. Blau [30]. It differs from Walsh's ORTHO in two respects: 
(1) the iteration procedure includes the dependent variable as well as the independent variables , 
and (2) before any other operations are applied to the matrix X, from each element of each vector 
of X. the truncated mean of that vector is subtracted . (The "truncated mean" denotes the largest 
integer less than or equal to the mean if the mean is nonnegative , and the smallest integer greater 
than or equal to the mean if the mean is negative.) ORTHOL obtained the top rank for Y2 in single 
precision , but ranked fifth for Yl (table 1). In double precision (table 4) , it ranked second on both 
problems. 

6. Programs Using Orthogonal Polynomials 

Since the two test problems are both polynomial fits , we were able to test programs in which 
the algorithm used orthogonal polynomials. This method, described by Forsythe [18] , is attractive 
because it generally requires many fewer ope rations than other methods. 

Two such programs were included in this study. One was the UNIVAC ll08 MATH-PACK 
routine, ORTHLS (see Programmers Reference [40]). The other was POLFIT, an anonymous 
program written in BASIC. 

In tables 1, 2 , and 4 we see that the performance of the orthogonal polynomial programs is 
not as good as that of the Householder transformation and the Gram-Schmidt programs (with itera­
tion) , but the performance is better than that of any of the programs using elimination algorithms. 
This finding is in agreement with the results of Bright and Dawkins [7] who ran a number of poly­
nomial test problems via two methods: matrix inversion using a Gauss-Jordan reduction, and 
orthogonal polynomials. In all cases they found the orthogonal polynomial method superior. 

7. A Multiple Precision Integer Arithmetic Program Using Congruential Methods 

Morris Newman , in hi s paper " Solving Equations Exactly" [35] described a congruential 
method for finding the exact solution of a system of linear equations Ax = b where the elements of ' 
A and b are all integers. His FORTRAN program SOLVER will solve systems in which A is a square 
matrix at most 100 by 100 and the elements of A and b are numerically less than 1020. This method 
is not at all sensitive to the condition of A , but it can be time-consuming for large systems. 2 The 

solution is printed in two versions: (1) x = ( de! A) z , where z is a vector of integers and the deter­

minant de t A is an integer, and (2) x in float ed double-precision format , accurate to about 17 digits 
on the ll08 

The two test proble ms , Yl and Y2, were run on this program , as indicated in table 6. The 
input required was the matri ces X'X and X'Y. Since the elements of X 'Y for Y2 are not integers , 
it was necessary to multiply these numbers by 100,000 before obtaining the solution. 

2 The funnin g lime 011 the Uni vac ] 108 for the so lution of YI and }' 2 was 11 seconds. including 5 seconds for compilation of the program . The s ix problems de­
scribed in the ialler pari of thi s sec tion. a ll ha vin g: 6 X 6 s),s le ms. required 14 seconds . including 4 st:conds fo r compilation . To solve a 20 x 20 s ystem, the wors t pos­
s ible case requires about 30 seconds. and an "a ve rage" case takes less time . For a 40 x 40 sys te m. an ave rage case requires about one minute . and the worst poss ible 
case requires about six minutes. A " bad" 100 X 100 case might require 40 minutes or more runn ing lime. 
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Havin g a program which produces exact solution s, we can de te rmi ne what will happe n to the 
solution when we rou nd the input , the elements ofX'X a nd X'y' These eleme nt for Yl are int ege r 
having no morc than 14 digits. Six addi tional p roblems were run in which the in put wa ucces· 
s ively round ed to 13, 12 , 11 , 10, 9, and 8 sign ificant di gits. The effe ct of thi s rounding was to cha nge 
the solution dra ma tically. In table 7, which gives the solutions to these six proble ms (rounded to 
10 decim a ls), we see that " small" changes to the ele ments of X'X and X'Y produce " large" c ha nges 
to th e soluti on , /3 . 

At firs t glance, the fact that the coefficients calculated for the problem having input rounded 
to 13 signifi ca nt digi ts agree with the coeffi cients obtained from unrounded input to only 4 , 5 , 6, 
or 8 digits seems quite surprising. But with a few simple calc ulations we can see why the agreement 
is no bette r than it is. First , r eferrin g to table 9, we note that there is only one l4·digit number in 
X'X, and since thi s ends with a zero , rounding to 13 signifi cant di gits leaves X 'X unaltered. In 
X' Y only the last element has 14 digits. Here, 25,537,373 ,767,266 was rounded to 25 ,537,373,767,270. 
Le t B = (bij) , i , j= 1, . . . , 6 , denote the inverse of X 'X and le t (qj)=X'Y , j= 1, ... ,6. Consider 
/31 , th e firs t coe ffi cie nt. We have 

~ 5 
/31 = bllq l + bl2 q2 + bl~q:l + bl~q.1 + b1c,q" + bu;qt; = L bljqj + b1 t;qfi. 

j= 1 

Th e only quantity which is affected by changing from unrounded data to rounded data with 13 
signifi cant digits is q6. Now 

blli =- 28 ,046 ,71 5,376,452 ,025,326,796,800/( Det X 'X), where 

Det X 'X = 1,677,193 ,579,511,831,114,542,448 ,640,000. S ince qt; = 25,537,373,767 ,266 we have 

bl(iqt; = - 716 ,239,453,512,581 ,907 ,404 ,696,441 ,196,4 73,548,800/(Det X 'X). 

Also , 

5 

L bljqj = 716,239,455,189,775 ,486 ,916 ,527 ,555,738,922 ,188,800/(Det X 'X). 
j =1 

In combini ng the last two numbe rs, one positive a nd the other negative, we see that the first 
e ight digits of the two numerators are identical, so that the numerator of /31 has e ight fewer digits 

5 

than has L bljqj or blliq fi . 

j =1 
In solving for j3; from input rounded to 13 significant digi ts, we have q:i = 25 ,537,373,767,270 

so that 

bl(iq~ = - 716,239,453,512,694,094 ,266,202 ,249,297 ,780,736,000/(Det X' X). 

The nu merator here diffet:s from the numerator of blliqfi in the thirteenth signifi ca nt digit , but 

after combining this with i bljqj and losing eigh t s ign ifican t digi ts , we obtai n 
j= 1 

5 

~; = L bljqj+ b16q~ 
j=1 

= 1,677 ,081 ,392,650,325 ,306 ,441 ,141 ,452,800 
1,677 ,193,579,511 ,831 ,114,542 ,448,640,000 

= 0.99993 31104 (to 10 decimals). 

There are s imilar losses of significant di gits in calculatin g the other coeffici e nts. 
A rigorous presentation of the sensitivity of the solution of a system of equations Ax= b with 

respect to variations in A and b is given in Wilkinson [43, p. 91] and Wilkinson [44 , p. 189]. 
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TABLE 7. Exact solutions to approximate problems 
The column A(N) gives a count of the number of digit s in the so lution of (X'X){3 = X' Y for input rounded to N digits which are in agreement with "the solution for un­
rounded input. The ulHounded input (e lement s of X'X and X' )') cons is ted IHl intege rs having no more than 14 digit s. 

Solution for unrounded Solution for input A(l3) Solution for input A(l2) 
input rounded to 13 sig. digits rou nded to 12 sig. digits 

1. 0.99993 31104 4.175 0.99672 54481 2.485 
1. 1. 000 15 06443 3.822 1.00718 28792 2.144 
1. 0.99994 21662 4.238 0.99727 93936 2.565 
1. 1.00000 79679 5.099 1.00037 12813 3.430 
1. 0.99999 95470 6.344 0.99997 90427 4.679 
1. 1. 00000 00091 8.043 1.0000004168 6.380 

Avg. = 5.287 Avg. = 3.614 

Solution for input A(ll) Solution for input A(lO) 
rounded to 11 sig. digits rounded to 10 sig. digits 

1.06051 32874 1.218 0.91988 69708 1.096 
0.86927 95602 0.884 1.19460 48731 0.711 
1.04911 27057 1.309 0.92297 46106 1.113 
0.99333 63623 2.176 1.01080 85953 1.966 
1. 0003 7 44589 3.427 0.99937 78148 3.206 
0.99999 25798 5.130 1.00001 25555 4.901 

Avg. = 2.357 Avg. = 2.166 

Solution for input A(9) Solution for input A(8) 
rounded to 9 sig. digits rounded to 8 sig. digits 

3.70810 09327 - 0.433 - 24.56199 35653 - 1.408 
- 4.34362 06781 - 0.728 52.60541 27451 - 1.713 

2.92257 14823 - 0.284 - 17 .89853 20445 - 1.276 
0.74656 29295 0.596 3.52648 11096 - 0.403 
1.01394 46989 1.856 0.85941 47174 0.852 
0.99972 81121 3.566 1.00276 62377 2.558 

Avg.=0.762 Avg.=-0.232 
I 

8. Programs Using Elimination Algorithms 

The majority of the programs tested in this investigation used some form of an elimination 
algorithm. Although this was the most popular method, it was the least successful. None of these 
programs performed as well as those using Householder's transformations , Gram·Schmidt ortho­
normalization (with iteration), or orthogonal polynomials. 

Within this class of programs, there were several variations in the method of obtaining the 
least-squares coefficients. In some cases, the matrix X 'X was inverted , after which the inverse 
was postmultiplied by X'Y to obtain t3= (X'X)- IX' y' In one program the matrix 

A = [~'X X'; ] was inverted. Here, the inverse is 

A - I = [ (~'X)- 1 -il Another program inverted the matrix Z'Z 

where the vectors of Z we re obtained from the vectors of X by subtracting the mean of each vector 
from every e lement of that vector. A number of programs obtained th e solution by inverting a matrix 
of correlation coefficients. The fiv e stepwise regression programs made use of matrix partitioning 
in connection with inverting a matrix of correlation coefficients. 

8.1. Stepwise Regression Programs 

The five stepwise regression programs were BMD02R, MPR3 , the STAT-PACK program 
RESTEM, WRAP, and ST AT20***. They all, to a greater or lesse r extent , follow Efroymson's 
algorithm [16]. Tables 1,2 and 4 give the results of these five programs. 
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The BMD02R program is described in BMD Biomedical Computer Programs [15]. The 
UNIV AC n08 STAT-PACK Program RESTEM is described in the Progra mmers Refe re nce 
[41J. The two programs, MPR3 and WRAP, are both from the SHARE lihrary [26J. Th e rorm e r 
was writte n by M. A. Efroymson and the latter was written by M. D. Fimple. Th e program 
STAT20*** is included in the C-E-I-R Multi -Access Computer Service library , and a brief writeup 
on how to use the program is given in C-E-I-R's "Library Programs Document.ation" [10]. 

