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Let I' be a discrete group of real 2 X 2 matrices of determinant 1. Generalizing the usual notion of
abelian integral, Eichler has defined ®(7) to be an automorphic integral of degree 2n—2 on I if (1)
®|A=>d+ w, for all 4el’. Here n is a positive integer, w, is a polynomial in 7 of degree 2n —2 or less,
and ® | A= (c7+d)?" 2P (A7), where 7 is confined to the upper half-plane. A consequence of (1) is that
(2) 1= | B+ wp. If ® has at most poles but no logarithmic singularities, ® is said to be of the second
kind and this requires (3) 1= Q| (4 —1) for all elements A that fix a real cusp of a fundamental region
of I', where () is a polynomial of degree < 2n—2. Eichler proved that the necessary conditions (2)
and (3') are also sufficient for the existence of a @ on I with the preassigned “periods’ w,, but only
when I is a subgroup of finite index in the modular group. Here (3') is a stronger version of (3). In the
present paper this is generalized to all groups I that are finitely-generated and have translations, and
we use the correct conditions (2), (3) rather than (2), (3").
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1. Let I be an H-group (defined in section 2). Following Eichler [1]' and Petersson [5] we
introduce a certain generalization of the abelian integral. For a function f(7) defined on the upper
half-plane H and an integer r, set

£(7) [oA= (ct+d)7f(Ar), A= (2‘ Z)

where A is real and has positive determinant; also set
f| r(alAl arF azAz) = 011f|rA 1ar azf' »As

for constants a;, as. We say ®(7) is an automorphic integral of degree 2n—2 = 0 on I" if ® satisfies
three conditions:

@ is meromorphic in H (1)

P |2nf2(A_]):a)A,A€r (2)

10 . . . .
where ]:<0 1) and w, is a polynomial of degree < 2n—2. Before we can describe the third
condition, certain preliminaries are required.

Let P,=P be a generator of the (cyclic) stabilizer of I' at the parabolic cusp p. If Vo= p,

V,€SL(2, R), then
1A
V;' ==l i i

P PVI )z (0 1 )7
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and \,> 0 for the right choice of P (either P or P~1); moreover )\, is independent of the choice
of V. Since (f|A4)|B=f]|AB, it follows from (2) that, with | =|.,_»,

OV p|Spy=DIPV,= (P+wp) V= P+ wp|Vy,

and here wy|V), is also a polynomial of degree <2n—2. Let q(7) =q,(7) be a polynomial of degree
< 2n—1 that satisfies the above equation, i.e., q|Sp=q+ wp|V,. Then (®|V,—q)|Sp=®|V,—¢q
and there is an expansion

DIV,= 2(1,,;,62”'“”/)‘1’+ qp (7).
h

The series in the right member is called the Fourier series of ® at p. We say @ is meromorphic
at p if its Fourier series at p converges for Im 7 = 7¢(p) and is left-finite. In that case

(D(T)|V1): 2 ahpe”ihf“‘p+ qp(7); 3)
h=ho(p)

ho is called the order of ® at p. The third condition in the definition of an automorphic integral
is now:

® is meromorphic at each cusp of I'.

The function ® is called an integral of the third kind. If the degree of g, is < 2n—2 for all p,
® is said to be of the second kind. When @ is of the second kind and ® is holomorphic in H and
at the cusps (order of ® nonnegative at each cusp), we say ® is of the first kind. The usual abelian
integral is the case n=1.

The polynomial w4 is called the period polynomial associated with A. From (2) we derive

wis=P|(AB—1)=D|(4—1)|B +P|B—1),
that is,
wis=wi|B+owp; A, Bel'. (4)

The relation (4) is therefore a necessary condition in order that a set of polynomials {w(7), A€l'}
of degree < 2n—2 be the period polynomials of an automorphic integral of degree 2n— 2.

