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A Digital Computer Technique for Calculating the Step
Response of Lumped or Distributed Networks

James R. Andrews* and N. S. Nahman*
Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302
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This paper discusses a technique to solve step response problems for lumped or distributed
networks with the aid of a digital computer. The Rosenbrock graphical cursor technique for obtaining
the step response from the frequency response through the inverse Laplace Transformation was
adapted for computer use. In addition, it was modified to increase its accuracy when used with a digital
computer.

The response of a series RLC lumped network is computed and the numerical solution is compared
to the analytical solution. Also, a numerical solution is given for the step response of a transmission
line possessing skin-effect metal loss and Debye dielectric loss.
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1. Introduction

The transient properties of linear physical systems may be studied from two viewpoints,
namely, the frequency domain and the time domain. Usually the information obtained from the
system response to a unit step input is more directly relevant than the frequency domain response.
However, the mathematical analysis of such systems is usually easier to accomplish in the fre-
quency domain. The time domain response is conveniently measured [Samulon, 1956; Oliver 1961].

The connection between the time and frequency domains is the Laplace transform for semi-
infinite time functions (f(t)=0, ¢t < 0) or the Fourier transform for time functions that exist for
—o <t <+ %[ Gardner and Barnes, 1942; Hildebrand, 1962|. It is not usually too difficult to obtain
the Laplace transform F'(s) of a time function f(t). F(s) is given by

F(s)= fy:/'(l)(’ Talis (1)

manipulations of the transform F(s) are also straightforward. The real difficulty in this class of
problems lies in obtaining the inverse Laplace transformation given by

f(t) :_—1, F(s)esds. (2)
277./ Bry

Bry is the Bromwich contour [McLachlan, 1963] from B—j % to 8+ . B is chosen so that all the

singularities of the integrand are on its left.
The unit step response h(t) of a stable linear system, initially at rest, is
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stds (3)
in which A(s) is the system transfer function [Rosenbrock, 1955].

2. Derivation of Rosenbrock Cursor

Rosenbrock [1955, 1959] developed a graphical technique for evaluation of (3). In an appendix
[Rosenbrock, 1955], he showed that A(t) may be expressed as

h(t):%J'i Re[A(iw)]ﬂn—(f)w—tldw (4)

or
cos (wt)

h(t)zh(t=oc)+3fx do, 5)
w

» Im[4(jw) ]
The transfer function, A4(s), of the linear system must satisfy the condition that there are no poles
in the right-hand half-plane or on the imaginary axis, although a pole of A(s)/s at the origin is permis-
sible. The unique feature of the Rosenbrock method lies in the change of the variable of integration
from o to In w. Notice that

dw
—=d(ln w). (6)
)

Substituting (6) into (5) obtains

2 oo
h(t):h(oc)+7—wa:OIm[A(jw)] cos (wt) d(Inw) (7)
l.etting
0= wt, (8)
(7) may be approximated by
h(t) = h(x) +g i Im[A4 (jwn)] cos (6,) [An(In 6)]. 9)

w n=1

The product cos (6,)[Ax(In6)] is the incremental area under the curve of cos () versus In 6, in
figure 1. With the assumption that Im|4(jw)]| remains relatively constant throughout the interval
A, (In ), it is approximately true that

N
h(t)zh(oc)+%2lm[A(jw,.)]WF,,, (10)
where Bl
H N
WF,.=f ® cos () d(inw). 1)
)
or “
7] >
WF,,=f LD (12)
9 V]

a

Equations (10) and (11) form the basis for the Rosenbrock cosine cursor.

Rosenbrock’s graphical technique consists of laying his transparent cursor over a plot of the
imaginary part of the transfer function, Im[A4(jw)|, versus log () and summing up the intercepts
of the cursor and the Im[4(jw)| plot. The cursor is shifted over the Im[4(jw)] plot for various

times, . A particular position of the cursor over the imaginary part plot yields f(¢1). Another posi-
tion of the cursor yields another value of fit), i.e., f(t2); and so on.
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FIGURE 1. Cos (0) versus In (6).

3. Computer Adaption of Rosenbrock Cursor

As a means of saving time and labor in step response problems, the authors adapted the
Rosenbrock cursor so that modern-day digital computers may be used to solve this class of problems.

Using the FORTRAN IV language, the subprogram ROSEBK, Appendix 1, computes (10).
It uses the tabulated values for the Rosenbrock cosine cursor [Rosenbrock, 1955; Gooch, 1960].
It is set up as REAL FUNCTION ROSEBK (T, AIM, HINF) where the parameters are: T, the
value of time ¢ in seconds; AIM, the name of another FUNCTION subprogram to calculate
Im[A(jw,)]: and HINF. the value of h(t= ). This program is adequate for well-behaved functions
whose imaginary parts do not have rapid changes in them. In this program N = 35.