In running the two test problems on three of the stepwise programs, namely BMD02R, 
RESTEM and ST AT20*** , calculations stopped before the solutions were obtained. In all three 
programs, computations stopped in the Y2 problem after x, x 2 , X4, x 5 arid a constant term had 
entered the regression equation. In the Yl problem, BMD02R and ST AT20*** stopped after 
x4, x5 and a constant te rm had entered, and RESTEM stopped after x5 and ~ constant term had 
ente red. In order to obtain the coefficients for the fifth degree equations , ce rtain features of these 
three programs had to be bypassed. 

In the printout of RESTEM and ST AT20*** obtained from th e original (una ltered) programs, 
th ere were no clues to indicate that there was a rounding error problem. Th e initial runs of the 
BMD02R program , however , printed the messages "ERROR TERMINATION IN SQRT ROU­
TINE" and "SQRT CA LLED AT SEQUENCE NUMBER 01032 OF MAIN PROGRAM." These 
messages were produced by the co mputer sys te m, not by the BMD02R progra m. They indicated 
th e nature or so me of the trouble -that the argument of a ce rtain square rpot function was nega­
tive. The initial BMD02R run s furni shed another clue of computational d1fficulties. The output 
of thi s program in cludes various calc ulated F- values whi ch a re needed for e nt e rin g and re movin g 
variables from the regression. In both YI and Y2, the re were one or more F-values (labe led " F TO 
ENTER") whi ch we re negative . _ 

It was found that the RESTEM and STAT20*** program s had also calculated negative F­
values, and checks involving F-values had to be bypassed in order to obtain the fifth degree solu­
tions. Moreover, in the RESTEM program it was necessary to cha nge th e va lue of " minus infinity" 
from - 1038 to - 1034 before satisfactory results could be obtained for any least squares problem. 

WRAP, the program with the lowes t rankings in table I , co mputed coeffi cie nts whic h were 
exce ption a lly fa r from the true values. These coe ffi cients are li s ted below. 

, 

YJ Y2 

Tru e Ii Computed /3 True ~ Co mputed ~ 

1. 2991622. l. -33.84546 
l. -6065892: 0.1 71.54880 
l. 221882l. .01 - 26.16913 
l. - 296194.5 .001 3.493256 
l. 16462.20 .0001 - 0.1936966 
l. - 322.5731 .00001 .003812985 

Since WRAP performed so poorly on the two test problems , YI and Y2 , some other test 
proble ms were run in order to verify that the program could handle problems which were not so 
badly conditioned. Let UI(k) and U2(k) be defined as follows: 

UI(k): y= 1 + x+ x2 + . .. + x", 

U2(k): y= I+O.1 x+O.01 x 2 + . . . + lO-"x". 

Taking x= 0(1)20, k= 1, 2, 3,4, the y-values were calculated for UI(k) and U2(k). Using these calcu­
lated y's as input , it was found that the coefficients for degrees 1,2, and 3 co mputed by the WRAP 
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program had some accuracy, but those for degree 4 were computed inacc urately. The results for 
degrees 3 and 4 are given below. 

Ul(3) U2(3) 

True ~ Computed ~ True ~ Computed ~ 

1. 1.223297 1. 1.000416 
1. 0.8286224 0.1 0.09971083 
1. 1.022150 .01 .01003707 
1. 0.9992682 .001 .0009987662 

Ul(4) U2(4) 

True ~ Compu ted ~ True ~ Computed ~ 

1. -731.1589 1. 0.8673919 
1. 852.1714 0.1 .2555575 
l. - 193. 1382 .01 - .02548887 
l. 15.94353 .001 .003731290 
l. 0.6330207 .0001 .00003291620 

8.2. Other Programs Using Elimina tion Algorithms 

Two other BMD programs were tested. The BMD03R program, Multiple Regression with 
Case Combinations, inverts a matrix of correlation coefficients. BMD05R, Polynomial Regression, 
inverts the matrix Z'Z where the vectors of Z are formed from the vectors of X by subtracting the 
mean of each vector from every element of that vector. All the crucial operations of BMD05R, 
such as the forming of inner products and matrix inversion , are carried out in double precision. 
The performance of BMD03R and BMD05R is shown in tables 1,3, and 4. 

DAM is a general-purpose computer program for data processing a nd multiple regression 
written by Rudolf R. Rhomberg, Lorette Boissonneault , and Leonard Harris , International Mone­
tary Fund [36]. In running the two test problems 'on DAM on the ll08, computations stopped after 
a fourth degree polynomial was fitted , and the message "INSUFFICIENT NUMBE R OF OBSER­
VATIONS OR DATA ARE ALL ZEROS, PROGRAM CANNOT COMPUTE EQUATION 5" 
was printed. It was found that a computed variance was zero and that thi s condition causes the co m­
putations to stop. By bypassing th e checks on th is computed variance , result s for fifth degree 
fits were obtained. On the 7094, however, the fifth degree result s were reached without any such 
difficulties. DAM's performan ce on the two computers is give n in table l. 

Two lines of table 1 report the results from OMNIT AB on the 7094 and the II 08 where the 
matrix commands INVERT, MMULT, and MTRANS were used. Here the 21 pairs of (x, y) values 
were read into the computer, the powers of x were generated, the matrices X'X and X'Y were 
obtained ~ia MTRANS a nd MMULT, the inverse of XX was obtained vi a INVERT, and ~ was 
the n obtain ed via MMULT. The solutions were far less accurate than those obtained from OMNI­
TAB by using the co mmand POLYFIT which call s on the ORTHO routine . 

The program POLRG is the polynomial regression program of the IBM System/360 Scientific 
Subroutine Package [24], [25]. This program calls four subroutines, GDAT A, ORDER, MINV, 
and MULTR, in the course of obtaining the least squares coefficients and other quanti ties of interest. 
These subroutines perform the following operations : 

(1) GDATA generates the powers of the independent variable , finds means and standard 
deviations, and sets up a correlation matrix. 
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(2) ORDER chooses a dependent variable and a s ubset of ind e pe ndent variabl es from a large r 
set of variables. 

(3) MIN V in verts the correlation matrix using the "standard Gauss -Jord an meth od." 
(4) MULTR computcs the regression coe ffi c ie nts and related quantities, such as the sum of 

squares attributab le to the regression and the sum of squares of deviations from th e regress ion. 
We see from table 1 that the single precision version of POLRG obtained rathe r low sco res 

o n both tes t proble ms . A do uble precision version of POLRG was also run , and the performan ce 
here as reported in table 4 was comparable to other programs using similar elimination algorithms. 

The user of POLRG specifies m , the highes t degree polynomial to be fitted , and the program 
a utom at ically reports the results of fitting polynomials of successively increasing degrees , starting 
with the first degree . If there is no reduction in the residual sum of squares between two successive 
d egrees of polynomials, the program stops the proble m before completing the analysis for the 
high es t degree specified . In running both test proble ms , Yl and Y2, in single precision th e analysis 
s topped afte r degree four , and in li eu of a fifth degree polynomial fit, th e mess age "NO IMPROVE­
MENT" was printe d. In order to comple te the calculation s fo r th e fifth degree, th e checks on 
" improvement" were hypassed. I n th e double precision vers ion , fifth degree res ults were obtain ed 
without any such altera ti ons. _ 

The Programm e r's Manual fo r the IBM System/360 Scientific Su broutine Package [25] con­
tain s some warn in gs regarding the accuracy of computati ons. Th e reader is informed that th e ac­
curacy of the compu ta tio ns in many of the rou tin es is highly de pe nde nt upon th e number of signifi­
cant digits ava il able for arithmetic opera tion s. It is pointed out that matrix inversion and many of 
th e stati stical subroutines [all into this ca tegory , a nd t hat th e user may, th erefore , wish to use doubl e 
precision vers ions of these routines. (The programs are so construc ted that conve rs ion to double 
precision isan easy matter.) An append ix o[ the manual classifies th e subroutin es of thi s package 
into three ca tegories. These are: (1) sub rout ines havi ng littl e or no effec t on accuracy, (2) s ub­
r outines whose accuracy is dependent on the charac teristi cs o[ th e input data , and (3) subroutin es 
in whi c h definit e s tatements on accuracy can be mad e. Only one of the four s ubroutines called by 
th e POLRG program , namely ORDER, is in the first categor y. Th e oth e r three subroutines, GDATA , 
MINV and MULTR , fall in the s cond category_ In connection with this second category we read 
that " it can not be assumed th at the results are accurate simply because s ubroutine execution is 
completed. " 

A more ex pli cit statement is give n in con nection wi th th e subroutine GDATA. Here the re is 
a comm e nt in the program statin g that if Tn, the highes t degree polynomial to be fitt ed , is equal to 
5 or great er, single precision may not be su ffi c ien t to give sa ti sfac tory res ults. Since the manual 's 
t est probl e m [or POLRG speci fi es m = 4 and has 15 data points , on e might infer that satisfactory 
r esults would be obtained for this probl em. This is not th e case, however. In the solution to this 
problem give n on page 410 of the manual, the interce pt te rm for the polynomial regress ion of degree 
4 is reported to be - 5.26735. An accurate calculation shows that this term is actually - 6.04262 , 
so that the reported te rm had no correct significant digits . The four reported regression coeffi cie nts 
were correctl y co mpu ted to onl y one or two digits . Furthermore, the sum of sq uares of de viations 
from the regression is reported to be 128.85156, whe reas it is actually 17.67310. This error is 
also propagated into the calculation of the mean square , the F value , and the improvement in terms 
of sum of squares. The calculat d values of Y were found to be correct to one , two or three sig­
nifi cant digits , with the res iduals correc t to one digit or less. 

In concludi ng this digress ion concern ing the accuracy of the test problem accompanying a 
parti cul ar program of a parti cular package, we note a remark given in the Progra mmer's Man ual 
und er "Purposes and Object ives of the Package": "While thi s package may provide many of the 
tools necessary to solve the more commonly encountered problems in engineering and scie nce, 
there is no inten t to im ply that th ese subroutines represent the current state of the art in s tati sti cs 
or num eri cal analysis ." 