Let N be a normal fundamental region (Dirichlet region) for I" and let p be a cusp of V. Since
the Fourier series of ®|V}, is invariant under S,, we calculate from (3):

wp=>[(P—1) =(I)|V,,|(S,,V;,1—V7,1) :(IP|VI_)1P_-qI)|V171: ((IP'VZI)HP_ 1):6p| (P—1).
Now suppose @ is of the second kind. Then ¢;, and therefore

- O,=q|V3',

are a polynomials of degree < 2, —2. That is,

wp:ep|(P‘_1) (5)

for each cusp p lying in N. This condition, along with (4), is a necessary condition. A stronger
requirement than (5) is

Il
o

wWp =

(")
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at each cusp of N, where, as always, P is the normalized generator of I,

In [1] Eichler shows, by applying the Riemann-Roch theorem, that the conditions (4) and
(5) are not only necessary but also sufficient in order that {w4} be the period polynomials of an
integral of the second kind. In [2] Eichler shows by an elementary method that (4) and (5") are
sufficient conditions, but only for I a subgroup of finite index in the modular group.

Eichler’s argument consists in setting up two Poincaré series, the quotient of which is the
desired atuomorphic integral ®. To establish convergence of the numerator series, he develops
an estimate of w4, namely.

lwa(7)| < C(r) f(e+d?),

where C is a function of 7 alone, A= <Z Z) and f'is a function defined in theorem 1, below. This
estimate depends in turn on some lemmas, which are established for general H-groups I” (see defini-
tion in Sec. 2), but the estimate for w4 is proved only for subgroups of the modular group.

It is the purpose of this paper to carry through Eichler’s argument for I', an arbitrary H-group,
using conditions (4) and (5), the correct conditions. This requires in particular the use of a different
type of Poincaré series than in [2]. | am indebted to M. I. Knopp for some helpful correspondence
on the role of conditions (5) and (5").

The map {4 — w., Ael'} is the basis of Eichler’s construction of a cohomology of I'. Such a
map is called a cocycle if (4) is satisfied; it is a coboundary if w4=6O|(4—1) for all 4eI", where O
is a fixed polynomial of degree <2n—2. See [1] for details.

The connection of automorphic integrals with automorphic forms is two-fold. First, an auto-
morphic integral is an automorphic form if its periods are all zero. Secondly, the (2n—1) —st
derivative of @ is an automorphic form of degree —2n. (This is easily proved by expressing the
derivative as a Cauchy integral.) Let ®(7) =d®"-D®|d2"~'7. Then ® is of the second kind if
and only if ® has no constant term in its Fourier series at p for all p. ® is of the first kind if and
only if @ is a cusp form. Here ® may have poles at interior points of H, but the principal parts
must be such that ® remains single-valued.

2. Let LF(2, R) be the group of all linear-fractional transformations A7 = (ar + b)/(ct+d)
with real a, b, ¢, d and ad —bec=1.Let SL(2, R) be the group of all real 2 X 2 matrices

A=((Z Z) of determinant 1. Then LF(2, R) =SL(2, R)/{I,—1I}, the correspondence being

+A— A, and we may write AT in place of A7 without confusion. We regard LF (2, R) as acting on
the upper half-plane H.

Next we introduce H-groups; these are horocyclic, possess translations, and have normal
fundamental regions of finite hyperbolic area. An equivalent to the last condition is that the funda-
mental region should have a finite number of sides, which implies that the group is finitely gener-
ated. For the facts about H-groups used in the following, see for example [3], [4], or [6]. In general
we do not distinguish between the matrix group I' and the transformation group I'/{I,—1I}, i.e.,
we identify A and — 4.

Let I' be an H-group. The stabilizer of » is denoted by I',; it is cyclic and we let

1 A
S—(O 1),)\>O (6)
be a generator. Write
r=r.-mM (7

to denote that M is a system of coset representatives of I' with respect to I'..
Let N be a normal polygon (Dirichlet region) for I' with center wo= x+ iy and having o« as
a cusp. We may assume
|xol < N/2, 3> 0. 8
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To see this, consider S™(N)=N,; then N, is a normal polygon with  as a cusp and the center of
N, satisfies (8) if m is chosen suitably. Let p be a cusp of N. If P fixes p, then SmPS-m= P, fixes
the cusp pi1=S"p of N. If condition (5) is satisfied for the fundamental region N. we have

(S—1)

w:>:(1,,|(P—1)» Ws=— (s
and the latter implies

wsm=— (ISI (Sm = )

for all integers m. Hence

wr,= g (S"—1)|[PS=7+ g, (P—1)|S"+ | (S —1).
Setting
0= (ge|lS™—1) +gp)|S—™,

we see after a little calculation that this is equivalent to

or,=Q[(pi—1).

