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An n square matrix having an (n—1) principal minor which is block diagonal (or reducible)
is called cuttable (or cut-reducible). The connectivity matrix of a graph having a cutpoint is cuttable.
While neither block diagonal nor reducible, cuttable and cut-reducible matrices share with these
matrices some of the theoretical and computational simplicity derived from a natural division into
principal submatrices which are relatively independent of each other. Solution of linear compartmental
systems are shown to be simplified by the presence of a cutpoint in the system.
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1. Introduction

Block diagonal and reducible matrices are characterized by the presence of certain submatrices
all elements of which vanish. The digraphs associated with such matrices have the property that
their points are divided into subsets, such that the flow between the subsets is restricted in some.
fashion. For block diagonal matrices, there is no flow between subsets, that is, the digraph is dis-
connected. For reducible matrices, flow between subsets is unidirectional. The computational
advantage of block diagonal and reducible matrices arises from the fact that some of their proper-
ties may be expressed in terms of the properties of the smaller submatrices corresponding to the
subsets.

This paper will discuss two other kinds of digraphs with restricted flow between subsets, and
their matrices. For clarity and conciseness of the proofs, we shall assume that the system possesses
only two subsets. The extention to more complicated systems will be made at the end of the paper.
If all low between subsets passes through a single point, the point is known as a cutpoint. The
matrix of such a graph, which we shall call a cuttable matrix, possesses a diagonal element such
that the cofactor of this element is block diagonal. If all flow in one direction passes through
one point, we shall call the point a cut-reduction point. The matrix of such a digraph, which we shall
call a cut-reducible matrix, has a diagonal element such that its cofactor is reducible. It will be
shown that cuttable and cut-reducible matrices enjoy simplifying properties analogous to those
of block diagonal and reducible matrices.

2. Properties of Cuttable Matrices

We will begin with some definitions and notation.

Definition. A square matrix M is cuttable if it contains a diagonal element mc., called the
central cut element, such that the cofactor of me. is block diagonal. The row and column contain-
ing m.. will be called the cut row and cut column, and their elements cut elements.

A cuttable matrix is shown in figure 1. It is characterized by the zero submatrix ¥; of dimen-
sions (n—1—r)xr in the upper right, and its transpose, V5, in the lower left corner. The blocks
of the cofactor of the central cut element will be denoted by 4, B, etc. The (n—r) X (n—r) matrix
consisting of the block 4 bordered by the appropriate elements of the cut row and column will
be denoted by A, B, etc. The determinant of M will be denoted by | M | as usual. The matrix formed
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FIGURE 1. A system with a cutpoint and its cuttable matrix. All connections between block A, which consists of points 1.2, and
3, and block B, which consists of points 5 and 6, pass through point 4, so that deletion of point 4 disconnects A from B.
The matrix expression of this connectivity is that the cofactor of mas is block diagonal, with blocks A and B.

by deleting the ith row and the jth column of M will be denoted by M;;. Thus the cofactor of the ele-
ment m;; in the matrix M is given by (— 1)i *J| M;;|. With the help of these definitions, we can state:
THEOREM 1. If M is a cuttable matrix, then

|IM|[=|B||A|+[A[|B|-—me|A||B].
PRroOF: Note that the presence of an all zero submatrix of order (n—1—r)xr is a necessary
and sufficient condition for reducibility of an (n—1) X (n —1) matrix, so that if { and j are chosen
so that at least one of the two all zero submatrices remains intact, the cofactor of mj; is reducible.

It is seen from inspection of figure 1 that the cofactor of any element in the cut row or cut column
is reducible. Consider elements of the cut row. It can be seen that

(_1)C+j|M(‘j‘:‘Bi(_l)(+j|/?tj| J<c

|Mee|=|B

A j=c (1)

(—1)e+I| My

gl j>e

That is, the cofactor of an element bordering a block is given by the product of its cofactor
in the bordered block and the determinant of the other block. We can now write | M | as an expansion
of cofactors of elements of the cut row.