The programs SPVMTX and DPVMTX appearing in tables 1, 3 , and 4 use single and double 
precision versions , respectively, of the same algorithm . Th ese two program s were adapted by 
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Sally T. Peavy, National Bureau of Standards, from two subroutines in the SHARE library: A. R. 
Sadaka's 7090---Fl 3180INVl Single Precision Matrix Inversion with Selective Pivoting and A. R. 
Sadaka's 7090---Fl 31SlINV2 Double Precision Matrix Invers ion with Selective Pivot. Mrs. Peavy's 
adaptations of these programs included accuracy checks on th e co mputed inverse. A brief descrip­
tion of these accaracy checks is in order. Let A be the input matrix to be inverted and Z the res ult 
of the inversion. Let E = [ - AZ. Let B = (bij) be an n X n matrix , an d le t N(B ) be a norm defin ed 
in any of the following ways: 

N ,(B )= ( ? I bij 12y /2 (the Euclidean or Frobe nius norm) 
I. ) 

N 2(B)= n max Ibijl 
I. ) 

1/ 

Nl(B )= mfIx L Ibijl 
)=, 

In order to guarantee that Z be a good approximation to A- I , it is only necess ary to have 
N(Z) N(E) . . N(Z) N(E) . 
1-N(E) small. This quantity , 1-N(E) ,IS computed for each of the three norms N I , N2, and 

N3 , and provides upper bounds on the error in the elements of the computed inverse. See Newman 

[34, pp. 227- 230] and Taussky [38, pp. 284- 286] for a full er discussion of th e norm s described 
above. 

The matrix which was inverted by SPVMTX and DPVMTX in solving the two tes t problems 
was 

[ X'X X'Y] [ (X'X)- I o 1 whose inverse is 0 -ri] 1 . 

In the single precis ion solution. the three bounds for Yl we re, respectively , - 160, - 940, 
and - 140, and those for Y2 were - 2.2 , - 7.0 and - 2.7. If an accurate inverse had been obtained, 
the error bounds would have been small positive num,bers . That the bounds were negative is a 
clear warning that the computed inverses , including f3 , are not accurate. The double precision 
ll08 solution obtained the bounds 0.00048,0.0075 , and 0.00046 for Yl, and 0.000000039, 0.00000064, 
and 0.000000087 for Y2 . In both problems these bounds are quite conservative. In the solution 
of Yl, the largest error in the elements of (X'X) - I is 5.5 X 10- 13 , and the largest error in the ffils is 
5.5 X 10- 7• }n the solution of Y2, the largest error in the elements of (X'X) - I is again 5.5 X 10 - 13 , 

and in the f3/s is 3.3 X 10- 13 • 

The ll08 version of OMNIT AB now uses the SPVMTX routine for matrix inversion and prints 
out the s mallest error bound. OMNIT AB reported the s malles t error bound for the inverse of 
X'X to be - 6, a negative number. This was in agreement with the res ults from inverting X'X 
via the FORTRAN program SPVMTX where the three error bounds were give n as - 1.7 , - 6.0 
and - 2.1. 

Each of the two STAT -PACK programs, GLH, Gefleral Linear Hypotheses, and REBSOM, 
Back Solution Multiple Regress ion , has its individual features, but for the two test proble ms the 
solutions were carried out in the same mann er , so that the coeffi cients obtained from the two pro­
grams were identical, as is indicated in table 1. Both programs invert X'X by callin g a matrix 
inversion subroutine called JIM which uses a Gauss-Jordan elimination sc he me with maximal 
column pivoting and row scaling. The GLH program has an option whe reby th e use r can enter 
restraints in the case X'X is not of full rank. The REBSOM program has the feature that the user 
can enter an F-va~ue to be used as a criterion for removin g variables from the regression after an 
initial solution has been co mputed. 

An error was found in the REBSOM program in th e calculation of the variance of Y. After 
estimating k coefficients (including possibly a cons tant term) from n observations , the formula 

_L(Y;-Yi)2 
used for the variance of Y is var Y - n _ k -1 . The denominator of thi s formula should read 

n - k rather than n- k -1. 
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The BASIC program LINFIT***, available in the C-E-I-R Multi-Access Co mputer Service, 

A [ XIX XIY ] h· ·f · · · in order to obtain {3, inverts the matrix A = Y'X LYT w ose mverse, I It eXists, IS 

(X'X) - I+ {3f3 ' A 

L:ri- Y'Y 

-ffi' 1 

Whe n Y= Y, the matrix A is singular. In the two test problems Y= Y, and th e matrix A, if it were 
form ed in the computer without any rounding error, would be singular. But A , for Yl and Y2, con­
tain s 14-digit numbers, whereas the GE 235 computer works with approximately nine-digit num­
be rs, so that rounding of the elements of A is inevitable , and the vers ion of A contained in the 
computer is not singular. An "inverse" was obtained , and from this [3 was immediately computed. 
Table 2 gives th e res ults. 

A ,hi,-d Pt'Ob,,: ~a[,: U'r :jO ::~'[hi]~,::~a:~L[ITTjfec~o~we had 

1 :2 1 4 12 6 46 64 

I 2 2 5 20 18 64 102 

The last co lumn (row) of A is th e sum of the three precedin g column s (rows), so that A is clearly 
sin gular. Unlik e Yl and Y2, thi s prob lem is such that th e eleme nts of A have fewer than nin e 
di gits. An " in verse" was obta ined by UNFIT*** , howeve r, and was printed as 

a a a - a 

a a a - a 
where a = 3.67091 X 107 . 

a a a - a 

- a - a - a a 

To ob ta in the inverse of A in thi s program, th e matrix co mm a nd MAT Q = INV(A) is used. 
Thi s co mm and inve rts th e matrix A by usin g an elimin ation me thod with row pivotin g (Kurtz [28J). 
Th e method is described in sec ti on 1.2 of S ti efe l [37]. 

LSCF - - *** is another BASIC leas} squ ares program avai lable in the C-E-I-R Multi-Access 
Co mputer Service. He re th e solution , {3 , is obtained by inve rtin g X'X and the n pos t-multiplyin g 
the inve rse by X' Y. Table 2 s hows th at LSCF -- *** ranked below th e other p.rogra ms of thi s ta ble . 
Th e inverse ofX'X is obtained by us in g the matrix co mmand INV, the sa me co mm and as was used 
in U NFIT***. 

Th e SIMEX-*** program ori ginated at the Naval Ordn ance Laboratory. Th e input required 
for this program was X'X and X'Y, since SIMEX-*** solves n equ ati ons in n unknowns. An elimina­
tion algo rithm is used to obta in th e so lution. The input for thi s program was limited to nine signifi­
cant digits. Recallin g th e res ults of table 7 which gave the exact solution for the Yl problem when 
input data was rounded to nine digits, it is not surprising that the average number of correct digits 
for Yl , reported in table 2, is only 1.402. This li es between the "accuracy" achieved by the nine-digit 
a nd te n-digit problems of table 7. 

Th e BASIC program ST AT21 *** obtains (X'X)-I and ~ by applying Jordan elimination to 
X'X and X'Y; the results appear in table 2. 

The UNFIT program included in table 1 is one of eighteen s tati s tical romines described in 
On-line Analysis for Social Scientists by James R. Miller [32]. This library of routines exis ts in the 
Project MAC 7094 di sk files . The two test problems were run on the LINFIT program on a time­
shared computer via a re mote console communicating with Project MAC. A description of Project 
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MAC may be found in Crisman [llJ. Miller states that " these routines may be used wi thout exten· 
sive prior training in mathematics, statistics, or computer operations ," but in view of LI NFIT's 
poor performance' on these two proble ms, it appears that there may be pitfalls in using this program. 
The method used by the UNFIT program is unknown. By conjecture, it has been included in this 
section among programs using elimination algorithms. 

9 . Results from a Problem Having a Nonzero Standard Deviation 

In the two tes t problems, Yl and Y2, treated thus far , the residual standard deviation was 
zero. A third test problem, Yl *, is one where the standard deviation is nonzero. This problem 
was run on fiv e programs in both single and double precision to see whether the fact that a least 
squares fit has a standard deviation of zero might be a factor influencing the accuracy of 

computations. 
The values of Yl * were derived from the values of Yl by adding 2.0 to the Yl value when x 

is even and subtracting 2.0 from the Yl value when x is odd. The input for Yl * is listed in table 9. 
A fifth degree polynomial fit for the Yl * problem has the solution (to 16 decimals) 

2.0459627329192547 
0.1815856777493606 

~(Yl *)= 1.1701440301521066 
0.9870776685960425 
1.0003230582850989 
1.0000000000000000 

with the residual standard deviation equal to 2.3251684. 

TABLE 8. Comparison of results from two problems: one with nonzero standard deviation (Yl *) and one with zero standard 
deviation (Yl) 

All problems were run on the ] 108 computer 

Single Precision (8 Digits) 

Average number of Rank Date of run 
Program Algorithm a correct digits 

Yl* Yl Yl* Yl Yl * YI 

BMD02R .. . .. ...... .. .. .... . .. .... . .. . ... .. ... . . .. . . .. . .. . ....... .. E 0.464 -0. 106 4 4 12-19-67 12-13-67 

LSTSQ .. .. . . .. .. . ...... ... . .. .. .. .. . .... . ... . . .. . .. ... . .. .. .... . .... HT 3.485 4.528 2 1 10-15-68 5- 1- 68 

MATH·PACK, ORTHLS ..... . .. ..... . ................ .. ...... OP 2.053 2.118 3 3 10-15-68 4- 12- 68 

OMNITAB (Ortho) ... . .. .. . .. . . .... ...... . .. . ........ . .... .. ... GS 3.711 4.137 1 2 10-15-68 10-18- 67 

POLRG ........ . .. ... ...... ........ .. .... .. .. .. ....... ... . ......... E -0.074 -0. 191 5 5 10-15-68 10- 7-68 

Double Precision (18 Digits) 

Average number of Rank Date of run 
P rogram Algorithm a correct digits 

Yl * Yl YI * Yl Yl * Yl 

BMD02R . . . .. .. . ..... . ... . .... .. .. ... . ... . . ... .. ....... ... . ... ... . . E 9.657 9.645 4 4 4- 17- 68 4- 17- 68 

LSTSQ . . ... . . .. . . .. ... . ... . . . . . ... ..... . . .. . . . .. .. . . . . . .. .. .... . .. . . HT 13.913 14.643 1 1 10-16-68 7-22- 68 

MATH·PACK, ORTHLS . . ........... . .. . .... . .. . .. .... .. . . ... OP 12.079 12.098 3 3 10-16-68 10-16- 68 

ORTHO ..... . ............... .. .... . .. . .. ... ....... . .. .. ......... . .. GS 13.136 13.188 2 2 3-27-68 1-29- 68 

POLRG . ...... . .... .. . ... . . . ... . ............... .. . . ... .. ........ . .. E 9.270 9.290 5 5 10-17-68 10- 7- 68 

II E= El iminatio n method; GS= Cram-Schmidt ort honormalizalion; HT= Orthogonal Householder transfurmations; op= Orthogonal polynomials. 
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TABLE 9. Input for jijih degree polynomials 

X Yl Y2 YI * 

O. l. 1.00000 3. 
l. 6. 1.11111 4. 
2. 63 . 1.24992 65. 
3. 364. 1.42753 362. 
4. 1365. 1.65984 1367. 
5. 3906. 1.96875 3904. 
6. 9331. 2.38336 9333. 
7. 19608. 2.94117 19606. 
8. 37449. 3.68928 3745 I. 
9. 66430. 4.68559 66428. 