To take advantage of the increased accuracy available with a digital computer, the cursor
method was expanded to employ 168 data points (V= 168). This modification consisted of breaking
the cos (0) versus log () curve (fig. 1) into many segments as tabulated in table 1.

The small and large 6 regions respectively, (6 < .01) and (0 > 6,.), need more discussion. If
Im[A4 (jw)] behaves as = aw for 0 < 6 < 0.01, then

wt=0.01 ) cos(wt)dw wt=0.01 1
f Im[A4(jw) ] Los 0D anl tw—dw (13)
0 w 0 ®
.0.01
=1.0XIm [4(]7) . (14)
An approximation is also necessary for the region 6 > 315.
Table 1. Scheme for subdividing cos (0) versus log (6) curve
0 region Division
0 —0.01 1 point (approximation)
0.01 —> 0.1 20 equal A(In w) segments
T
0.1 — ‘35 70 equal A(In w) segments
3757 = 7g 20 equal A(In w) segments
Yg = 15% 12 equal samples/period
15% = 3122-I 8 equal samples/period
31’—2T > 0u 1 point
Our, —> © 0.1, chosen such that
J”‘ COS(O)dO -0
auL 0
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cos (0)
(7]

The integral fx Im[ 4(jw)] do
Hul.

is approximately 0 if Im[A4(jw)] is close to 0 or essentially constant, because cos (f) alternates
very rapidly for large 6 when plotted on a logarithmic scale (fig. 1). For 6 > 31% the sum of the

positive and negative contributions tend to cancel [Gooch, 1960]. The upper limit, 6,,, can be
found from the cosine-integral function Ci(x) [Jahnke and Emde, 1945],

= cos (0
amz—f WZHdG (15)

— x>1 (16)

Thus 6, is chosen to be the next point after =31 g when sin (6) =0, i.e.,

T

9111.:32‘2_ . (17)

A computer program was written to calculate 6, and WF,, (11) or (12), using the subdivision
scheme listed in table 1.

The low and high 6 approximations impose limits upon the values of time, ¢, at which accurate
solutions can be obtained. The limits can be visualized by considering the graphical technique
of placing the transparent cursor over a plot of Im[4(jw)] versus log w. For small ¢, the cursor
will be shifted to the right. Two possible sources of error may arise. One, the function Im[A4 (jw)]
to the left of the cursor may no longer be adequately approximated by a linear function of w. Second,
there may be rapid oscillations or changes in the Im[ A4 (jw)] curve under the cursor for large values
of  (see fig. 4) such that the assumption, that Im[ A4 (jw)| is essentially a constant for each sample
segment d(In ) is no longer correct.

The determination of the upper and lower limits of validity for ¢ must be considered as a
special case for each problem. For large values of time, ¢, the cursor will be shifted to the left.
Errors encountered in this region will probably not be as significant as those for small ¢. In this
case a significant portion of the Im[A(jw)] curve is to the right of the cursor. Thus the assumption
that Im[A4 (jw)] for 6 > 6, is close to 0 or is essentially constant is no longer valid, but the cos 6
curve changes sign rapidly and the large # summation may tend to cancel out.

Appendix 2 contains the listing for ROSBKM subprogram for computing (10) with N=168.
It is set up as REAL FUNCTION ROSBKM (T, AIM, HINF). The parameters have the same
definition as used in ROSEBK.

4. Examples

To demonstrate this technique of step response calculation and to obtain a measure of the
accuracy involved, two examples are presented below. The first example is the current step re-
sponse of a lumped series RLC circuit driven by a unit step voltage source. The second example
deals with a distributed circuit and presents the original solution for the voltage step response
of a coaxial transmission line with simple skin effect and a dielectric with Debye molecular relaxa-
tion. To the authors’ knowledge this problem has not been solved prior to the work reported here.

RLC Series Circuit. The initial conditions are assumed to be zero. The transfer function
is the_loop admittance

sC

Y )=1rRCcTsiC HE)

The analytic expression for i(¢) due to a unit voltage step applied at t=0 is
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1 :
i(t)=——e ¥ sin (wnt). t>0; (19)

wnl.
where R
o :2-/ . (20)
1
wo= \/_ﬁ (21)
and wn=Vwi—ai. (22)
The imaginary part of ¥ (jow) is
2
(2]
Im|Y(jw)|= = (23)

{1—(;“—0>T+ (wRC)?

