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The second orthogonality conditions are used to provide a concise proof of the theorem that two
rotation matrices connected by an orthogonal similarity transformation have the same angles of rota-
tions. This theorem is discussed in the context of its applicability to the problem of decomposing the
real orthogonal group 0(3) into its classes of conjugate elements.
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1. Introduction

As is well known, rotations belong to the group 0 (3) of real orthogonal transformations in
Euclidean three-dimensional space. This group also contains the coordinate inversion with respect
to the origin, and the rotation-inversions, that is, the products of the inversion with all proper rota-
tions. An important theorem for 0 (3) states that all rotations through the same angle, regardless
of their axes belong to the same class.! This means that the conjugate of any rotation by an arbitrary
member of 0 (3) is another rotation by the same amount as the original rotation.

In the literature, the various proofs of this theorem are based on the representation of 0 (3)
by real orthogonal three-by-three matrices. It is shown that the similarity transform of any given
rotation matrix R by an arbitrary orthogonal matrix 4, represents a rotation R’ by the same angle

cas R. That is. with R = R,(«) given, and R" defined by

R' = ARn()A ' = AR )4, (1)

R’ is expressible as Ra(®), amatrix of rotation by the same angle . about an axis n’ which differs
from m but is related to it. The statement that the angle which apperas in R’ is the same as that
w\hich appears in R, together with the relation between n; and n;" constitute what we shall refer
to as the conjugacy theorem. (It has no specific name in the literature.)

One proof of the conjugacy theorem consists in showing that a given matrix can, by a suitable
similarity transformation, be re-expressed as a matrix representing a rotation by the same angle
about one of the coordinate axes [1, 2].2 It then follows that any two matrices of rotation by the same
angle can be transformed into each other by similarity transformation. This proof does not explicitly
construct the relationship between the axes of rotation.
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1 We remind the reader that the class of a group element consists of all of the distinct results of forming the conjugate of that element with all other elements in
the group. The conjugate of a group element g by another element h is g’ = hgh~'.

2 Figures in brackets indicate the literature references at the end of this paper.
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In a second proof [3], it is found convenient to regard the matrices R and R’ as active, rather
than as passive transformations. This means that R and R’ are thought of as the matrix representa-
tives in an initial and final coordinate system respectively, of an operator (on vectors) which is
defined in all coordinate systems. The matrix A is still regarded as a passive transformation of
coordinates between the initial and final systems. It is then shown that the matrix elements R;
computed in the initial system of basis vectors (by, b, bs) are identical to the corresponding matrix
elements R;; computed in the final basis, that is, in the basis (b}, b}, b}) given by

b; :A,ij (2)

It is then argued that the identity of the matrix elements implies the equality of @ and «'. This
argument is substantially correct. However, it is not sufficiently emphasized in reference [3] that
this argument fixes the transformation relation between n and n'. As pointed out in paper II (ref.
[4]) the choice of an angle of rotation is correlated with the sense of the axis. Therefore, arguing
that o' =« follows from Rj; = Rj;, and assuming that o’ is correlated with n’ in a definite way,
one arrives at an unambiguous relation between n and n’, since « is assumed to be correlated with
n in a definite way.

The purpose of this paper is to present a new proof of the conjugacy theorem, which follows
concisely and elegantly from the second orthogonality conditions. In addition to its conciseness
it has the advantage that it does not use a different interpretation (i.e. active versus passive) for
R and A. By explicitly requiring that the convention for defining n with respect to R be the same
as that for defining n’ with respect to R’, one immediately obtains both the equality of @’ and «,
and the relations

n;=(det A)4;n; 3)

as the transformation law for the axis of rotation.

2. Proof of the Conjugacy Theorem

We consider the arbitrary real orthogonal three-by-three matrices G and 4. The similarity
transform of G by A is

G =A6A"1'=AGA. (4)

We denote the intrinsic vector of G by W and that of G’ by W'. These vectors are
Wi = €ixGik. (5a)
Wi = €ipGjy. (5b)

Inserting the right side of eq (4) for Gj, in eq (5b). and using the cyclic property (I 10) [5] of the
Levi-Civita symbol, we have

W/,'l - (-”’rjAsl\'er.\'i) (’/A (6)

For the parenthetic expression in eq (6) we can use the second orthogonality conditions in the form

(I 9b). This leads to
Wirz;% ir€rjkGjk

where we have again used the cyclic property of the lLevi-Civita symbol. Here, the handedness
factors p and p’ refer to the coordinate systems connected by 4. From eq (5a) we recognize the
combination €,j:Gjx as W,. Therefore*

31If G and " were to be regarded as active transformations and 4 as a passive transformation then eq (7) says that the intrinsic vector of an active transformation

matrix has the transformation properties of an axial vector.
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W/i, :[% 41'1‘”7/:': (del 4) Airu!r- (7)

where in the last step we have used in fact that det A= p'/p= p/p’. The transtormation (7) preserves
the length of W, so that #' = W. This follows from the first orthogonality conditions (I 7).

We now specialize the development to matrices G which represent proper rotations, using R
to denote such a matrix. From the result that the determinant of any orthogonal matrix is preserved
under the similarity transformation (4) we have that det R’ = det R =+ 1. Therefore ARA represents
a proper rotation if R does. The trace of an orthogonal transformation matrix is also preserved
under the transformation (4). Hence tr R'=tr R. It then follows from eq (Il 4) that cos &' = cos «.

We now impose the requirement that the convention for relating the sense of n’, the axis of
rotation of R', to that of W', be the same as the convention for relating the sense of n, the axis of
rotation of R, to that of W, regardless of whether 4 involves a change of handedness or not. Thus
if n=AN(W/W) where A==+1, then we define* n' = N(W'/W'). From eq (7) this means that the
required transformation for the axis of rotation is given by eq (3).

The sine of «, the angle of rotation of R is given by eq (I 17) to be

sin =3 n-W=1% \W. (8)

Similarly the sine of a', the angle of rotation of R’ is

(NG ©)

where we have used the invariance of the length of W under the transformation (7). We see as a
result that sin @' =sin «. Combining this result with the fact that cos @' = cos « we have that
a' = a unambiguously. This latter result together with eq (3) completes the proof of the conjugacy
theorem.

The conjugacy theorem allows one to classify not only the proper rotations but the improper
ones as well. This follows from the fact that any improper rotation is expressible as a rotation-
inversion, that is, as a coordinate inversion preceded or followed by a proper rotation. The in-
version would appear on both sides of eq (4) and be cancelled. The conjugacy theorem then shows
that eq (3) and the result @’ = a hold for the proper rotations of the rotation-inversions which would
appear on the two sides of eq (4). It then follows that the class of a given improper rotation con-
sists of all rotation-inversions of the same angle regardless of their axes.

I thank Werner E. Sievers, John F. Sullivan, and William A. Whitcraft, Jr., for their encourage-
ment during the course of this work.
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4 Note that if #” =0, n and n' cannot be defined in this way. But in that case sin o' = sin a=0.
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