10. lll111. 6.00000 111113. 
II. 177156. 7.71561 177154. 
12. 271453. 9.92992 271455. 
13. 402234. 12.75603 402232. 
14. 579195. 16.32384 579197. 
15. 8136] 6. 20.78125 813614. 
16. 111848I. 26.29536 1ll8483. 
17. 1508598. 33.05367 1508596. 
18. 2000719. 41.26528 200072 I. 
19. 2613660. 51.16209 2613658. 
20. 3368421. 63 .00000 3368423. 

Malri x X'X 

2I. 210. 2870. 44 100. 722666. 12333300. 
210. 2870. 44100. 722666. 12333300. 216455810. 

2870. 44100. 722666. 12333300. 2l6455810. 3877286700. 
44100. 722666. ] 2333300. 216455810. 3877286700. 70540730666. 

722666. ]2333300. 2164558 10. 3877286700. 70540730666. 1299155279940. 
12333300. 2164558 10. 3877286700. 70540730666. 1299155279940. 24 163571680850. 

Malrix X' Y for YI Ivlal rix X' Y for Y2 'vlalr ix X ' )I for)ll * 

13103167. 310.39960 13103169. 
229558956. 5058.55410 229558976. 

4106845446. 87258.40800 4106845866. 
74647573242. 154929] .38666 74647581842. 

1373802809082. ?8043466.66600 1373802985062. 
25537373767266. 514843723.46850 25537377366266 . 

Table 8 summarizes the results, co mparing the accuracy of the coeffi cients for Y1 * with 
the corres ponding accuracy for Y1. W e see that the results for the two problem s are qu ite s imilar, 
in both s ingle and double precis ion. The lar ges t diffe rences occurred with the program LSTSQ 
in single prec is ion, where the average number of correc t digits was 4.528 for Y1, a nd the average 
for Y1 * was 3.485 , a decrease of 1.043. 

On the b as is of thi s com pari so ll it appears that the fact that the standa rd deviati on was zero 
in the test problems did not a ppreciably affect the accuracy of com putations. 

10. Concluding Remarks 

(1) Co mputational procedures appropriate for des k calc ulators may be perilo us for com put e rs. 
(2) Of th e four proced ures using fl oatin g-point arithm eti c which were include d in thi s s tudy, 

orthogona l House holde r transformations a nd Gra m-Schmidt orthonormali zation proved to be th e 
best. Orthogonal polynomials ra nked nex t. Elimin a tion methods were th e leas t s uccessfu l but 
th e most popular. The multiple precision int ege r arithmeti c procedure us in g co ngrue ntia l methods 
was unique in obtaining exact solutions . 

338- 397 0 - 69- 2 
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(3) Some other algorithms apparently of high quality which have been published in the last 
few years were not included in this study. These include: 

(a) Bauer [2], 
(b) Bjiirck and Golub [6] , 
(c) Bjiirck [5J. 

Bauer [2] gives an ALGOL procedure using iterative refinement for finding the least squares 
solution of Xf3 = Y, where X is 11 X k (k ~ /7) of rank k and Y is 11 X p. The procedure is based on 
th e d e composition of X into UDR where U is 11 X k with orthogonal columns , D = (U' U)-I , and 
R is upper triangular. This decomposition yields a triangular system R{3 = U'Y which is solved by 
back substitution. The reduction to R{3 = U' Y is carried out by a Gaussian elimination scheme, 
but with a suitably weighted combination of rows used for elimination instead of a single row. 

Bjorck and Golub [6] and Bjiirck [5] (see also Bjiirck [3], [4]) give two least squares algorithms 
with certain common features. Both take advantage of the fact that X' 0= 0, where 0 is the vector 
of residuals, to obtain the solution f3 in Xf3 = Y from the augmented system of n + k equations: 

Both algorithms include 0 as well as f3 in the iterative refinement procedure. 
The two algorithms are based on (i) orthogonal Householder transformations, and (ii) a modified 

Gram-Schmidt orthogonalization process. 
Both the classical Gram-Schmidt orthogonalization process and the modified Gram-Schmidt 

orthogonalization process, as described by Bjorck [3], decompose the matrix X into QR where Q'Q 
is diagonal and R is upper triangular. In the classical procedure, at the ith stage, the ith column 
vector is made orthogonal to each of the i-I previously orthogonalized column vectors; this is 
done for column indices i = 2, 3 , ... , k. In the modified procedure which Bjiirck uses, at the ith 
stage, the (k - i + 1) column vectors indexed i, i + 1, . . ., k are made orthogonal to the ( i -1) -th 
col~lIn n vector; this is done for column indices i = 2,3, ... , k. Jordan [27] shows why the modified 
procedure is superior to the classical procedure. Bjiirck [3] states that his modified Gram-Schmidt 
procedure is equivalent to Bauer's method using weighted row combinations mentioned above. 
The algorithms for both the orthogonal Householder transformation method and the modified 
Gram-Schmidt method are generalized to handle the case where X is of less than full rank. In this 
case linear constraints are entered. 

The papers of Bjorck [3, 5] and Bjorck and Golub [6] discuss the number of operations and the 
storage requirements of their least squares algorithms. 

(4) Programmers who have been writing least squares programs, especially for statistical 
packages, have often not been taking advantage of the advances in this area made by numerical 
analysts in recent years. 

(5) The importance of accumulating inner products in double precision cannot be overstressed. 
Anum ber of recent papers on least squares computations have emphasized this point. These 
include Businger and Golub [8], Bauer [2], Golub and Wilkinson [22], Bjurck and Golub [6], and 
Bjurck [5]. On many third-generation computers which have double precision built into the hard­
ware, double precision arithmetic is quite efficient. 

(6) Iterative refinement is another valuable feature of recent algorithms. The three algorithms 
described in remark (3) above all include this feature. Four programs included in the present 
study (LSFITW***, LSTSQ , ORTHO, and ORTHOL) made effective use of iterative refinement. 
Golub and Wilkinson [22], who disc uss this topic, also mention that the condition number of X'X 
is approximately the square of the condition number of X, so that it is advantageous to work with 
X rather than XX whenever possible. Moler [33] and Forsythe [19] discuss the details of iterative 
refinement in connection with solving n X n systems of linear equations. 
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(7) The users of least squares programs can take certain precautionary steps to gain an 
awareness of whe ther or not a rounding error problem exists. Various sugges tions were made in 
the pre viou s s tudies of Cameron, Freund , Ze llne r and Thornber, and Longle y. These s uggesti ons 
included the foJlowin g: 

(a) Run tes t problems where the coefficients are known. 
(b) Transform the data (e.g., by subtracting means). 
(c) Do the cal culations several times, scaled differently each time. 
(d) Shuffle the columns of X and run the problem more than once. 
(e) Check whether X'8=0 . 
(f) Use double precision arithmetic. 

(8) Another check on the accuracy of least squares coefficients, suggested by Joseph M. 
Cameron, is the following. After carrying out the usual fit of Y to k independent variables, do a 
second fit, taking t (the predicted values) and refitting to the k original inde pe nde nt variables. 
If there were no rounding error at all , one would obtain exac tly the same coe ffi cie nts from the refit 
as from the original fit , and the standard deviation of the re fit would be zero. The exte nt to whi ch 
the second set of coe fficie nts agrees with the original set can give one some information about the 
severity of roundi ng e rror. 

A number of tes t proble ms were run on the 7094 and the 1108 in order to investigate the rela­
tionships among the coeffi cie nts of the original fit, those of the refit , and those one would obtain 
if there we re no rounding e rror. The test proble ms consi sted of 55 polynomials with various ranges 
of x , variou s degrees from 1 to 8, and various coefficients. All 55 were run in both s ingle and double 
prec is ion on the 7094, and twelve of the m we re run in single and double precis ion on the 1108. 

In these tes t proble ms, the following result was obtained : If the coeffi cie nts from the re fit 
(denoted by b) agreed with th e coe ffi cie nts from the ori ginal fit (~) to an average of more than three 
digits, and if the ele me nts of X'X and X'Y can be re prese nted in th e computer without roundin g, 
th e n th e number of di gits in ih in agree me nt with Dj(j = 1 , . . . , k) was approximate ly the sa me 
as the number of correct digits in f3j. More precisely , whe ne ver the two conditions just stated we re 
me t, it was found (with one exce ption) that the numbe r of digits in f3j in agree me nt with those of 
hj (i) I in double precision was within 1.0 of the nu mber of correc t digits in ~j, and (ji) in single pre­
cision was within 2.0 of th e numbe r of co rrect di gits in ~j, for allj. Th e one exce ption occurred in 
a s ixth degree pol ynomial with x = - 10 (l) 10. In I he double precision run the two sets of coe ffi c ie nts 
agreed to an average of about 12.5 di gits , and the ele me nts of X'X and X'Y had at mOSI 13 sig­
nifi cant di gits; here 1!2. a.greed with D2 to 16 digits but was correct only to about 13 digits. 