]W|—|[ﬂim”—] Yo+ | Aej| + mee|A||B|+ | A] E mej(—1)c+i| Bl . (2)

Jj=1 j=c+1

The sum of the first two terms is obviously | . since | A| is the cofactor of me in 1. The sum
of the second and third terms is similarly |4 ||B|. (The determinant of B expanded by elements of
the cut row is given by

rti

E UIijf(— 1 )1+~i,é1’jr

Jfseil
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where ', the column index in B is given by j/=j—c+1. Since (—1)1+/'= (—1)2+i-c= (—1)i-¢
= (—1)i*c, this is equal to the sum of the second and third terms of equation (2)). Since the middle
term has been counted twice it must be subtracted. so that

A

IM|=|B||A|+|A||B|—me|A||B|. (3)

THEOREM 2. In a cuttable matrix the cofactor of any cut element bordering A(B) is given by the
product of its cofactor in AB) and the determinant of B(A). The ratio of cofactors of any pair of
cut elements bordering A(B) is therefore independent of B(A).

PRoOF: The argument of equation (1) can be applied to elements of the cut column yielding
the equations

(— D)ol Mic| = | B (— 1) ] i<e
| Mec|=|B]| 4] = )

(_I)HF /wi('| :|”(_1)'+(‘Bu| l->('

Note that the cofactor of every element bordering the block A, i.e. m¢; with j < ¢ and mj., with

i < c contains |B| as a factor. We have shown then the following theorem.

THEOREM 3. In a cuttable matrix the cofactor of an element V, or Vs is given by the product
of the cofactors of the cut elements of its row and column, in their bordered submatrices. Therefore
the ratios of cofactors of any elements in the same row of Vi (Vo) will be independent of A (B). and
the ratios of elements of the same column (row) will be independent of B (A).

PROOF: Since the cofactor of any element of V; will contain }'», and vice versa, these cofactors
will be reducible. Choose, an element of Vy, i.e. i < ¢ <j, then

(=D [ M| = [(= D)< | i [11(= 1)+ | By (5)
Similarly. for an element V.. j < ¢ </, then
(= 1)+ | My| = [(= 1)+ | A5 | 1[(=1)i*<| Bic|]. (6)

This completes the proof of Theorem 3.
The cofactors of elements in 4 and B are cuttable matrices, with blocks 4;; and B for elements

in 4. and Bjj and { for elements in B. Using eq (3)

B

| My|=|A5||B|+ | Ay |B| = mee| Ay||B|  fori,j<c

(7)

‘M,'j|: |BU’4A|+ |14||B,-j|‘m(-(- A

| A3 for ¢ <j. 1.

It has now been shown that all cofactors and the determinant of a cuttable matrix can be
simply expressed in terms of these entities in the blocks and bordered blocks. Obviously then,
the inverse can be so expressed. The application of these properties to the analysis of linear com-
partmental systems will be discussed in section 3.

First let us consider briefly operations with cuttable matrices. Referring to ficure 1, we have
said that a cuttable matrix has vanishing submatrices J; and V5 of dimensions (n—1—r)xr. If for
two n X n cuttable matrices M and NV, r has the same value, we will say that they are correspondingly
cuttable with respect to c. where ¢=n —r. and denote the relation by M = N. It follows immediately,
for M, N, correspondingly cuttable matrices, and D, A, diagonal matrices

M=N—->MxN=M=N (8)

M*=M
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M=D=M

DMA =M
N is in general not cuttable.
It follows from these relations that
U—N=M 9)

THEOREM 4. If M is a cuttable matrix with blocks A and B
1. If N is a root of both A and B, it is a root of M.
2. If p A-ND<r—1, (p(B — M) < r— 1) where r is the rank of A(B), then \ is a root of M.

PROOF: Since eq (9) shows that if W is cuttable, so is W — Al, the characteristic equation of M
can be written, with the dimensions of the I's suitably chosen, as

\M—M|=|B=MN||A—=N|+|A—=M||B—N|— (mcc—\)|[A—N||B—\|. (10)

It can be seen that if A is a root of both 4 and B it is also a root of M. Similarly, any root common
to the pairs 4 and A, or to B and B, will be a root of M. If p(A—N) < r—1, where ris the rank of 1.
then A is a root of 4, as well as 4, and therefore of V.