Thus condition (5) is fulfilled for the fundamental region N,. We shall therefore fix a fundamental
region N, which is a normal polygon having © as a cusp and center wy satisfying (8). /V itself lies
in the strip |x| < \.

We can now select a system of representatives M so that Awy lies in the strip |x| < A/2 for
AeM. If this is not true for 4, it is true for S"A with a suitable m, and 4 andS"” 4 lie in the same coset.

For the moment we denote by m, m», . . . positive constants that depend only on I" and on
yo. Later we shall permit these constants to depend on other parameters also.

The sides of N are arranged in conjugate pairs, and the elements of I' mapping one side of a
pair on the other form a system of generators for I'. Call this system

#B={B:,B,, . . .,Bs}: 9)
it is finite since N has a finite number of sides. In [1] Eichler gives an algorithm for representing

Ael as a word in the generators 2. We proceed by induction: if we have already chosen D, . . .,D;
in the representation

A=Dng s D,‘ o o ..Djfi%
connect the point DD, . . . Di(wo) with Awy by a hyperbolic straight line. This line leaves the
polygon D; . . . Di(N) and enters a neighboring polygon, and it is seen that the latter can be
written as Dy . . . DiDi,(N) with a D, €. To start the process join wy to Aw,. The process

terminates (see [2]) and we get the representation:

A=DD, . . . D;,,Djﬁ.%. (10)
Note that a power of an element occurring in (10) is written as a product, i.e., BY would be written
asB| o 0 o B|=D_)‘+|Dj+2 5B o Dj+",.

The following two lemmas are proved in [2] (theorems 1 and 2) on the assumption that I is
an H-group and are therefore available to us. Define

w(B)=a?*+ B*+ y*+ 82, (11)
where B=<O; '[;>€SL(2, R). Note that

w(B) = 2.
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LEMMA 1. Let (10) be given. A factor of (10) that is not parabolic is called a section. IfDj.y . . . Dy
= P¥~i with P parabolic, then D;i, . . . Dy is called a section. Let [ be the number of sections in

(10); then
[=my log u(A) + m..

[LLEMMA 2. Let (10) be given and let
A=C1Cg e . Cl.-, (12)
where C; is a section. Then
/.L(C,CH.l 5 O O Cl.) = m;;,u(A), [=l, 2, & o on lt
We suppose now that a system of polynomials {w.(7)|4€l'} is given, of degree not exceeding
2n—2, and that this system satisfies (4) and (5), the latter condition being satisfied for the funda-
mental region NV specified above. We are going to estimate w . We need some preliminary lemmas
first.
. a b\ . .
[LEMMA 3. Let ((. (I)el . c#0. There exists a constant m, such that
lc| = my> 0.
This follows from the fact that I' is discrete and has translations; the proof is in [3], p. 45.
In the following we shall need a set of positive constants depending at most on I, wy, a positive
constant « to be defined later, and on the coefficients of the polynomials {wg, BeZ}. From now on
we denote such constants by my, ms, . . . .
We introduce the regions E,, a > 0:
Eo:lx|<1la,y=a. (13)
Every compact subset of H is contained in some E,.
LLEMMA 4. Let ¢, d be real. For teE, we have

mz(c2+ @) < |cr+d|? < mg|7|2(c2+ d?).

PROOF. When ¢= 0 the result holds provided m¢ = a2 When ¢# 0,

cr+d| |r+dfc| 2 war | =
citd| litdic] = 2P |itu
(xtwtyr Pt
B T S T
. u? ;
<2lrp+ 5 (1= |7)

<2|72+ 1< (24 a2)|7]2= mq|7R

Also
ct+d|2 . (xtu)2t+y® .
e e Ll
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For |u| <2/a, ¢(u) =y (1+u2?) = a?/(1+4a~2), while for |u|>2/a, ¢(u) > 2/4(1+u2)=
a2/(1+4a-2). Hence inf ¢p(u) = (1 +4a~2)! min (a2, a~2) =mq.