A program was written to calculate i(¢) from (19) and also from the Rosenbrock cursors, N=35
and V=168 using (23). The results are shown in ficure 2. Only a few of the points calculated
using the cursor are shown. The computations were made from (= 0.01 us to t=5.00ws. The
error was computed as a percentage of the absolute maximum of ((¢). (19). The average error
using ROSEBK (N=235) was = 5.32 percent, while the average error was = 0.0177 percent using

ROSBKM (N = 168).
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FIGURE 2. Current step response of a series RLC circuit driven by a unit step voltage source. Initial conditions
are zero. R=120 Q, L=125 uH., C=200 pF. Solid curve is analytic solution. Sample solutions using the
Rosenbrock cursor are designated by an X(N= 35) and by a O(N=168).

Lossy Transmission line. This example demonstrates the application of the Rosenbrock
cursor technique to more complicated problems. It was used to calculate the voltage step response
of a coaxial transmission line with losses resulting from two causal material models: (1) simple
skin effect and (2) Debye dielectric molecular relaxation. The equivalent circuit per unit length
is shown in figure 3.
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FIGURE 3. FEquivalent circuit for transmission

line with simple skin effect and a dielectric
with Debye molecular relaxation..

The propagation function, y(s), is defined as the geometric mean of the series impedance

Z(s) and the shunt admittance Y(s) per meter. Consequently y(s) is given by
1/2

_ .
wwmm—ﬂ(wf—;i)@J (24)

s/ (Woars)
where 7=0C,/G, s. (25)
Co=Ci+Cs. F/m (26)
and Vlz—l-— m/s. (27)

The series inductance /., shunt capacitance C, and the skin effect constant A, are defined in
Appendix 3. The transfer function of the line is

A(s) =e X ~ (28)
which is an exponential function with an irrational argument. The time delay of the line is given by

TD,= lim Im[x"#l] s. 29)

=X/V, (30)

To improve the accuracy of the computer calculations, it was desirable to remove the time delay
of the line by a time shift,

T=t—TD. 31)
Thus a new transfer function, A (s), must be considered.
=3 (U(s) =)

A(s)=e (32)
where C,

_ AL\ A
“”{(HL \/§> (U +s)
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and
{(w) =n(w) —jo(w). (34)

The minus sign is used with Im[{(jw)] so that ¢(jo) and a(jw) are positive. Using (34). 4(jw) may
than be split into real and imaginary parts,

A X
A(jw) =e =X ,[cos (m(n—l)*l/—) —J sin <w(n —1) %) ] , (35)
where
a2=%<p(w) c Gl

A 100-ft. hypothetical coaxial line having a liquid dielectric was used in the numerical calcula-
tions. The data used in the calculations is listed in table 2. A plot of transmission versus frequency
(fig. 4) shows a sharp cutoff, low-pass filter characteristic. The imaginary part of 4 (jw), (35) was used
in the Rosenbrock cursor and is shown in figure 5. The unit step response of the hypothetical
line was calculated using ROSBKM (fig. 6).

.
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FIGURE 4. Magnitude of the transfer function [A(Jm)] versus frequency. Curve A is a coaxial cable with only simple skin
effect losses. Curve B is for a cable with simple skin effect and a dielectric with Debye molecular relaxation.

The general shape of the calculated step response (fig. 6) can be verified from physical reason-
ing. For very high frequencies (w > 1/7), the shunt admittance Y(s) reduces to simply a pure
susceptance jwC, Likewise for low frequencies (w <1/7), the shunt admittance is simply
jo(C1+C,). Thus, the very high frequencies propagate at a velocity Vi, (27), while the low fre-
quencies propagate at the slower velocity,

1
A — <
* VL(C, +C,) 67

These two different propagation velocities result in a longer delay time T'D.. (38), for the low fre-
quencies than for the high frequencies, 7D, (30).
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FIGURE 5. [Imaginary part of the transfer function Im[A(jw)] versus frequency for coaxial cable with simple skin effect and

a dielectric with Debye molecular relaxation.
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FIGURE 6. Unit step response of 100 ft of theoretical coaxial transmission line with simple skin effect and a

dielectric with Debye molecular relaxation.

Table 2. Hypothetical coaxial transmission line data

Line length..........
Inner conductor radius
Outer conductor radius.
Conductor conductivity
Low frequency relative dielectric ConStant............ooooiteriiininieeee e eeaeianes
High frequency relative dielectric constant..............cooooiiiiiiiiiiiiiiiiiieeea
Dielectric relaxation time
Low frequency characteristic impedance...............ooooiiiiiiiiiiiiiii

100 ft.

0.204 cm

0.710 ecm

6.30 X 107 mho/m
2.24

2.00

29.5 ps

50.0 Q

(38)



The difference between the two time delays is 8.38 ns. Thus the initial part of the output (7' < 8 ns)
is produced by the high frequency components of the input step, while the latter portion of the
output ("> 9 ns) is produced predominantly by the low frequency components. Consequently, it
follows that in comparison to a lossless line possessing a propagation velocity V', the output wave-
form’s 50 percent delay time should be about 8 ns larger than that of the lossless line. That such
is the case is shown in figure 6.

