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The properties of the intrinsic vector associated with a real three-by-three orthogonal transforma-
tion, are derived. For proper rotations the problem of extracting the axis and angle or a rotation from
its matrix representation, is considered. It is shown that the intrinsic vector allows the determination
of the axis and angle as unambiguously as possible, thus remedying the ambiguous treatment of this
problem in the literature. Several examples of this use of the intrinsic vector are given. Its properties
for improper rotations are also discussed.
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1. Introduction

It was shown in paper I [1]! that the intrinsic vector V defined in terms of the elements of the
transformation matrix 4 by

VIII = ellllll"""l'- (l)

is an eigenvector of A belonging to the eigenvalue p'/p. so that we have

’

AV =2V 2)
]l

The symbols p and p’ represent handedness factors for the initial and final coordinate systems
S and S’ respectively. Each factor has the value plus one if its coordinate system is right-handed.
and minus one if its coordinate system is left-handed. The individual components represented
by eq (1) are

Vl :Az:x*ﬁ’:;z- (3a)
Vo= A3 — A3, (3b)
Vi= A= Ao. (3c)

As pointed out in [1] any non-null vector parallel or antiparallel to V is a solution to eq (2). However,
it is the specific vector V which is the object of interest in this paper. We will investigate its proper-
ties for both proper and improper rotations.

The main interest of this paper is in proper (i.e., rigid) rotations. The problem which motivates
the discussion of V for proper rotations is that of identifying the axis and angle of a rotation directly

*An invited paper. This work was supported by the U.S. Air Force Electronic Systems Division, Air Force Systems Command under Contract # AF19(628)5165,:
Project 4966.
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from the matrix which represents it. The word “directly’ is the key word in this statement of the
problem. To be sure there are several methods for finding the axis and angle of a rotation, which
are less than direct. For example, one can find the axis of rotation in the usual way by solving the
eigenvalue probelm for 4 corresponding to the eigenvalue+ 1. It is then possible to construct
vectors which are perpendicular to the axis. By observing how such vectors are transformed by
A, the angle of rotation can be determined. What we are looking for, however, is a prescription
which allows us to read the necessary information for finding the angle and the axis, directly from
A. Unfortunately, the customary method which serves as the prescription is incomplete and
consequently ambiguous. 2

In section 2 we discuss the ambiguities one encounters in trying to formulate a prescription
for the determination of the axis and the angle of a rotation. In section 3, it is shown how these
ambiguities are overcome by the use of V. Section 4 gives some concrete examples of this usage.
In section 5, we consider the properties of V for improper rotations.

2. Ambiguities in Determining the Axis and Angle of a Rotation from Its
Representative Matrix

In the conventional method of finding the axis and angle of a rotation from its matrix A, the
axis is found by calculating the eigenvectors of 4 belonging to the eigenvalue + 1. The angle of
rotation « is then found by equating the trace of 4 to 1+ 2 cos a. Each of the two steps in this
procedure is a source of ambiguity in the final result. The axis is ambiguous because the homo-
geneous equations which determine the eigenvectors of A do not give the individual components
of the eigenvectors but only their ratios to some arbitrarily chosen component. That is, the equations
for the eigenvectors determine only a direction, not a sense along that direction. The result is that
if the axis of rotation is specified by a unit vector n, its sense along the direction of the axis has to
be fixed by an arbitrary sign convention. Henceforth when we refer to the “axis of rotation” we
will mean its chosen sense as well as its direction.

The angle determined by the conventional method is ambiguous because one cannot deter-
mine an angle from its cosine alone. Thus if «g is a solution of

trA=1+2 cos « (4)

then so is —a. The cosine determines the angle of rotation only to within an arbitrary signature.
It is important to realize that the conventional method provides no correlation whatever between
the choice of the arbitrary signature for the axis of rotation and that for the angle of rotation. It is
this lack of correlation which makes the conventional method incomplete. The four possible choices
of the two signatures correspond to a two-fold ambiguity in the orientation of the final coordinate
system with respect to the initial one. It is actually this latter ambiguity which we wish to remove
rather than the separate ambiguities in the signatures of the axis and angle. Those two can in fact
never be removed absolutely.