THEOREM 1. For AeM, t€E ., we have

|wa (1) | < mg|T—2f(c2+ d?),
where
f(u) =un-1(log u+ my). (14)

Assume A is factored into sections C; as in (12). Let 7€E,. Writing | for |2,-2, we get from (4):
Wi=wc, . . . (""*1|Ck+wck= 5 0 c
=(.ocl|C263. .o . Ck+wCZ|C3C4 S o o Ck+ G o o +a)ck. (15)

First, we shall assume C; is not parabolic, hence C;e%. We have

2n—-2

g ()= i;) bijTi,

where the b;; depend on j. Since all C; belong to the fixed set #, we may assume

2n—2
> bl < mao
i=0
for all j. Writing‘
o
Cior . . . ck=(y g)
we get
|((l)cj|Cj+] 5 5 o Ck)|=|‘y7‘+8|2"‘2|wcj(Cj+1 - . . CkT)l
D=2
< ¥ byl ler+Bli|yr+8[*—2-,
i=0

and by lemma 4 this is not more than

mé,vlllen—zE |bij[(az+B2)i/2(y2+82)n~14/2_
1

But lemma 2 shows that

2+ B2<msu(d), Y+ <mzu(d),
so that
[(@cj|Cisr - . o CO)| < mulr[*"=2un=1(4) ¥ b3l

or

[(wcj|Cisr -« o Ci)| < mao|7|>"2un—YA4). (16)
According to lemma 1 there are no more than m; log u(A4) + m, factors C;, so we get
04 (7)] < muslr]2n=201=1(4) {my log p(4) +ms}. an
Next, suppose Cj=P™ with P parabolic, PeZ. By our assumption (5)

wP=qPI(P_]-)7
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from which follows
wcj =qp| (Pm"—1) =q,|(C;—1)
Writing
2n—2
=Y ai, j=j(p)
i=0
we can say that
Y laijl <mi

i

for each p, since there are only a finite number of P in .

Now
@c;|Ciii . . . Ce=gp[(C;5D)|Cjsi . . . Ck
=gp|lCiCj+i - - . Ck—gp|Cjsi . . . Cr.

LetCj . . . Ck=<(‘xy 'g);then

(@i COI=< S lavllaz+Bliyr+ofn-2

i—0
Since w(C; . . . Cx) < mau(A4) by lemma 2, the previous argument yields
[(@olCj . . . C)| < musl7|>"=2pun=1(A4),

with a similar estimate for ¢,|Cj.; . . . Cy. It follows that w('j|C,-+l . . . Cy is subject to the

estimate (16), and therefore to (17). Each term of (15), then, is estimated by (17), which thus holds
for arbitrary Ael’.

Now we make use of the hypothesis that AeM. Recall that |Re Aw,| < A/2 for AeM. Also we
may assume c# 0, otherwise A==*1, and w;= w_;=0, the latter because 2n —2 is even. Therefore

0 =4 Im AlU() 1/(,‘&_)’0\ l/mﬁyo
Hence |Awo|? < m4, which with lemma 4 gives
mys(a?+b2) < |awo+ bP < mygcun + d> <mjJwolr (2 + &) < mig(c® + d?).

It follows that _
m(A) <m(&+d?), (18)

and this inequality, inserted in (17), completes the proof.

3. The Poincaré series used by Eichler in [2] was of the type

5t )

AeM

In order that this series should be independent of the particular system of representatives M,
which is essential for later developments, we must have wsma (1) = w4(7). By (3) this necessitates

wsm =0 for all m, that is, ws = 0. This explains Eichler’s condition (5'). Since we are using (5)

rather than (5'), the above series is not independent of the choice of M and we must proceed
differently.
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For this purpose we go back to the series proposed by Poincaré himself. Define

S wi(T)
YO == =D et e i)
1 .o
lb(T):,;.((LT—L')(CT+(1))‘~’”*2’LZ(C (1)- (20)

The first step is to prove convergence; here we make use of the system M. We have L=S"4,

AeM, so

_ — 1 = s (7) (-
i) E(C’T?L(l’)")'”2 2 (AT-i-%—m}\)""’”’A_(C d>'