3. Applications to Linear Compartmental Systems

In linear compartmental analysis, a system of n compartments is described by an n X n matrix
M, in which the elements mj; represent the fractional flow rate from compartment j to compartment
i, and the elements mj;, the fractional turnover rates, represent the fractional loss from compart-
ment ( to all other parts of the system. (In some disciplines, mj; denotes a flow from 7 to j, so the
present convention must be noted particularly).

If we define the transfer function x;; to be the Laplace transform of the response in compart-
ment i to a unit impulse function in compartment j at t =0, with initial conditions equal to 0 in all
other compartments, then it can be shown that

X=(sI—M)-1 (11)

We will call j the input and i the output in discussing the transfer function x;, and define
W= (sl—M).

We have shown that if M is cuttable, W is cuttable, and so the simplifications in computing
the inverse of a cuttable matrix can be utilized in the computation of X. In addition the reducibility
of some of the cofactors implies some important physical properties of systems containing cut
points. Note first that if x;; and xx are two transfer functions, then

Xy (D)W, )
kg (= 1)K Wy

That is, the ratio of two transfer functions is given by the cofactors of the corresponding
elements in W'7.

The ratio of x;; to xj; is of particular interest. Let f; (¢) and fj; (t) be the Laplace transforms of
xij and xji. If xjj/xj; is independent of s, then fij(¢)/f;i(¢) is independent of time, or f;j(t) is a multiple
of fji(t). If this relation holds for alli andj, the system is said to possess quasi-reciprocity. If x;;/x;;
equals unity, for all i andj the system possesses reciprocity.

In a system which does not exhibit quasi-reciprocity or reciprocity for all compartments, it
may be the case that for one or more pairs of compartments i and j, x;j/x;i is equal to unity or some
other constant. This property is called local reciprocity or quasi-reciprocity, and the types of sys-
tems which exhibit it have been studied from a graph theoretical viewpoint (Marimont, to appear
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in Bull. Math. Biophys. June, 1969). Local reciprocity in cuttable and cut-reducible systems will
be discussed in the following sections.

Let us now relate the cuttable matrix discussed earlier to a physical system. Let A be the
matrix corresponding to a system consisting of a set of compartments 4, plus compartment ¢, with
arbitrary connections among its members. Consider B, the matrix corresponding to a separate
system with arbitrary connections among its members. Let the systems be connected by any
number of flows in either direction between ¢ and any members of B. Then ¢ is a cutpoint, since all
flows between 4 and B must pass through ¢, and therefore deletion of ¢ would leave the two systems
A and B disconnected. The elements in the cut row represent flows to ¢ —those bordering block A4
are flows to ¢ from members of A, and those bordering block B are flows to ¢ from members of B.
Similarly the cut column represents flows from ¢ to other compartments. The elements of the zero
submatrices are direct flows between members of 4 and members of B, all of which are zero, since
all such flows must pass through c. We can now state the physical properties implied by Theorems 2
and 3.

Property 1 (From Theorem 2)

If in a compartmental system with cutpoint ¢ and blocks 4 and B. i and j (k and ¢) are both
members of 1 (B), then the ratio of any two transfer functions of the form xic. vei. Xje. or X (Xke.
Xek. Xgea OF Xoq) is independent of the block B (4), and is given by the ratio of the corresponding
transfer functions in the system A (B). If local reciprocity or quasi-reciprocity obtains between
two members of a system A. it will not be affected by the addition of any other systems which are
connected through either or both of these members as cutpoints.