It should be pointed out that the desire to solve this transmission line problem was the prime
motivation in developing the modified Rosenbrock cursor, ROSBKM. Because an analytic solution
to this problem was not available, the cited results were compared to those obtained by a different
numerical technique, namely an improved Fourier Series method [Manney, 1968|. For amplitude
values greater than 0.01 the differences were less than 0.5 percent as compared to the waveform
maximum value of unity. For amplitudes less than 0.01 and 7" less than 7 ns the ROSBKM results
departed from the zero amplitude axis. The reasons for the departure are presently being deter-
mined [Ives, 1968].

The two examples shown here used analytic expressions for Im[4 (jw)]. It is also possible for
minimum phase transmission line losses to obtain A () from experimentally measured transmission
line attenuation versus frequency data. Gooch [1960], has shown how this may be accomplished
using the graphical Rosenbrock cursor technique. Another extension would be to read the measured
data into a computer and to use interpolating polynomials for Im[4 (jw)} and use ROSEBKM to
find A(r).

5. Conclusion

This paper has discussed the extension to digital computer computations of a tractable graph-
ical technique for evaluating the step response of a linear physical system. Examples were included
to demonstrate its use and accuracy.

One of the examples presented an original solution for the step response of a coaxial line pos-
sessing combined losses resulting from two causal material models: (1) simple skin effect and (2)
Debye dielectric molecular relaxation.

Finally, further extensions of the method discussed here are possible. In particular, because it
is assumed that Im[4(jw)] remains relatively constant throughout the interval A,(1n6) (fig. 1)
Rosenbrock’s procedure makes no use of the variation of Im[4(jw)] within the interval. If it is
necessary to more effectively use the data within the interval, then the variation of Im[A(jw)|
within the interval should be expressed in terms of some approximating function.
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APPENDIX I

REAL FUNCTION ROSEBK(TsAIMsHINF)

THIS PROGRAM CALCULATES THE STEP RESPONSE OF A LINEAR SYSTEM.
THE ROSENBROCK COSINE CURSOR TECHNIQUE IS USED WITH N=35,
T=TIME IN SECONDS.

AIM IS THE NAME OF A FUNCTION SUBPROGRAM THAT CALCULATES THE
IMAGINARY PART OF THE SYSTEM TRANSFER FUNCTION, IM(A(JW))s AT A
GIVEN FREQUENCY We W IS IN RADIANS/SECONDe

HINF=VALUE OF TIME FUNCTIONs H(T)s AT T=INFINITY.

DIMENSION THETA(35)sWFM(35)

DATA(THETA( 1)= 0e110)s(WFM( 1)= 0086)

DATA(THETA( 2)= 0e133)s(WFM( 2)= 04087)

DATA(THETAC( 3)= 0e159)9s(WFM( 3)= 0087)
DATA(THETA( 4)= 0e191)s(WFM( 4)= 0.087)

DATA(THETA( 5)= 0e230)s(WFM( 5)= 0.088)
DATA(THETA( 6)= 06276)s(WFM( 6)= 04089)
DATA(THETA( 7)= 0e331)s(WFM( 7)= 0091)
DATA(THETA( 8)= 0e398)s(WFM( 8)= 06093)
DATA(THETA( 9)= 0e478)s(WFM( 9)= 0e097)
DATA(THETA(10)= 0e574)s(WFM(10)= 0e102)
DATA(THETA(11)= 0e689)s{WFM(11)= 0e111)
DATA(THETA(12)= 0e828)s(WFM(12)= 0e127)
DATA(THETA(13)= 0e994)s(WFM(13)= 0e157)
CATA(THETA(14)= 1e190)s(WFM(14)= 0e233)
DATA(THETA(15)= 1e430)s(WFM(15)= 0e626)
DATA(THETA(16)= 1e720)9s(WFM(16)=-0560)

DATA(THETA(17)= 2e070)9(WFM(17)=-0180)
DATA(THETA(18)= 2¢480)s(WFM(18)=-0e109)

DATA(THETA(19)= 2e980)s(WFM(19)=-0088)
DATA(THETA(20)= 3.580)s(WFM(20)=-0+096)
DATA(THETA(21)= 4e300)s(WFM(21)=-0e220)
DATA(THETA(22)= 5e130)s(WFM(22)= 0200)
DATA(THETA(23)= 6e080)9s(WFM(23)= 0e110)
DATA(THETA(24)= T7e210)s(WFM(24)= 0e155)
DATA(THETA(25)= 8e540) s (WFM(25)==-04160)