In addition to the ambiguities of the conventional method just discussed there is an additional
source of possible ambiguity which is present whenever one deals with rotation matrices. This is
the handedness of the coordinate system which is being rotated. It is not usually thought of as
a source of ambiguity since the handedness of one’s coordinate system is always known. Right-
handed systems are the most common ones but left-handed systems are also used occasionally.
A given rotation matrix can describe the rotation of either a right-handed or a left-handed coordinate
system. The possibility of ambiguity concerns the sense in which the angle of rotation is described
with respect to the chosen sense of the axis of rotation.? The common choice is to describe the

2 The customary method appears explicitly or implicitly in many standard works. As examples, we cite references [2] and [3].
3Indeed the only reason for assigning a sense to the axis of rotation is in order to be able to describe the angle of rotation by means of a handedness convention
with respect to this sense. This illustrates the fact that the various ambiguities one encounters are not entirely independent of one another.
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angle of rotation by means of a right-handed convention with respect to the axis. If one desires, this
convention can be maintained irrespective of the handedness of the coordinate system. Alternatively
one can use a convention in which the sense of description of the angle with respect to the axis is
made dependent on the handedness of the coordinate system. Partially for practical convenience
and partially as a matter of taste we shall adhere to the latter convention for the remainder of this
paper and in the subsequent papers in this series. Specifically, we shall use the convention that the
handedness of the description of the angle of rotation with respect to the axis agrees with the
handedness of the coordinate system.

The choice of having the handedness of the rotation angle depend on the handedness of the
coordinate system can be reinforced by considering the example of a rotation by amount « about
the z axis. The matrix for this rotation is

cosa sina 0
R.(a) =| —sina cosa 0 (5)

0 0 I,

where, with the chosen convention, @ would be the angle of right-handed rotation about the positive
z axis in a right-handed coordinate system, and of left-handed rotation about the positive z axis

FIGURE 1. Formation of a three-dimensional rotation from a given planar rotation.

in a left-handed system. To see how this can come about we observe that the transformation
represented by this matrix is an extension of the two dimensional transformation in the (x, y)
plane which is indicated in figure la. In that transformation we take the angle of rotation to be
positive when it is measured from the positive x axis to the positive x" axis in a rotation which
initially carries the positive x" axis through the first quadrant of the- (x, y) plane. Note that this
convention, while arbitrary, utilizes no rule of handedness.

The two dimensional rotation of figure la is described by the transformation

X' =xcosa+ysin a, (6a)
Yy =—xsina+ycosa. (6b)

The two dimensional matrix for this rotation is

< cosa  sin a) D

—sina@  cos«
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In order to pass from this two-dimensional rotation matrix to the three dimensional one in eq
(5), we must append a z axis perpendicular to the coordinate plane in figure la. But there are two
choices for the positive sense of this axis. These are “into the page™ and “‘out of the page,” as
illustrated in figures 1b and 1c respectively. From the definition of 4;; (eq (5), ref. [1]).

Aij = b,’ 'bj, (8)
where b;, b., b;, and b{, b;, b} are the basis vectors of S and S’ respectively, we see that the
resultant three dimensional rotation matrix is given by R,() in eq (5), regardless of the choice of
sense of the z axis. Now the two possible choices of sense illustrated in figures 1b and 1¢ correspond
to coordinate systems of opposite handedness. If we now want to describe the way in which the
angle of rotation is related to the positive z axis by means of a handedness convention then we see
that for the right-handed choice, figure 1b, the angle « is described in the right-handed sense with
respect to the z axis, while for the left-handed choice, figure 1c, the angle « is described in the left-
handed sense with respect to the z axis. In each case, the handedness of the description of the
rotation agrees with the handedness of the coordinate system.

What this example shows is not the inevitability of the convention we have chosen but rather
that the seemingly natural way in which the three-dimensional matrix (5) was constructed from the
two-dimensional transformation (6), guarantees the convention. In any event, there are subtleties
connected with the handedness of a coordinate system which can lead to difficulties in interpreta-
tion unless some convention such as the one we have adopted, is clearly kept in mind. An interest-
ing example of such a subtlety will help to clarify this.