Equations (5) and (6) yield results concerning transfer functions with input in one block and
output in the other. Let i and j be members of 4, and £ and ¢ be members of B. Then, from (5)

xie 1= D] 1= D0 B

= _ . 13
X [(= V|4 | (= Dera| B[] e

And from (6)

(= l)’:*fi Aell [(— H"‘“'.1 Bi | 14)
Xiq [(— 1) U| "('j} | [(—1)ae |Bq('“

Several conclusions can be drawn immediately from eq (13) and (14).
Property 2 (From Theorem 3)

The ratio of two transfer functions with inputs in A4 (B) and outputs in B (4) may be expressed
as a product of two ratios—that of the transfer functions in HB) of the two inputs, with the cut-
point as a common output, and that of the two outputs in B (1), with the cutpoint as a common
input.

Property 3 (From Theorem 3)

The ratio of two transfer functions with a common input in 4 (B) and separate outputs in
B (A), is independent of 4 (B), and is given by the ratio of the transfer functions of those outputs
in B (A), with the cutpoint as a common input.

Property 4 (From Theorem 3)

The ratio of two transfer functions with separate inputs in 4 (B) and a common output in
B (1) is independent of B (A4), and is given by the ratio of the transfer functions in . 1 (B) of those
inputs, with the cutpoint as a common output.
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4. Cut-reducible Matrices

If in the matrix of Figure 2 the entries of either /'y or V5, but not of both, are arbitrary, the
matrix is cut-reducible. An equivalent definition is that there is a diagonal element m. such that
the co-factor of me is reducible. Physically, this matrix describes a system with two blocks 4 and B
such that all low from 4 to B (B to A) must pass through point ¢, but that flow from B to 4 (4 to B)
is arbitrary. The point is called a cut-reduction point. Yet another physical characterization is
that the deletion of point ¢ makes flow between 4 and B unidirectional. Figure 2 shows a cut-
reducible system and its matrix.

Let us assume for concreteness that V; is arbitrary and V> zero, as in figure 2. Then all flow
from 4 to B must pass through ¢. The cut-reducible matrix differs from the cuttable in the fol-
lowing ways:

1. Not all cofactors of elements in the cut row and cut column are reducible. Cofactors of
the cut column bordering 4. and of the cut row bordering B are reducible, but since not all in any
row or column are, the determinant of a cut-reducible matrix cannot be expressed in the simple
form of eq (3), and therefore the results concerning the characteristic equations and roots do not
hold.

2. Cofactors of all elements in V; are reducible, but those in ¥, are not.

The analogues of Theorems 2 and 3 may immediately be stated for the cut-reducible matrix
of figure 2.

THEOREM 5. In the cut-reducible matrix of figure 2, the ratio of cofactors of any elements of
the cut column (row) bordering A (B) is independent of B (A). The ratio is that of their cofactors in
A®B).

THEOREM 6. In the cut-reducible matrix of figure 2, the cofactor of any element of V is given,
by the product of the cofactors of the cut elements of its row and column in their bordered sub-
matrices. The ratios of cofactors of any elements in the same row will be independent of A, and these
in the same column independent of B.

The physical properties of cut reducible systems can be easily deduced from these theorems,
as were those for cuttable systems from Theorems 2 and 3.
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FIGURE 2. A system with a cut reduction point and its cut-reducible matrix. All flow from block A, consisting of points 1,2, and
3, to block B, consisting of points 5 and 6, passes through point 4, although flow from B to A is unrestricted. Deletion of

point 4 therefore eliminates flow from A to B. The matrix expression of this connectivity is that the cofactor of mus is re-
ducible, with blocks A and B.
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A property similar to property 3 for cut-reducible chemical kinetic systems was described
by Hearon (1955. unpublished). His term link variable corresponds to our cut-reduction point.

5. The General Cuttable or Cut-Reducible System

So far the simplest types of cuttable-and cut-reducible systems and their matrices have been
described —namely those with a single distinguished point (either cut-point or cut-reduction
point) which divides the system into two subsystems. A cut-point may divide the system into more
than two disjoint subsystems, in which case matrix B is block diagonal. There may be more than
one cutpoint, in which case B is cuttable. The system may have both cut and cut-reduction points.
In general, the greater the complexity of the system, the greater the advantage of the cut simpli-
fications, since the submatrices dealt with are smaller relative to the whole matrix than they are
in the case of two submatrices.

(Paper 73B2-295)
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