DATA(THETA(26)= 104100)s(WFM(26)=-0e130)
DATA(THETA(27)= 12500)s(WFM(27)= 0e098)
DATA(THETA(28)= 15600)s(WFM(28)=-0e123)
DATA(THETA(29)= 184800)s(WFM(29)= 0e148)
DATA(THETA(30)= 21900) s (WFM(30)=-0e173)
DATA(THETA(31)= 25100) 9 (WFM(31)= 0e197)
DATACTHETA(32)= 284200) s (WFM(32)==0e222)
DATA(THETA(33)= 31e400)s(WFM(33)= 0e247)
DATA(THETA(34)= 344500) 9 (WFM(34)==0e271)
DATA(THETA(35)= 374700) s (WFM(35)= 0e568)
W=THETA(1) /T

SUM=6 % (AIM(W) /WFM (1))

CO 1 1=2,435

W=THETA(I) /T

SUM=SUM+ATIM(W)/WFM (1)
ROSEBK=HINF+SUM/100

RETURN

END
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APPENDIX II

REAL FUNCTION ROSBKM(T,AIMyHINF)

THIS PROGRAM CALCULATES THE STEP RESPONSE OF A LINEAR SYSTEM.
THE ROSENBROCK COSINE CURSOR TECHNIQUE
IN SECONDSe.

T=TIME
ATM

IMAGINARY PART OF
GIVEN FREQUENCY We W IS
HINF=VALUE OF TIME FUNCTION,

DIMENSION THETA(168)sWF(168)

DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA(
DATACTHETA (
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA (
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETAC(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(
DATA(THETA(

1)=
e
3)=
e
5) =
6)=
7)=
8)=
9)=
10)=
11)=
12)=
13) =
14)=
15) =
16) =
17)=
G
19)=
20) =
21)=
22)=
23)=
24) =
25) =
26) =
27)=
28) =
29) =
30)=
31)=
32)=
33)=
34) =
35) =
36)=
37)=
38) =
39)=
40) =
41y =
ag=
43)=
4ty =
45) =
46) =
47)=
48) =

H(T)
1e¢0592537252F —=2)s (WF(
11885022274E =2) s (WF(
133352143226 =2) s (WF(
1e4962356561E —=2) 9 (WF(
1.6788040181E —2) s (WF(
1.8836490895E —2) s (WF(
241134890398E —=2)s (WF(
2e3713737057E  —2) s (WF (
2e6607250598E =2) s (WF(
2.9853826190E  —=2) s (WF(
343496543916E  =2) 4 (WF(
3.7583740430E =29 (WF(
4421696503464E =2) s (WF(
4.7315125895E —=2) s (WF (
5e3088444424E —=2) s (WF(
5e9566214355E =29 (WF(
6e6834391758E —=2) s (WF(
7e4989420937E —2) s (WF(
8e4139514165E —=2) s (WF(
9et440608T62TE  =2) s (WF(
1¢0279020267E —=1) s (WF(
1¢0860633719E —1)s (WF(
1e¢1475156358E —1) s (WF(
1e2124450271E  —=1) s (WF(
1e28104829C7E —1)s(WF(
135352330376  —1)s (WF(
1e4301197055E —1) s (WF(
1¢5110395633E  —1) s (WF(
1e¢5665380751E —1) s (WF(
1e6868743130E —1)s(WF(
147823220080E —=1) s (WF(
1¢8831703795E —1) s (WF(
169897250117E —1)s(WF(
241023087795E  —1) 9 (WF(
242212628270E —1) s (WF(
2e3469476011E —1)s(WF(
2047974394 24LE  —1) s (WF(
2e6200542451E  —=1) s (WF (
2.7683036649E —1)s (WF(
209249414191E  =1) s (WF(
3e09044214C9E —1) s (WF(
3e2653073201E =1)s (WF(
2445006682155 —1)9 (WF(
3.6452804916E —1) 9 (WF(
2¢8515398542E —1)s (WF(
440694699027E —=1) s (WF(
4e2997309952E —1) s (WF(
4454302085356 —1) s (VF(
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IS USED

WITH N=168.

IS THE NAME OF A FUNCTION SUBPRCGRAM THAT CALCULATES THE
THE SYSTEM TRANSFER FUNCTIONS»
IN RADIANS/SECOND

AT T=INFINITY.