(9) Efforts to provide co mparative data on the amount of computer time required by the 
various programs included in this investigation, as well as comparisons of storage require me nts, 
were unsuccessful. The programs which were inc luded in this study originated from many so urces, 
and they exhibited co nsiderable variation with res pect to what quantities were calc ulated as well 
as with res pec t to th e methods of calculation. The program ALSQ, for exa mpl e, a t one e nd of the 
spectrum, calc ulated s imply the coefficients, the res iduals, the predic ted values, and the residual 
sum of squares for the reques ted fifth degree polynomial. The s ingle precision ve rsion of ALSQ 
required eight seconds to process both tes t proble ms on the 1108; the storage requirements were 
709 memory cells [or the code and 323 for the data. The double precision version of ALSQ processed 
both problems in seven seconds, requiring 715 memory cells for the code and 618 f~r the data. 
Nearer the other e nd of the spectrum was the Biomed program BMD05R. The output here con­
sisted of the coefficients and their standard deviations for polynomial fits of degrees 1,2,3,4,5, 
an analysis of variance for degrees 1, 2 , 3, 4 , 5, predicted values and residuals for degree 5, a 
plot of observed and predicted values for degree 5, and means and correlation coefficients o[ the 
input data. This program (computing some operations in double precision) required 20 seconds 
on the 1108 to process the two test problems; the storage requirements were 3,119 me mory ce lls 
for the code and 15,168 for the data. It becomes evident that an inter co mpari so n of running time 
among the different programs is not meaningful. 
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Moreover, in repeated runs of a particular program there is fluctuation from run to run in the 
amount of time required. For example , on the same day three separate jobs were submitted to be 
run on OMNITAB (using the co mmand POL YFIT) on the ll08 , with the followingl res ults : 

(a) Yl alone: 8 seco nd s. 
(b) Y2 alone: 12 seco nd s. 
(c) Yl and Y2 toge the r : 8 seconds. 

The 1108 version of OMNIT AB req uires a bout 50,000 me mory cell s for storage. The run times given 
here include unknown co mpone nts of time for operation of the co mputer system. 

Although one would expec t a double precision version of a parti c ular program to require more 
time than a single precis ion version, there were several ins tan ces on the ll08 where double pre­
c is ion required less time than single precision. 

It was outside the scope of this inves tigation to make a detailed comparison of algorithms with 
respect to efficiency of computation time and storage requireme nts. Similarly, no comparative 
examination of the outputs provid ed by the programs was made. Rather, this study focused atten­
tion on the performance of existing programs. 

(10) In any mathematical calculation carri ed out on a computer, it is desirable to know whether 
an accurate solution has been obtained or whether the result of a calculation is contaminated by 
rounding error to such an exte nt that it is worthless. This goal has been achieved in some areas. 
Martin , P e ters, and Wilkinson [31], in their paper giving an algorithm for solving Ax = b, where 
A is an n X 11 positive de finite matrix and b is an n X p matrix , state that their procedure "either 
produces the correctly rounded solution s of the equation Ax = b or indicates that A is too ill-condi­
tioned for this to be achieved without working to higher precision (or is possibly singular)." Sim­
ilarly , Wi lkinson 's program [45] for th e solution of an ill-condition ed sys te m of equations Ax= b, 
where A is n X n , "gi ves either a solution of the system which is correct to working accuracy 
or alternatively indicates that the syste m is too ill-conditioned to be solved without working to higher 
precision and may e ven be sin gular. " 

It appears that the goal set out above has now been achieved in the llnear least squares pro­
gram of Bji;rck and Golub [6]. The authors state that their procedure may be used to compute 
accurate solutions and residuals to linear leas t squares problems , but that the procedure will fail 
when X modified by rounding errors has less than full rank, and that it will also fail if X is so ill­
conditioned that there is no perceptible improve ment in the iterative refinement. The user is easily 
informed of these situations. 

I would like to express my appreciation to Joseph M. Cameron who s ugges ted thi s inves tiga­
tion and made many valuable contributions , to Joan R. Rose nblatt for helpful disc ussions , and to 
Joseph Hilse nrath , Russell A. Kirsch, and Thomas Hoover for use of their time-shared computer 
fa cilities to run several problems. Thanks are due to Gene H. Golub, Stanford University, for his 
constructive remarks . The assistance of J ames Doyle, Univac Division, Sperry Rand Corporation, 
in debugging one program is also appreciated. 

11. Appendix A. Sources of the Programs, With Brief Descriptions 

ALSQ. A FORTRAN IV subroutine to solve the llnear leas t squares proble m, written by G. W. 
Stewart III , Union Carbide Corp., Oak Ridge, T ennessee (present address: The University of Texas , 
Austin, Texas). Thi s program uses a modification of the Businger-Go lub algorithm [8]. 
BMD02R, Stepwise Regression. One of the Biomedi cal Compute r Programs , written in FOR­
TRAN [15]. 
BMD03R, Multiple Regression with Case Combinations. One of the Biomedical Computer 
Programs , written in FORTRAN [15]. 
BMD05R, Polynomial Regression. One of the Biomedi cal Computer Programs, written in FOR­
TRAN [15]. 
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DAM. A general purpose computer program for data processin g and multiple regress ion, written 
in FORTRAN by Rudolf R. Rhomberg , Lore tte Boissonneault, and Leona rd Ha rri s, Inte rnational 
Mone tary Fund [36]. 
DPVMTX. A double precision FORTRAN IV program for inverting a matrix or so lvin g a e t of 
linear equations. To a program from the SHARE library (7090-F1 31811NV2 Doub le Precis ion 
Matrix Inve rs ion with Selective Pivot , written by A. R. Sadaka [26]) , Sally T. Peavy, Nation a l 
Bureau of Standards, incorporated accuracy checks. 

LINFIT. A program which fits a linear func tion to collected data via least squares. Optional 
constraints may be applied to the fitting coefficients to make them nonnegative, add to a cons tant , 
etc. One of eighteen statistical routine s written by James R. Miller [32] . This library of wuti nes 
exists in the Project MAC 7094 in th e disk file s of user number T169 2750. 
LINFIT***. A program written in BASIC for linear leas t sq uares curve fitting and com puti ng 
corre lati ons. Origin : Dartmouth College, Hanover , N .H. Available in the C-£.I·R Multi·Access 
Computer Services library [10]. 
LSCF - - ***. A least squares polynomial c urve fittin g subrouti ne written in BASIC. Origin: Dart · 
mouth College, Ha nover, N.H. Available in th e C·E·I·R Multi-Access Computer Services library 

[10]. 
LSFITW***. A least sq uares curve fitting program writte n in BASIC. Adapte d by Jo hn R S hu­
make r, Na tional Bureau of S tandards, from Philip J. Wal sh' s ORTHO a lgorithm [42]. Availab le 
in the C-E·I·R Multi·Access Co mputer Servi ces library [10]. 
LSTSQ. A FORTRAN IV s ubroutin e whi ch so lves for X the ove rdetermin ed sys te m AX = B of 
m linear equation s in n unknown s for p right-ha nd sides. Writte n by P ete r Busin ger, Co mputati on 
Center, University of Texas (p resent add ress: Be ll T e le phon e Laboratori es, Murray Hill , N.J.), 
us in g the Bus inger-Golub algorithm [8] . 
MATH-PACK, ORTHLS, Orthogonal Polynomial Leas t·Squares C urve Fitting. One of the 
Univac 1108 MATH·PACK programs, writte n in FORTRAN V [40]. 
MPR3, Stepwise Multip le Regress ion with Variable Tran sformation s. A FORTRAN II program 
writte n by M. A. Efroymson , Esso Researc h and Engineering Co., Madi so n, N.J., using the Efroym· 
son a lgori thm [16]. Ava ilable in the SHARE library: 7090-G2 3145MPR3 [26J. 
OMNITAB, a general·purpose co mpute r program for s tati s ti cal and numerica l analysis . De vel· 
oped at th e National Bureau of Standards by Jose ph Hilse nrath e t al. [23]. No w availab le in an 
A. S . A. FORTRAN vers ion, OMNITAB allows the user to communicate with a computer in an 
e ffi cient mann er by means of simpl e English se nte nces. 
ORTHO. A program written by Philip J . Walsh, National Bureau of Standards (p resent address: 
University Computin g Co., East Brunswick, N .J .), which uses a Gram-Schmidt o rth onormaliza­

tion process for least squ ares curve fitting. ORTHO exists as an ALGOL procedure [42] , a FOR­
TRAN program, a BASIC program (see LSFITW *** above) , and as a routine of OMNITAB [23], 
where it is called by the co mm ands FIT and POLYFIT. 
ORTHOL. A modification of the Davis-Rabinowitz orthonormalizat ion algo rithm [12, 13, 14], 
written in FORTRAN II by J ames W. Longley, Bureau of Labor Statisti cs, Washington, D.C., 
and Roge r A. Blau , Bureau of Labor Statis ti cs and Carn egie·Mellon Uni ve rsity , Pittsburgh, Pa. 
[30]. 
POLFIT. An anonymous program written in BASIC for least squares polynomial curve fitting 
using orthogonal polynomials. 
POLRG, Polynomial Regress ion. One of the program s of the IBM Systemj360 Scientific Subroutine 
Package writte n in FORTRAN IV [24, 25]. 
SIMEX-***. A program writte n in BASIC for solving n simultaneous e quation s in n unknown s. 
Origin: Naval Ordnance Laboratory , Silver Spring, Md . Available in the C-E-I·R Multi-Access 
Computer Services library [10]. 
SOLVER. A FORTRAN program written by Morris Newman, National Bureau of Standards, for 
obtaining the exac t solution of the system AX = B, or the inverse of a matrix A, by co ngruential 
methods [35]. The elements of A and B must be integers. 
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SPVMTX. A single precision FORTRAN IV program for inverting a matrix or solving a set of 
linear equations. To a program from the SHARE library (709G-Fl 3180INV1 Single Precision 
Matrix Inversion with Selective Pivoting, written by A. R. Sadaka [26]), Sally T. Peavy, National 
Bureau of Standards, incorporated accuracy checks. 
STAT-PACK, GLH, General Linear Hypotheses. One of the Univac 1108 STAT·PACK programs, 
written in FORTRAN V [41]. 
STAT-PACK, REBSOM, Back Solution Multiple Regress ion. One of the Univac n08 STAT· 
PACK programs, written in FORTRAN V [41]. 
STAT-PACK, RESTEM, Stepwise Multiple Regression. One of the Univac 1108 STAT·PACK 
programs, written in FORTRAN V [41]. 
STAT20***. A program written in BASIC for stepwise multiple linear regression. Written by 
Thomas E. Kurtz , Dartmouth College, Hanover , N.H. Available in the C·E·I·R Multi-Access Com· 
puter Services library [10]. 
STAT21 ***. A program written in BASIC for multiple linear regression with detailed output. 
Written by Gerald Childs, Dartmouth College, Hanover, N.H. Available in the C·E·I·R Multi·Access 
Computer Services library [10]. 
WRAP, Weighted Regression Analysis Program. A FORTRAN II program written by M. D. 
Fimple, Sandia Corp., Albuquerque, New Mexico. Available in the SHARE library: 7090- G2 3231 
WRAP [26]. 
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APPENDIX B 

