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The seco nd orthogonalit y conditions are used to provide a conc ise proof of the theore m that two 
rot ation ma tri ces co nnec ted by an orthogona l s imil a rit y tra nsformation ha ve th e sa me angJes of rota
tions . This th eo re m is di scussed in the cont ex t of it s a ppli cability to the proble m of deco mpos ing the 
rea l ort hogo na l group 0(3) into its c lasses of co njugate e le ments. 
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1. Introduction 

As i s we ll known , rotations be long to th e group 0 (3) of rea l orthogonal tran s form a tion s in 
Euclidean three-dim ens ional s pace. Thi s gro up also co ntain s th e coordinate inve rs ion with res pect 
to the ori gin , and th e rotat.ion-invers ions , th a t is, th e produc ts of th e invers ion with all proper rota
ti ons. An important th eore m for 0 (3) s tates th a t aJl rotations throu gh the sa me angle, regardless 
of their axes be long to the sam e class. 1 Thi s means that the conj ugate of any rotation by an arbitrary 
me mber of 0 (3) is another rotation by th e sa me amount as the origin al rotation , 

In th e lite rature, the variou s proofs of thi s theore m are based on the representation of 0 (3) 
by real orthogonal three-by-three matrices. It is s hown that th e s imilarity transform of any given 
rotation matrix R by an arbitra ry orthogonal matrix A, represents a rotation R ' by th e same anglt> 

;cas R. Th a t is. with N = Rn(a) given, and R ' d e fin t> d by 

(l) 

R' is express ible as Rn'(a), amatrix of rotation by the sam e angle a. about an axi s Of whi c h differs 
from n but is related to it. The statement that the angle whi c h apperas in W is t he same as that 
which appears in R , together with the relation between Ili and n/ co ns titute what we shall refer 

"-
to as the conjugacy theorem. (It has no specific name in the literature.) 

One proof of th e conjugacy th eo re m consists in showing that a given matrix can, by a suitable 
simi larity transformation, be re-ex pressed as a matrix representing a rotation by the same angle 
about one of the coordinate axes [1 , 21.2 Lt then follows that any two matrices of rotation by the same 
angle can be transform ed into each oth e r by similarity transformation. This proof does not explic itly 
construct th e relat ionship be twee n the axes of rotation, 
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In a second proof [3], it is found convenient to regard the matrices Rand R' as active, rather 
than as passive transformations. This means that Rand R' are thought of as the matrix representa
tives in an initial and final coordinate system respectively, of an operator (on vectors) which is 
defined in all coordinate systems. The matrix A is still regarded as a passive transformation of 
coordinates between the initial and final systems. It is then shown that the matrix elements Rij 
computed in the initial system of basis vectors (bt, b 2 , b 3 ) are ide ntical to the corresponding matrix 
elements RiJ computed in the final basis, that is, in the basis (b'l, b;, b~l) given by 

(2) 

It is then argued that the identity of the matrix elements implies the equality of a and a'. This 
argument is substantially correct. However, it is not sufficiently emphasized in reference [3] that 
this argument fixes the transformation relation between nand n'. As pointed out in paper II (ref. 
[4]) the choice of an angle of rotation is correlated with the sense of the axis. Therefore, arguing 
that (\" = a follows from Rij = Rij, and assuming that a' is correlated with n' in a definite way, 
one arrives at an unambiguous relation between nand n', since a is assumed to be correlated with 
n in a definite way. 

The purpose of this paper is to present a new proof of the conjugacy theorem, which follows 
concisely and elegantly from the second orthogonality conditions. In addition to its conciseness 
it has the advantage that it does not use a different interpretation (i.e. active versus passive) for 
Rand A. By explicitly requiring that the convention for defining n with respect to R be the same 
as that for defining n' with respect to R', one immediately obtains both the equality of a' and a, 
and the relations 

n; = (det A)A ijllj (3) 

as the transformation law for the axis of rotation. 

2. Proof of the Conjugacy Theorem 

We co nsider the arbitrary real orthogonal three-by-three matrices C and A. The similarity 
transform of C by A is 

14) 

We de note the intrinsic vector of (; by Wand that of C' by W' . These vectors are 

(Sa) 

(Sb) 

Inserting the right side of eq (4) for Cjk in eq (5b), and using the cyclic property (I 10) [5] of the 
Levi-Civita symbol, we have 

16) 

For the parenthetic expression in eq (6) we can use the second orthogonality conditions in the form 
(I 9b). This leads to 

where we have again used the cycli c property of the Levi-Civita symbol. Here , the handedness 
factors p and p' refe r to the coordinate systems connected by A . From eq (Sa) we recognize the 
combination Erjk(;j k as Wr • Therefore:\ 

:1 [f (.' a nd G' were to be re~arded as ac ti ve tra nsformations a nd A as a pass ive transfurmatiun the n eq (7) says that the intrins ic vector 1)[ an active transfonnatiun 

matrix has the transformation properties of an axia l vec tor. 
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n ,/ ' - I) A W - (d A "" i -, ir r - et ) A ir l1? r. 
p 

(7) 

where in the las t s tep we have used in fact that de t A = p' Ip = p ip'. The transtormation (7) prese rv(' s 
the length of W, so that W' = W. This follows from the first orthogonality conditions (I 7). 

W e now s pecialize the development to matri ces C which represent proper rotations , using H 
to denote s uch a matrix. From the result that the determinant of any orthogonal matrix is preserved 
under the s imilarity transformation (4) we have that det R' = det R =+ 1. Therefore ARA represents 
a proper rotation if R does. The trace of an orthogonal transformation matrix is also preserved 
under the tran sfo rmation (4). Hence tr R' = tr R. It then follows from eq (II 4) that cos a ' = cos a. 

We nuw impose the requirement that the convention for relating the sense of n ' , the axis of 

rotation of R', to that of W' , be the same as the convention for relating the sense of n, the axis of 
rotation of R, to that of W, regardless of whether A involves a c hange of handedness or not. Thus 
if n = A(W/W) where A=± 1, then we define 4 n' == A(W' (W' ). From eq (7) this means that the 
re quired transformation for the axis of rotation is given by e q (3). 

The sine of a, the angle of r0tation of R is given by eq (II 17) to be 

s in a=t n ·W =t AW. (8) 

Similarly the sine of a', the angle of rotation of R' is 

(9) 

whe re we have used the in variance of the le ngt h of W und er th e tran sfo rmation (7). We see as a 

result th at s in a' = sin a . Co mbinin g thi s res ult with th e fact th a t cos a ' = cos a we have that 
a' = a unambiguously. This laller res ult toge ther with eq (3) co mple tes the proof of the conjugacy 
theo re m. 

The co nju gacy th eorem a ll ows one to classify not only the prope r rotati ons but the implope r 
ones as well. This follow s from the fa c t th a t a ny improper rotation is expressible as a rotation
inversion , tha t is, as a coo rdinate inversion preceded or follow ed by a proper rotation. The in
version would a ppear on both sides of eq (4) and be cancelled. The conjugacy theore m the n s hows 
that eq (3) a nd the res ult a' = a hold for the proper rotations of the rotation-inversions which would 
appear on the two s ides of eq (4). It the n follows that the class of a given imprope r rotation co n
s is ts of all rota ti on-invers io ns of the same angle regardless of their axes. 

I thank Werner E. Sievers, John F. Sullivan, and William A. Whitc raft , Jr., for th eir e ncourage
ment durin g the co urse of this work. 
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