IMCACIW) )y

161512279585E
l1e1512112353E
11511901820E
1¢1511636777E
1.1511303112¢E
1.1510883055E
141510354243E
11509688520E
115088504¢42E
1¢1507795293E
1¢1506467212E
1¢1504795202E
141502690283E
1¢1500040755E
141496705359t
1614925068603E
141487221860E
1e1480569663E
le14721968€6E
1e41461659020E
5e¢47490551C7E
5e¢4715265224E
5¢4677551496E
5e4635459366E
544588481809E
5¢45360535E5E
5e4477544072E
50441225074 7E
5e4339390C66E
£e4258089093E
544167374985E
Se4066164135E
563953249636E
543827287731E
5e¢3686782763E
5025800729 TE
53355300284E
53160414295E
52943126033E
52700896503E
5e2430907494E
52120033813E
541794811748E
5e1421406880E
5e¢1005577865E
5e0542638GT4E
5e0027420543E
449454226707E

AT A

=1L )
=1L )
=1
=1}
=L ))
-1)
S1%)
=i )
=1L))
=il )
=1 )
=1L}
=L ))
=)
=L
=1L )
=L )
=L
=L )
=1l ]
=& )
=ZY
=2 )
=2
=2 )
=i )
=28)
=%
=2
=2},
=& )
)
=2},
=&
=2
=2
=23)
=2)
=%
=2 )
-2)
=2 ]
=)

=72 )

= )
=28
=2
20



DATA(THETA( 49)=
DATA(THETA( 50)=
DATA(THETAC( 51)=
DATA(THETA( 52)=
DATA(THETA( 53)=
DATA(THETA( 54)=
DATA(THETA( 55)=
DATA(THETA( 56)=
DATA(THETA( 57)=
DATA(THETA( 58)=
DATA(THETA( 59)=
DATA(THETA( 6C)=
DATA(THETA( 61)=
DATA(THETA( 62)=
DATA(THETA( 63)=
DATA(THETA( 64)=
DATA(THETA( 65)=
DATA(THETA( 66)=
DATA(THETA( 67)=
DATA(THETA( 68)=
DATA(THETA( 69)=
DATA(THETA( 70)=
DATA(THETA( 71)=
DATA(THETAC( 72)=
DATA(THETA( 73)=
DATA(THETA( 74)=
DATA(THETA( 75)=
DATA(THETA( 76)=
DATA(THETA( 77)=
DATA(THETA( 78)=
DATA(THETA( 79)=
DATA(THETA( 80)=
DATA(THETA( 81)=
DATA(THETA( 82)=
DATA(THETA( 83)=
DATA(THETA( 84)=
DATA(THETA( 85)=
DATA(THETA( 86)=
DATA(THETAC( 87)=
DATA(THETA( 88)=
DATA(THETA( 89)=
DATA(THETA( 90)=
DATA(THETA( 91)=
DATA(THETA( 92)=
DATA(THETA( 93)=
DATA(THETA( 94)=
DATA(THETA( 95)=
DATA(THETA( 96)=
DATA(THETA( 97)=
DATA(THETA( 98)=
DATA(THETA( 99)=
DATA(THETA(100)=
DATA(THETA(101) =
DATA(THETA(102)=
DATA(THETA(103)=
DATA(THETA(104) =
DATA(THETA(105) =
DATA(THETA(106) =
DATA(THETA(107)=
DATA(THETA(108)=
DATA(THETA(109)=
DATA(THETA(110)=
DATA(THETA(111)=
DATA(THETA(112)=

448000766 78T7E
S oG VT EEDIE
53586459592E
56618519546E
59822141264E
6¢3207032152E
6.6783448887E
7e¢0562228502E
Te45548212C2F
T7¢8773325076E
83230522776E
879399202C9E
9e2915787473E
948173202124E
140372809486E
160959729774E
161579859523¢L
162235077811E
1e2927370038EF
1¢36588233943¢E
1e4431685961E
1e¢5248267937E
1¢6111054225E
167022659184E
17985845100E
1.9003530559E
2.0078799283¢
2¢1214909480E
22415303720¢E
2¢3683619359E
250236995€65E
246439604962E
2¢7935625935E
29516295629E
3.1186403686CL
32951010761E
344815463849E
346785412501E
348866825921E
401066011072E
443389631792E
4e5844728953¢E
448132736282E
50215684925E
52388773367E
54655902411E
57021141679E
5¢9488736852¢E
62063117521C
6e4748904710E
67550919587E
7e¢0474191923E
73523969138E
Te6705725749E
8.0025173172E
843488269993 E
84710123264 7E
9.0870546603E
94802977965 E
98905585664 E
1.0318573409E
1.0765110634E
1¢1257373677E
1.1780972453E