AeM m=—x

By (17) we can write, for 7€E .,

|w5m‘4 (T)l $m13|7[2n—2#"1—1/2 (SmA).
But
m(S"A) < w(S™)w(A) < (m2A2+2)myo(c2+d?),

where we have used (18). Secondly, we get from lemma 4,

W (7)| < myglr|2n-2 E 1 Ex =1 .
&y PR e | mh+ AT — |22

Let E’, be the region obtained by deleting from E, a small disk about each point of the finite set
{L-', Lel'} N E,. Then Lt # i for 7ek’s, Lel'. Suppose |c| >co=max (2, 2a'); then E'; lies
outside the isometric circle |er+d|=1 of radius 1/ |c| < @/2. Hence L(E") is inside the isometric
circle | —cr+a|=1. Since the radius of the latter circle is 1/|c| < 1/2, it follows that, for all such
¢, |LT—1i| >1/2. For the finitely many c in |c| < ¢, we have | Lt—i| > 0, as stated above. There is
thus a positive constant my such that

(*) |Lt—i| > myy, 7€E s, Lel.
~Also, since AeM, we have when ¢ # 0,

1
c2(t+dJc)

1

a
mj«a

C

a
|[A7|= 24— < Moy,

S0
|AT—i| < ma, T€E., c # 0.

Hence |mA+A7—i|=|m|\—msy = |m|N2 for |m|X\=2ms, the inequality being established
directly when ¢=0, i.e., A7=r7. This gives for the inner sum of the double series above,

< my 2 m=3.

Nm|[=2m m=1
20

Next,E < myj,, the sum being extended over A\|m| < 2mso, because of the estimate (*). Since
m

2 (c2+d?)~?% is known to converge ([3], p. 71), it follows that the double series converges ab-
solutely uniformly in E’, and its sum is holomorphic there, i.e., holomorphic in E, except at the
points of {L =1}, where it has a pole. But { L~} lies below some horizontal line, so V¥ is holomorphic
in Im7 = my, In this region we have the order of growth

|\l’(7‘) l = nlg;;|T|2"72, Im7 > mss. (21)
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The same proof will show that ¢ is holomorphic in Im7 > m,, and is meromorphic in H. Now
all terms of ¢ tend to 0 as 7— i ©, for c= 0 implies Lt=7-+ kX for some integer k. Hence Yy — 0 as
T— 1. But § is an automorphic form of degree —2n—2 (i.e., | ~2n—2B=1s for BeI') and so the
last sentence implies that s has a Fourier series

W(r) = 2 bpe2mittIx p =1, (22)
h=h,
Moreover,  is not identically zero, since it has a pole at the points {L-1;}.
Consider now
¥(r)

*O=yE

It is readily checked that
‘I’(T)|~4B:"I'(T) +w13l[l(7'), Bel’;

consequently

®(7)|20-2B=P(7) + wp, Bel. 23)

That is, ® satisfies the transformation formula of an automorphic integral with periods wy. It is
clear also that ® is meromorphic in H.

To complete the proof that @ is of the second kind, we must show, first, that ® is meromorphic
at the cusps and, secondly, that the additive polynomial g,(7) of (3) is of degree =<2n—2. The
second condition is, however, immediately verified. Indeed, from (5) we have

w/»=9,,| (P—1),

where O, is of degree < 2n—2. Hence the equation (preceding (3))

q|(Sy—1)=06p

([)_])lVI':GI'lVI'HSI'_l)

is satisfied by ¢g=0,|V),, a polynomial of degree < 2n—2.
As to the first condition, since

(D(T) |2n~'.£Vp= (W(T)|—4Vp)/(l,/(7')|—2n—2Vp)s (24)

it is sufficient if numerator and denominator are each meromorphic at 7=i%(V,7=p) and the
denominator is not identically zero. Now | _»,_»V ), is not identically zero, since ¥ is not. We
must therefore investigate these functions at ;. Here p runs over all cusps of I', not just the
ones in V.

For p== choose V,=1. By (22) we have ¢y=0(exp (—2mh,7/\)) while (21) shows that ¥
=0(m2"2). Hence ®=0(exp 27h;7/\) and so is ® —¢, and the Fourier series of ® is therefore
left-finite.