DETAILS FOR TABLE 1 -- SINGLE PRECISI ON (8 DIGITS) 

ALSQ 1108 EXAM PLE 1 
BETA- HAT (Yl ) COUNT BETA-HAT ( Y2 ) COUNT 
1 . 0228963 1.640 1.0000002 6.699 

.99553592 2.350 10000037 5 .432 

.99941321 3 .232 .0099998263 4 760 
1 .0001108 3 .955 . 0010000220 4 . 658 

.99999613 5 .412 .000099998902 4 959 
1 .0000000 8 000 .000010000020 5 .699 

AVERAGE 4 098 AVERAGE 5 .368 

BMD02R 1108 EXAM"LE 2 
BETA-HAT (Yl ) COUNT BETA- HAT (Y2) CO IJNT 
- 17. 13281 - 1 .258 .99954 3 . 337 

39. 34436 -1 . 584 . 10098775 2 C~5 
- 13 . 26675 - 1 . 154 . 0096306379 1 . 433 

2 92344 -.284 .001049950 4 . 301 
.89241 .968 .000097199970 1 . 553 

1 .00212 2 . 674 . 000010055379 2 257 

AVERAGE 106 AVERAGE .981 

BMD03R 7094 EXAMPLE 3 
BETA- HAT (Yl) COUNT BETA- HAT (Y2 ) COUNT 
394 .23438 - 1 . 898 1 .04353 1 . 361 
- 16 .00000 - 1 .230 . 10083 2 . 081 

28 .00000 - 1 . 431 . 0 10 13 1 . 886 
- 1 .00000 -. 301 . 00101 2.000 

1 .00000 6 .000 .000 10 2 . 000 
1 .00049 3 .310 . 00001 1 . 000 

AVERAGE .742 AVERAGE . 721 

BM D03R 1108 EXAMPLE 4 
BETA- HAT (Yl) COU NT BETA- HAT (Y2 ) COUNT 
5 161 95310 -2 . 642 1 . 07353 1 . 134 

40 . 000000 - 1 .591 . 10131836 1 . 880 
4 0000001 -. 477 . 0 10009766 3 . 010 

.50000000 . 301 . 00099945068 3. 260 

.89062500 .961 . 00009775 1617 1 .648 

.99804688 2 . 7 09 .0000099837780 2 790 

AVERAGE 123 AVERAGE 2 287 

DAM 7 094 EXAMPLE 5 
BETA- HAT (Yl ) COU NT BETA- HAT (Y2 ) COUNT 
2 20 -. 079 1 . 000 4 . 000 

. 460 . 268 . 101 2 000 
920 .097 . 00975 1 . 602 

1 03 . 523 . 00 103 1 .5 23 
.997 2 . 523 . 0000982 1 7 4 5 

1 00 3 000 . 0000100 3 . 000 

AVERAGE . 389 AVERAGE 2 312 

DAM 1108 EXAMPLE 6 
BETA- HAT (Yl ) COU NT BETA- HAT (Y2 ) COUNT 

26 .798895 - 1 . 412 1 .0000993 4 . 003 
- 53 .926606 - 1 . 740 . 099779484 2 657 

21 5 11 053 - 1 . 31 2 .010084331 2 074 
- 1 .7723664 - 443 .00098840467 1 936 

. 1553755 .809 . 00010065825 2 . 182 
99692726 2. 512 . 0000099868524 2 . 881 

AVERAGE . 264 AVERAGE 2 . 622 
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DETAILS FOR TABLE 1 -- SINGLE PRECIS I ON (8 DIGITS ) 

LINFIT (MILLER ) 
BETA-HAT (Yl ) 

7360 .000 
-16598.000 

6379 .500 
-877.906 

50 . 989 
000 

COUNT 
- 3.867 
- 4 . 220 
- 3 . 805 
- 2 . 944 
- 1 . 699 

.000 

BETA- HAT (Y2 ) 
1.074 
- . 066 

.074 
-. 0 08 

.001 

. 000 

AVERAGE - 2.756 

LSTSQ 
BETA- HAT (Yl ) 

. 99973875 
1 .0006891 

. 9997041 3 
1 . 0000452 

.99999718 
1.0000001 

COUNT 
3.583 
3 . 162 
3 . 529 
4 .345 
5.550 
7 . 000 

BETA- HAT (Y2) 
.99999997 
.10000011 
.0099999484 
.0010000083 
.000099999460 
.000010000012 

AVERAGE = 4 . 528 

MATH- PACK 13 . 5, ORTH LS, 
BETA-HAT (Yl ) 

.94458008 
1 . 1799316 

ORTHOGON AL POLYNOMIAL CURVE FITTING 

.91607666 
1 . 0135651 

. 99912310 
1 .0000196 

COUNT BETA-HAT (Y2 ) 
1.256 . 99999909 

. 745 . 10000322 
1 .076 . 009998469 6 
1.8680010002495 
3.057 . 000099983743 
4 .708000010000364 

AVERA GE = 2. 118 

MPR3 , STEPWISE MULTIPLE 
BETA-HAT (Yl ) 
- 20.24219 

43.49164 
- 14.37052 

3.03207 
.88800 

1.002 19 

REGRESSI ON, SHARE 
COUNT 

- 1.327 
- 1.628 
- 1 . 187 
-. 308 

. 951 
2.660 

AVERAGE = 140 

OMNITAB, USING THE MATRIX 
BETA- HAT (Yl ) 
-91.999999 
136 00000 
- 48 000000 

5 . 5000000 
. 75000000 

1 .0063477 

CO MMANDS MTRANS. 
COUNT 

- 1 .968 
- 2.130 
- 1 .690 

- . 653 
. 602 

2.197 

AVERAGE = 607 

OMNITAB. US ING THE MATRIX 
BETA- HAT (Yl ) 
- 220.65660 

316. 454 22 
- 96.578077 

10 . 859373 
. 52858572 

1 .0087148 

AVERAGE 

CO MMANDS MTRANS. 
COUNT 

- 2 . 346 
- 2 . 499 
- 1 . 989 

- .994 
.327 

2 . 060 

. 907 
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LIBRARY 3145MPR3 
BETA- HAT (Y2 ) 

.99933 

. 1013436 

. 009510736 

.001065033 

.00009639953 

.00001007054 

MMULT, I NVE RT 
BETA-HAT (Y2 ) 

.99780273 

. 10278320 

.0086669922 
00 11596680 

.0000925 06409 

.000010177493 

MMULT , INVERT 
BETA-HAT (Y2 ) 

.99512554 

. 10715805 

. 0077479167 

.0012353163 

. 000088502 186 

. 000010213975 

7094 

AVERAGE 

1108 

AVERAGE 

1108 

AVERAG E 

7094 

AVERAGE 

7094 

AVERAGE 

1108 

AV ERAGE 

EXAMPLE 7 
COUNT 
1.131 
-.220 
- .806 
-. 954 
-.954 

. 000 

.301 

EXAMPLE 8 
COUNT 
7 . 523 
5 . 959 
5 . 287 
5 . 081 
5.268 
5 . 921 

5.840 

EXAMPLE 
COUNT 
6.041 
4 . 492 
3 . 815 
3.603 
3 . 789 
4.439 

4 . 363 

9 

EXAMPLE 10 
COUNT 
3.174 

. 872 

.310 

. 187 
1.444 
2.152 

856 

EXAMPLE 11 
COU NT 
2.658 

.555 

.875 

.797 

. 125 

. 751 

. 460 

EXAMPLE 12 
COUNT 
2 . 312 

. 145 

. 647 

.628 

. 939 

.670 

. 224 



DETAILS FOR TABLE 1 -- SINGLE PRECI S ION ( 8 DIGITS ) 

OMNITAB . US ING ORTHO SUBROUTINE 709 4 EXAMPLE 13 
BETA- HAT (Yl ) COUNT BETA- HAT (Y2) COU NT 
1 . 00 1 281 7 2 . 89 2 . 99999949 6 . 29 2 

. 99780273 2 . 658 . 100000 13 5 . 886 

.99932861 3 .173 . 0099999756 5 . 613 
1 . 0001755 3 .756 . 0010000018 5 745 

. 99998569 4 .844 . 000099999866 5 . 873 
1 . 0000004 6 .398 . 000010000004 6 . 398 

AVERAGE = 3 . 954 AVERAGE 5. 968 

OMNITAB , USING ORTHO SUBROUTINE 1108 EXAMPLE 14 
BETA-HAT (Yl) COUNT BETA- HAT (Y2) COUNT 
1 . 0064697 2.189 .99999990 7 . 000 

.99902344 3 . 010 . 099999700 5 . 523 

.99975586 3 .612 . 010000125 4 . 9 03 

.99996948 4 .515 . 00099998200 4 . 745 
1 .0000100 5 . 000 . 000 100001 09 4 . 9 63 

. 99999968 6 495 . 0000099999778 5 . 654 

AVERAGE = 4 . 137 AVERAGE 5 . 464 

ORTHO, WITH RE- ORTHOGONALIZATION OMITTED 1108 EXAMPLE 15 
BETA- HAT (Yl ) COUNT BETA- HAT (Y2 ) COUNT 
- 1216.54 26 - 3 . 085 . 98419483 .801 

2752.0557 - 3 . 439 . 13523918 .453 
- 1057 . 0931 - 3 . 025 -. 0034660707 -. 129 

146 97336 - 2 . 164 . 0028495983 -. 267 
-7 . 3080225 - . 9 19 - . 0000049256487 - . 021 