-1)s(WF( 49)= 4,8816793220E -2)
-1)s(WF( 50)= 4.8108243315& -2)
=1)s(WF( 51)= 447321044583E -2)
—1)s(WF( 52)= 44,6446967071E =-2)
=1)s (WF( 53)= 445477044637E =2)
=1) s (WF( 54)= 4444015417828 =2)
=1)s(WF( 55)= 44,2209928509E -2)
=1)s(WF( 56)= 4418908670725 =2)
=1)s (WF( 57)= 4404322149705 =2)
—1)s(WF( 58)= 2,8821050574E -2)
=1)s(WF( 5G)= 37043727281t =2)
-1)s(WF( 60)= 345085565708E =-2)
—1) s (WF( €1)= 342932994845 =-2)
—1)s (WF( 62)= 2405697544888 -2)
0)s(WF( 63)= 27981173717 =2)
0)s (WF( 64)= 245152545146E =2)
0)s(WF( 65)= 2.2070014122c =2)
0)s (WF( 66)= 148721208209E -2)
0)s(WF( 67)= 1450960325609E =-2)
0)s(WF( 68)= 1411876617108 =2)
O)s(WF( 69)= 649937567920E =-3)
0)s (WF( 70)= 265179394964E =3)

0)s(WF( 71)=—-2.2284511938t =3
0)s (WF( 72)=-T7.2242993780E -3)
0) s (WF( 73:=-142436343696E -2)

0)s(WF( 74)=—1.7816514900t -2)
0)s(WF( 75)=—243299028355L =-2)
O)s(WF( 76)1=—2.8797326857E -2)
0)s(WF( 77)=-3,4201037984t -=2)
0)s(WF( 78)=-23,9373196189% -2)
0)s (WF( 79)=—=4,4148100620E =-2)
0)s(WF( 80)=—-4,8330319743E =-2)
0)s (WF( B1)=-541695527926E -2)
0)s (WF( B82)=—543994048656t —2)
O)s(WF( 82)=-5,4958170368E -2)
0)s (WF( 84)==5,4314461342E -2)
0)s(WF( 851=-5,1802379623E -2)
0)s (WF( 86)1==447200370403% =2)
0)s (WF( 87)=-4.03€0310394t -2)
0)s (WF( 88)=-3,1250108611E =2)
0)s(WF( 89)=-2.0003247347E -2)
0)s(WF( 901=—649712238045E -3)
0)s(WF( 91)= 4427445620485 -3)
0)s(WF( 92)= 12881474465 =-2)
0)s(WF( 93)= 241258997455 -2)
0)s(WF( 94)= 248924519540E -2)
BN o AME (. @5 = 2 B22BERQEETIE - <=2
0)s(WF( 96)= 349919731387t -2)
0)s (WF( 97)= 442119692665E =2)
0)s(WF( 98)= 4,1454627137E =-2)
0)s(WF( 99)= 3.7556220600E -2)
0)s(WF(100)= 340454922967 =2)
0)s(WF(101)= 2.0267168345E -2)
0)s (WF(102)= 7.6689519987E =3)
0) s (WF(103)==642644562724E -3)
0)s (WF(104)=~-2.0037236428E =2)
0)s(WF(105)=-3.1835668585E -2)
0)s (WF(106)=—3e9734782958E -2)
0)s (WF(107)=-442014194860E =-2)
0)s (WF(108)=-347561585339E -2)
1)s(WF(109)=-2.6303868098E -2)
1)s (WF(110)=-945610165352E -3
1)s(WF(111)= 118125964228 =-2)
1)s(WF(112)= 341013723979E =2)
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DATA(THETA(113)=
DATA(THETA(114)=
DATA(THETA(115)=
DATA(THETA(116)=
DATA(THETA(117)=
DATA(THETA(118)=
DATA(THETA(119)=
DATA(THETA(120)=
DATA(THETA(121)=
DATA(THETA(122)=
DATA(THETA(123)=
DATA(THETA(124)=
DATA(THETA(125)=
DATA(THETA(126)=
DATA(THETA(127)=
DATA(THETA(128)=
DATA(THETA(129)=
DATA(THETA(130)=
DATA(THETA(131)=
DATA(THETA(132)=
DATA(THETA(133)=
DATA(THETA(134)=
DATA(THETA(135)=
DATA(THETA(136)=
DATA(THETA(137)=
DATA(THETA(138)=
DATA(THETA(139)=
DATA(THETA(140)=
DATA(THETA(141)=
DATA(THETA(142)=
DATA(THETAC143) =
NATACTHETA(144) =
DATACTHETA(145) =
DATA(THETA(146)=
DATA(THETA(147)=
DATA(THETA(148)=
DATACTHETA149) =
DATA(THETA(150)=
DATA(THETA(151)=
DATA(CTHETA(152) =
ODATA(THETA(153)=
DATA(CTHETA(154) =
DATA(THETA(155)=
DATA(THETA(156)=
DATA(THETA(157) =
DATACTHETA(158) =
DATA(THETA(159) =
DATACTHETA(160)=
DATA(THETA(161)=
DATA(THETA(L162)=
DATA(THETA(163)=
CATA(THETA(164)=
DATACTHETA(165)=
DATACTHETA(166) =
DATA(THETA(L1E6T) =
DATA(THETA(168)=
PI1=3e141592654
SUM=0,