When p is finite there are two cases. Suppose p is equivalent to «, i.e., there is a Bel such
that B o= p. Then @2, 2B=®+ wp= O(exp 2mwh,7/\) as 7—i ©, for we have just proved ® is of
this order. In general, if p, is equivalent to p:, the meromorphicity of ® at one point implies mero-

morphicity at the other. Hence we can assume p lies in N and in particular p is not equivalent
to oo,

Now choose

Vy= V:( p _(1)> . peN, p finite.
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We have
wL(VT)
((cVr+d) (LVT—i))2n+t2

V| W=72)

Lel

1 = wgng (V'7)
e
T2 T de , Zx (AV7r—i+mN)?t

AeM n

Set

_qv—(a bi\_(ap+tb —a
h=AV <c1 dn)_<0p+d —C>'

Certainly ¢, # 0, otherwise 4, = AV () =, but p is not I'— equivalent to . Moreover

cVr+d= (cit+d) 71

Rewriting, we get

o 1 0 W™ (V’Z’)
V| _V=s2n-2 ST A
|-aV=1 > (ci7+dp)2n+2 _Ex (Ar—i+mh)2+e

AeMV

LEMMA 5. For t€E . we have

lwg,, (V7)] < mas( (m2\2+2) (c3+d3))n-1/2,

We follow the proof of theorem 1, replacing 7 by V7 and confining 7 to E,. Then

|VTl: lp_l/Tl $p_+_l/|’r| <7+ 1/a=mas.

(25)

If we insert this estimate at each point in the proof of theorem 1, we obtain from (17) and (18):

gy (VD < mospn=12(S"A4)
< mag((M2N2+ 2) (c2+d?))" 12
Butci,=cp+d, di=—c, hence
2+ d2=d3+ (e, +dip)? < mar(c3+ d3).

This completes the proof of lemma 5.

Returning to (25) we can now establish, exactly as in the lines preceding (21), the absolute
uniform convergence of V| _4F in a region 7€E", obtained by deleting small disks about the points

{V-tL-1i, Lel'} from E,. If we let 7—=2i% in E, each term — 0, so that ¥|_,/— 0.

By a similar but simpler analysis | 3,27 — 0 with 7— i, Hence ¥ and i) are meromorphic

at each cusp p and by (24) so is ®.
We have proved:

THEOREM 2. Let I be an H-group. Let n be a positive integer, and let {w4(7)|A€el'} be a system of
polynomials of degree 2n—2 or less satisfying conditions (4) and (5), the latter being fulfilled
with respect to any normal fundamental region having © as a cusp. Then there exists an automorphic
integral of the second kind and of degree 2n—2 whose system of period polynomials is exactly

{wi(7)}.
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4. The following result is known: Given a finite set of points in a fixed fundamental region
N and a principal part associated with each point, there exists an automorphic form () of degree
2n—2 that has poles with the given principal parts and is holomorphic elsewhere in N with the
possible exception of the cusps. See Petersson, Konstruktion von Modulformen . . ., Sitzungsber.
Akad. Wiss. Heidelberg 1950, 417—494. The proof of this theorem depends on the Riemann-Roch
theorem Since ®+ () is obviously an integral of the second kind with the periods w4, we have:
THEOREM 3. Under the hypotheses of Theorem 2 there exists an automorphic integral of the second
kind and of degree 2n—2 that fulfills the conclusion of theorem 2 and in addition is holomorphic
in H.

Theorem 3 is similar to one to be published by S. Husseni and M. 1. Knopp, Eichler cohomology
and automorphic forms, which deals with integrals of the third kind. Their proof also involves the
Riemann-Roch theorem.

Note added in proof:

The material of this paper is closely connected with Eichler cohomology. Theorem 3 and
similar theorems that can be obtained by this method, can be used to prove the theorems of Eichler
[1], Gunning (The Eichler cohomology groups and automorphic forms, Trans. Amer. Math. Soc.
100, 44-62 (1961)), and Husseni-Knopp, quoted above. For an exposition see my paper in Proc.
of the Atlas Symposium No. 2, Computers in Number Theory, Academic Press (to be published).
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