1 . 1663037 . 779 . 000012094996 . 679 

AVERAGE - 1 . 976 AVERAGE . 41 9 

ORTHOL 1108 EX AMPLE 16 
BETA- HAT (Yl ) COUNT BETA- HAT (Y2 ) COUNT 

. 99784447 2 . 666 1 . 00 00000 8 . 000 

. 98687472 1 .882 . 099999778 5 . 654 
1 . 0029743 2 . 527 . 0 10000041 5 . 387 

.99961372 3 41 3 . 00099999654 5 . 461 
1 . 0000213 4 672 . 000 10000013 5 . 886 

. 9999 9960 6 . 398 . 0000099999984 6 7 9 6 

AVERAGE = 3 . 593 AVERAGE 6 . 197 

POLRG, IBM SYSTEM/360 SCI ENTIFI C SUBROUTINE PACKAGE 1108 EXAMPLE 17 
BETA-HAT (Yl ) COUNT BETA- HAT (Y2 ) COUNT 
- 1823 . 8047 -3261 . 9843893 1 1 . 807 

28 . 6220 13 - 1. 441 . 10009000 3 . 04 6 
- 3 . 6844 5 11 - . 671 . 0 10146444 1 . 834 

3 . 045044 2 -. 311 . 0010054175 2 . 266 
. 93157484 1.165 . 000099141363 2 . 066 

1 . 0004238 3 . 373 . 000010021910 2 . 659 

AVERAGE - . 191 AVERAGE 2. 280 

SPVMTX 1108 EXAMPLE 18 
BETA- HAT (Yl ) CO UNT BETA-HAT (Y2) COUNT 

64. 19 1025 - 1 .801 1 .0014403 2 . 842 
- 134 . 65426 -2. 132 . 097101737 1.538 

51 . 859977 - 1 . 706 .0 11047948 .980 
- 5 8942945 -.838 . 00086162069 .859 

1 .3872223 .412 . 00010761766 1.118 
.99232943 2. 115 . 0000098514820 1 . 828 

AVERAGE 658 AVERAGE 1 . 527 
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DETAILS FOR TABLE 1 -- SINGLE PRECISION (8 DI GITS) 

STAT-PACK 8.13, GLH, 
BETA-HAT (Yl) 
-11.970093 

27.245361 

GENERAL LINEAR HYPOTHESIS 

-8 5661011 
2.2717514 

.92961073 
1.0013784 

COUNT 
- 1 . 113 
- 1. 419 
-.981 
-. 104 
1 . 152 
2 861 

AVERAGE = .066 

STAT-PACK 9.2, REBSOM, 
BETA-HAT (Yl) 
-11.97009 

27.24536 
-8.56610 

2.27175 
.92961 

1 .00138 

BACK SOLUTION 
COUNT 

-1.113 
-1. 419 
-.981 
-.104 
1 . 152 
2 860 

AVERAGE = .066 

BETA-HAT (Y2) 
.99989064 
. 10018034 
.0099404901 
.0010073970 
.000099610348 
.000010007344 

MULTIPLE REGRESSION 
BETA-HAT (Y2) 

.9998906 

.1001803 

.009940490 

.001007397 

.00009961035 

.00001000734 

STAT-PACK 9.1, RESTEM, 
BETA-HAT (Yl) 
-1.5703125 

7.5583214 
-1.5695286 

1.3551083 
.97985181 

1.0004015 

STEPWISE MULTIPLE REGRESSION 

AVERAGE 

WRAP, WEIGHTED REGRESSION, 
BETA- HAT (Yl) 

2991622. 
-6065892. 

2218821. 
-296194 5 

16462 20 
-322 5731 

COUNT 
-.410 
-,817 
-.410 

.450 
1 .696 
3.396 

.651 

SHARE LIBRARY 
COUNT 

-6. 476 
-6.783 
-6 346 
-5 472 
-4.216 
-2 510 

AVERAGE = -5 300 

BETA- HAT (Y2) 
1.0002102 

.099611598 

.010136487 

.00098222795 

.00010097076 

.0000099811599 

3231WRAP 
BETA-HAT (Y2) 
-33 84546 

71.54880 
-26. 16913 

3 493256 
- . 1936966 

.003812985 

DETAILS FOR TABLE 2 -- SINGLE PRECISION (9 DIGITS) 

LINFIT 
BETA-HAT (Yl ) 

2.76639 
-2 72473 

2.38633 
.812925 

1.01048 
.999793 

LSCF 

AVERAGE 

COUNT 
-.247 
-.571 
- .142 

.728 
1.980 
3 684 

.905 

BETA- HAT (Yl) COUNT 
-5. 5 -. 813 

- 12 . - 1 . 114 
-3. -.602 

o. .000 
.957031 1 .367 
.999023 3.010 

AVERAGE .308 
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BETA-HAT (Y2) 
1.00006 

.0998764 

.010045 

.000994014 

.000100332 

.00000999350 

BETA- HAT (Y2 ) 
.999893 
. 099762 
.00991058 
.000970840 
.0000993013 
.00000997260 

1108 

AVERAGE 

1108 

AVERAGE 

1108 

AVERAGE 

7094 

AVERAGE 

235 

AVERAGE 

235 

AVERAGE 

EXAMPLE 19 
COUNT 
3.961 
2 744 
2.225 
2.131 
2 409 
3.134 

2 767 

EXAMPLE 20 
COUNT 
3.961 
2.744 
2.225 
2.131 
2 409 
3.134 

2.767 

EXAMPLE 21 
COUNT 
3677 
2.411 
1 .865 
1 . 750 
2 013 
2 725 

2 407 

EXAMPLE 22 
COUNT 

- 1. 542 
-2.854 
-3. 418 
-3.543 
-3.287 
-2 580 

-2 871 

EXAMPLE 1 
COUNT 
4 .222 
2 908 
2 347 
2.223 
2 479 
3.187 

2.894 

EXAMPLE 2 
COUNT 
3 971 
2.623 
2 .049 
1. 535 
2.156 
2.562 

2.483 



DETAILS FOR TABLE 2 -- SINGLE PRECISION (9 DIGITS) 

LSFITW 235 EXAMPLE 3 
BETA- HAT (Yl ) COUNT BETA- HAT (Y2) COUNT 

.999130249 3 061 .999999897555 6.990 

.99761963 2 .623 .0999999824213 6 .755 
1 .001 02997 2 .987 .0100000116561 5 .933 

.999854088 3 .836 .00099999815736 5 .735 
1 .00000715256 5. 146 .000100000104819 5 .980 

.999999890104 6 .959 .00000999999813838 6 .730 

AVERAGE 4 . 102 AVERAGE 6 .354 

POLFIT 235 EXAMPLE 4 
BETA- HAT (Yl) COUNT BETA-HAT (Y2) COUNT 

.99387360 2.213 .9999999618158 7.418 
1 .00894165 2.049 . 1000000573928 6 . 241 

.99534607 2 .332 .0099999622960 5 .424 
1 .000703812 3. 153 .00100000655382 5 184 

.9999548197 4 . 345 . 00009999952638 1 5 . 325 
1 .000000998378 6 .001 .00001000001 14824 5 .940 

AVERAGE 3 .349 AVERAGE 5 .922 

SIMEX 235 EXAMPLE 5 
BETA- HAT (Yl ) COUNT BETA- HAT (Y2) COUNT 
1 .74226 . 129 .999966 4 . 469 
- .313568 - . 118 . 100063 3 .201 
1 . 44267 .354 .00997838 2 .665 

.944463 1 . 255 .00100276 2 .559 
1 .00294 2 .532 .0000998520 2 830 

.999945 4 .260 .0000100028 3 .553 

AVERAGE 1 .402 AVERAGE 3 .213 

STAT20 235 EXAMPLE 6 
BETA- HAT (Yl) COUNT BETA- HAT (Y2) COUNT 

4 .7080 1 -.569 1 . 00006 4 222 
- 6 . 48121 -. 874 .0998837 2 .934 

3 .72065 -. 435 .010042 2 .377 
.638874 . 442 .000994436 2 .255 
.01997 1 .700 .000100307 2 . 513 
.999609 3 . 408 . 00000999400 3 222 

AVERAGE . 612 AVERAGE 2 .920 

STAT21 235 EXAMPLE 7 
BETA- HAT (Yl) COUNT BETA-HAT (Y2) COUNT 

2.089 -.037 1.00003 4 523 
- 1 . 11166 -.325 .0999349 3 . 186 

.75217 . 124 .0 100234 2 .631 

.901511 1 .007 . 000996913 2 .510 
1 . 00539 2 268 .000 100 170 2 .770 

.999895 3 .979 00000999668 3 . 479 

AVERAGE 1 . 169 AVERAGE 3 . 183 
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DETAILS FOR TABLE 3 -- DOUBLE PRECISION (16 DIGITS ) 

BMD05R 7094 EXAMPLE 1 
BETA-HAT (Yl) COUNT BETA- HAT (Y2 ) COUNT 
1.0000003 6 . 523 . 99999998 7 . 699 

.99999920 6.097 . 10000004 6 398 
1.0000002 6 . 699 . 0099999798 5 . 695 

. 99999996 7 . 398 . 0010000031 5 . 509 

.9999999 7 . 000 . 000099999792 5 . 682 

. 99999999 8 . 000 . 000010000004 6 398 

AVERAGE 6 . 953 AVERAGE 6 . 230 

DPVMTX 1107 EXAMPLE 2 
BETA- HAT (Yl) COUNT BETA-HAT (Y2 ) COUNT 
1 . 000000206882520 6 . 684 1.000000000006017 11 . 221 

.9999995965200948 6.394 .09999999998899705 9.958 
1 . 000000145134836 6.838 . 01000000000383598 9.416 

.9999999808270597 7.717 . 0009999999995039349 9.304 
1 . 000000001057576 8 . 976 .0001000000000269390 9 . 570 

.9999999999793303 10 . 685 . 000009999999999479781 10 . 284 

AVERAGE 7 . 882 AVERAGE 9 959 

DETAILS FOR TABLE 4 -- DOUBLE PRECISION (18 DIGITS) 

ALSQ 1108 EXAMPLE 1 
BETA-HAT (Yl ) COUNT BETA-HAT (Y2 ) COUNT 
1 . 000000000005630 11.249 1 . 00000000000000000 18.000 

. 9999999999933983 11 . 180 . 0999999999999999140 15 . 065 
1 . 000000000002151 11 . 667 . 0100000000000000339 14 . 470 

. 9999999999997248 12 . 560 . 000999999999999995720 14 .368 
1 . 000000000000015 13 . 824 . 000100000000000000224 14 .650 