DO 10 I=1,168
W=THETA(I) /T

1582 304571228k
1.2828170003E
163351768779E
1NeIBI8 5B 5 55IE
1e4398966331E
164922565107E
1¢5446163882E
145969762658E
1e6493361433E
1¢7016960209E
1¢7540558985E
1.8N64157760E
1858775653AE
169111355311E
1e9634954087E
2¢0158552863E
2.0682151638E
2¢1205750414E
2¢1729349190E
2e225294T7965E
262776546741E
2¢3300145518E
2e¢3954643987E
2¢4740042150E
20e 552,54 03V E
2¢6310838477E
2¢7096236640E
247881634804E
2e8667032967E
2¢9452431131E
3.0237829295E
3.1023227458E
341808625621E
3e2594023785E
3e¢3379421943E
4e4164820112E
3¢4950218276E
365735616439E
346521014603¢E
34730641217166E
34809181092%¢&
Bl BIEI 290931
3e96626NT256E
4e0448005419E
441233403584(
4e2018801747E
4e2804199910E
4435895980 74E
4o 437499623 7E
445160394401
445945792564¢C
446731190723¢E
4e¢7516588891E
4 e830198T7G54E
1.N000CCNOND00E
560265482465E

SUM=SUM+ATM (W) *WF ()
ROSBKM=HINF+SUM*%*2+ /P 1

RETURN
END

=2) s (WF(1€7)=
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1) (WF(113)= 440621066799E
1)s(WF(114)= 349000773613E
1)s (WF(115)= 247464617721E
1)s(WF(116)= 947163251075¢E

1) s (WF(117)=-942501146800E
1)s(WF(118)=-244493078391¢t
1)s (WF(119)=-342360678401E
1) (WF(120)=-3e1324007350L
1) (WF(121)=-2.2225019943E
1)s (WF(122)==7e9132542564F

1) (WF(123)= 746012475654E
1) (WF(124)= 2.023818C653E
1)s (WF(125)= 2.6892288850E
1)s(WF(126)= 266172497792E

1)s(WF(127)= 148664407829E
1)s (WF(128)= 646746551113E
1) (WF(129)=-644513005203E
1) (WF(130)=-147242853145E
1) (WF(131)=-2.3004943621E
1) (WF(132)=-2s2476170369E
1) (WF(133)=-146087172661E
) s (WF (134)==547713259545E

) s (WF(135)= 142164049017E
)o (WF(136)= 248558962636L
) s (WF(137)= 247727533397E
) s (WF(138)= 1.1185907715E

)9 (WF(139)=-1.0760080582E
) s (WF(140)=-2.5343093759E
) s (WF(141)==-2.4686225530C
) o (WF(142)=-949875408397L

)s (WF(143)= 946466781555E
)o (WF(144)= 242778202330E
)o (WF(145)= 242246175808E
) (WF(146)= 940211019511E

) o (WF (147)=-847420945861E
)2 (WF(148)=-2.0684785217E
) s (WF(149)=-2e0245116396L
)9 (WF(150)=-8.2252000384E

o (WF(151)= 769926190319¢E
)s (WF(152)= 148943782059E
) s (WF(153)= 1e48574352439¢
) s (WF(154)= 74558354691 7E

) s (WF(155)=-7¢3615066264E
) s (WF(156)=-1e7473109114E
) s (WF(157)=—147158338403E
) s (WF(158)=-6¢9915293813E

et et el i e e el el i e T el e B e e e S i i ]

)9 (WF(159)= 6.8227696271E
) s (WF(160)= 14621433857 7E
) (WF(161)= 15942935625E
)s (WF(162)= 645037906556E

1) s (WF(163)=-6e3575094445E
1) s (WF(164)=-1e5124749052E
1)s(WF(165)=-1.4888331517E
1) (WF(166)=-6.0796658102E
1.0000000000E

1)s(WF(163)= 2.0124038192E

S8
=123)
S
=28
=)
=)
=2
=28)
=& )
_’%)
=%
=g )
=z )
=2 )
=2 |
=3 })
=58)
=2 )
=2 )
=2}
=Z )
=2} )
=Z )
=28)
=28)
=72 )
=2 )
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=2 )
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S )
=2 )
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=3} )
=2 )
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=3}
=3 ]
=2.)
= )
=3 )
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=2 )
=3
=3
=28
=2
=28
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)
=3} )
0)
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Appendix lll. Coaxial Line Parameter Definitions

L= In (Q)
2 ri
21e

)
. /&L(LJ)
o 2w ri To

In the above u is the magnetic permeability, € the dielectric constant, o the conductor conductivity,
and r; and ro the radius of the inner and outer conductors.

series inductance

shunt capacitance

C:

skin effect constant
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