. 9999999999999997 15 . 520 . 00000999999999999999580 15 . 376 

AVERAGE 12 . 667 AVERAGE 15 . 322 

BMD02R 1108 EXAMPLE 2 
BETA-HAT (Yl ) COUNT BETA-HAT (Y2 ) COUNT 

. 9999999968749762 8 . 505 1 . 000000000000007 14 . 155 
1 . 000000006749235 8 . 171 .09999999999998616 12 .859 

. 9999999974683392 8 . 597 . 01000000000000481 12.318 
1 . 000000000342994 9 . 465 .0009999999999993756 12.205 

. 9999999999807494 10 . 716 . 0001000000000000339 12 . 470 
1 . 000000000000381 12.419 . 000009999999999999342 13 . 182 

AVERAGE 9 645 AVERAGE 12 .865 

BMD05R 1108 EXAMPLE 3 
BETA-HAT (Y1 ) COUNT BETA- HAT (Y2 ) COUNT 
1.00000000634827302 8 . 197 1 .00000000000007691 13 . 114 

. 999999987016701379 7 .887 . 0999999999998442950 11 . 808 
1 . 00000000476533960 8 . 322 .0100000000000568478 11 . 245 

. 999999999362724245 9 . 196 . 000999999999992425020 11 . 121 
1 . 00000000003545420 10 450 . 000100000000000420311 11 . 376 

. 999999999999302617 12 . 157 . 00000999999999999174930 12 . 084 

AVERAGE 9 . 368 AVERAGE 11 . 791 

DPVMT X 1108 EXAMPLE 4 
BETA- HAT (Yl ) CO UNT BETA- HAT (Y 2) COUNT 

. 9999999971390853 8 . 543 . 9999999 99 99 99998 15 . 693 
1 .000 000005557233 8 . 255 . 1000000000000033 13 .481 

.9999999980 0 49357 8. 7 00 . 0099999999999983~ 12 . 790 
1 . 0 00000000263 132 9. 580 . 001000 000 0000002' 12 .607 

. 99999999998 55033 10. 839 . 0000999999999999£ 7 12 . 826 
1 . 00000000000 0 283 1 2 . 548 . 0 000 100 0 00000 0 0 00 1 13 . 509 

AVERAGE 9 7 44 AVERACE 13 .484 
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DETAILS FOR TABLE 4 -- DOUBLE PRECIS I ON (18 DI GITS) 

LSTSQ 11 08 EXAMPLE 5 
BETA- HAT (Yl ) COUNT BETA-HAT (Y2) COU NT 

.999999999999999464 15 . 269 1 . 00000000000000000 18 . 000 

. 999999999999943084 13.245 . 0999999999999999950 16.284 
1 .00000000000004282 13 . 368 . 0100000000000000021 15 . 683 

. 999999999999991067 14 . 049 .000999999999999999710 15 . 538 

.00000000000000068 15 . 169 .000100000000000000017 15 77 1 

.999999999999999985 16 .761 . 00000999999999999999970 16 480 

AVERAGE 14 643 AVERAGE 16 . 293 

MATH- PA CK 13 . 5, ORTHLS, ORTHOGONAL POLYNOMIAL CU RVE FITTING 1108 EXAMPLE 6 
BETA- HAT (Yl) 

.999999999992709829 

. 0000000000 1946887 

.999999999991466379 
1 . 00000000000133404 

.999999999999915178 
1 . 00000000000000 188 

AVERAGE 

ORTH O 
BETA- HAT (Yl ) 

.99999999999705 1246 
1 . 0000000000005 11 59 
1 . 00000000000034817 

. 999999999999897859 

. 00000000000000760 

. 999999999999999820 

AVERAGE 

COUNT 
11 . 137 
10 .711 
11 . 069 
11 . 875 
13 . 071 
14 .727 

12.098 

COU NT 
11 . 530 
12 . 291 
12 . 458 
12.991 
14 . 11 9 
15 .740 

13. 188 

ORTHO, WITH RE- ORTHOGONALIZATION OMI TTED 
BETA- HAT (Yl ) COUNT 

.999999858679196051 6 .850 
1 . 0000003 178524 2527 6 . 498 

. 999999878054865120 6.914 
1 . 0000000 1679285067 7 .775 

.999999999045590670 9 . 020 

. 0000000000 1908297 10 .719 

AVERAGE 

ORTH OL 
BETA- HAT (Yl ) 

.999999999999754768 
1 . 00000000000255572 

. 999999999999179468 
1 . 000000000000 11 276 

. 999999999999993318 
1 . 000000000000000 14 

AVERAGE 

7.963 

COU NT 
12.610 
11 . 592 
12 .086 
12 .948 
14 . 175 
15.863 

13 . 212 

BETA- HAT (Y2 ) COUNT 
.999999999999999901 15 . 997 
. 100000000000000225 14 . 648 
. 00999999999999988980 13 . 958 
. 00100000000000001872 13 728 
. 0000999999999999987360 13 . 898 
. 0000100000000000000292 14 535 

AVERAGE 14 . 461 

11 08 EXAMPLE 7 
BETA- HAT (Y2) COUNT 

.999999999999999946 16 .242 

.0999999999999999970 16 . 488 

.0100000000000000078 15.109 

. 000999999999999998330 14 777 
0001000000000000001 21 14 .918 

.00000999999999999999720 15 . 550 

AVERAGE 15 . 514 

11 08 
BETA- HAT (Y2) 

.999999999998151750 

. 100000000004101749 

. 00999999999843660520 

.0010000000002 1433129 

.0000999999999878591650 

. 00001000000000024 21209 

AVERAGE 

11 08 
BETA- HAT (Y2) 
1 . 00000000000000000 

. 100000000000000036 

. 00999999999999998660 

. 00100000000000000191 

. 0000999999999999998880 

. 0000100000000000000023 

AVERAGE 

EXAMPLE 8 
COU NT 

11 . 733 
10 . 387 

9 . 806 
9.669 
9.916 

10 . 616 

10 . 354 

EXAMPLE 9 
COUNT 

18 . 000 
15 . 444 
14 . 873 
14 . 71 9 
14 . 950 
15 . 640 

15.604 

POLRG, IBM SYSTEM/360 SC IENTIFIC SUBROUTINE PACKAGE 1108 EXAMPLE 10 
BETA-HAT (Yl ) COUNT BETA- HAT (Y2 ) COUNT 
1 . 00000011110114428 6 .954 1 . 00000000000 136645 11 . 864 

. 9999999904575 14712 8 . 020 . 0999999999999411990 12 . 231 

. 00000000321449412 8 .493 . 0100000000000305940 11 . 514 

.999999999544922239 9.~42 . 000999999999995547370 11 . 351 
1 .00000000002322 160 10 .634 . 000100000000000227181 11 . 644 

. 999999999999491835 12 . 294 . 00000999999999999416480 12 . 234 

AVERAGE 9 . 290 AVERAGE = 11 . 806 
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DETAILS FOR TABLE 4 -- DOUBLE PRECISION (18 DIGITS ) 

STAT-PACK 9.1, RESTEM, STEPWISE MULTIPLE 
BETA-HAT (Y1) COUNT 
1 .00000000453928806 8 . 343 

.999999990379828084 8.017 
1.00000000358299878 8.446 

.999999999516629162 9 .316 
1.00000000002705048 10568 

.999999999999465664 12 .272 

REGRESSI ON 1108 
BETA- HAT (Y2 ) 
1 .00000000000004872 

.0999999999999056810 

. 0100000000000336338 

.000999999999995591090 

.000100000000000241649 

.00000999999999999530180 

EXAMPLE 11 
COUNT 

13 .312 
12 .025 
11 . 473 
11.356 
11 .617 
12.328 

AVERAGE 9 49 4 AVERAGE = 12.019 

DETAILS FOR TABLE 5 -- SINGLE PRECISION (8 DIGITS), WITH INNER PRODUCTS 
AC CUMULATED IN DOUBLE PRECISION ( 18 DI GITS ) 

ALSQ 1108 EXAMPLE 
BETA- HAT (Y1 ) COUNT BETA-HAT (Y2) COUNT 
1 . 0366969 1 .435 1.0000001 7 . 000 

. 99202651 2 .098 .099999869 5 . 883 

.99865498 2 .871 .0 10000017 5 770 
1 .0003119 3 .506 .00099999901 6. 004 

.99998119 4 .726 .00010000003 6. 523 
1 .0000004 6. 398 .0000099999999 8. 000 

AVERAGE 3. 506 AVERAGE 6. 530 

LSTSQ ll08 EXAMPLE 
BETA- HAT (Yl ) COUNT BETA-HAT (Y2) COUNT 
1 .0000000 8.000 .99999999 8.000 

. 99999999 8 . 000 . 10000004 6 . 398 
1 . 0000000 8 . 000 .0099999798 5 . 695 
1 .0000000 8. 000 .0010000032 5 495 
1 .0000000 8. 000 .000099999794 5 .686 
1 .0000000 8 . 000 .000010000004 6. 398 

AVERAGE 8. 000 AVERAGE 6. 279 

ORTHO 1108 EXAMPLE 
BETA- HAT (Yl) COUNT BETA-HAT (Y2) COUNT 
1 .0027425 2.562 1.0000003 6.523 

. 99674778 2.488 .099999898 5 .991 
1 .0013667 2 .864 .010000011 5 959 

.99983171 3 774 . 00099999974 6 . 585 
1 . 0000096 5 . 018 .000099999980 6 . 699 

.99999981 6 721 .00001000000 1 7. 000 

AVERAGE 3 904 AVERAGE 6 459 

DETAILS FOR TABLE 6 -- MULTIPLE PRECISION INTEGER ARITHMETIC 

SOLVER 1108 EXAMPLE 
BETA-HAT (Yl ) COUNT BETA-HAT (Y2) COUNT 
1 . 00000000000000000 18.000 .999999999999999995 17 . 159 
1 .00000000000000000 18. 000 . 0999999999999999995 17 . 187 
1 .00000000000000000 18 . 000 .00999999999999999996 17 . 169 
1 .00000000000000000 18 .000 .000999999999999999996 17. 294 
1 00000000000000000 18 . 000 .0000999999999999999996 17 . 276 
1 . 00000000000000000 18 . 000 .0000100000000000000000 18 . 000 

AVERAGE 18 . 000 AVERAGE = 17 .347 
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