By direct calculation one can verify that the matrix

1 0 0
.={o 0 =11, )
0o 0 -1

effects reflections of ones coordinate system in the (x, y) plane. By further direct calculation one
can verify the equation

R:(a) 1, =1LR.(a), (10)
from which one gets

Ra)=TL.R()II:". (11)

This equation says that the similarity transform by a matrix which represents a reflection in the
(x. y) plane, of a matrix which represents a rotation about the z axis by an angle «, is itself a matrix
which represents a rotation about the z axis by an angle a. The result is a special case of the con-
jugacy theorem, to be discussed in paper III of this series.* It is not particularly subtle until one
tries to follow pictorially the sequence of operations on the right side of eq (11) which leads to the
left side. The sequence is illustrated in figure 2. Suppose that the iniual coordinate system is right-
handed (fig. 2a). Since the reflection I1.7'is applied first in the sequence, the coordinate system in
which R.(a) on the right side of eq (11) is carried out, is left-handed (fig. 2b). According to our con-
vention, the angle a must then be regarded as the angle of left-handed rotation about the positive
z axis of figure 2b. The rotation leads to the configuration in figure 2¢. The final reflection restores
the z axis to its initial sense and restores the initial handedness, giving the result that the entire
sequence is equivalent to R.(«) applied to the initial right-handed system (figure 2d). The essential
point is that the handedness of the coordinate system on which R.(«) on the right side of eq (11)

+1In group theory, the right side of eq (11) would be described as the conjugate of a rotation about the z axis by an angle a, by areflection in the (x, y) plane.
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FIGURE 2. Pictorial description of the conjugate of a general rotation about the z axis by a reflection in the x-y plane.

operates, is opposite to that of the initial coordinate system. The interpretation of « must be
changed to accommodate this change in handedness. Otherwise the orientation of the final right-
handed coordinate system with respect to the initial right-handed one will be described by R.(— «)
rather than R.(«) as called for on the left side of eq (11).

In the next section we will see how the intrinsic vector V overcomes the ambiguities discussed
in this section.

3. The Intrinsic Vector for Rigid Rotations
We first calculate the square of the length of V. From eq (1) this is
V2=VVn=€nnr€mijAnrAij.
By using the identity (I 14a) for the product of the Levi-Civita symbols, we have®
V2= (8,i8j — 81j8ri) AprAij=AisAi; — Ajidj;. (12)

The first term on the right side of this equation is, by either of eqs (I 7), equal to &;, which is 3.
The second term is tr (42), which can be expressed in terms of tr 4 by means of eq (I 15). Then using
eq (4) for tr A, we have

tr (42)=4 cos* a—1=3—4 sin*> a. (13)

Inserting these results into the right side of eq (12) the result for F'* is

V2 =4 sin® «. (14)

5 The notation eq (I n) refers to equation number n in paper I (ref. [1]). Throughout this series we will use this notation for equations in previous papers.
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The lengta of V (an intrinsically nonnegative number) is seen to be twice the absolute value of
sin @. We now observe that since n is either parallel or antiparallel to V, and since cos « deter-
mines sin « up to an arbitrary signature, the result (14) allows us to represent the net effect of these
two ambiguities as a single arbitrary signature in the equation

V==2nsin «. (15)

This remaining ambiguity in signature can be removed by imposing the convention adopted in
section 2 that the sense of description of the angle of rotation with respect to the axis agree with the
handedness of the coordinate system. This is most easily done by considering the special case of
rotation about the z axis since as we have seen in section 2, R;() already has that convention built
into it. We take n equal to (0, 0, 1) since this is the positive z axis for a coordinate system of either
handedness. From eqgs (3) we calculate V for R.(@) in eq (5). The resultis V= (0, 0, 2 sin «), which
for this special case is equal to 2 n sin «. Comparing this result with eq (15) we see that the positive
sign is required on the right side of that equation in order to establish the desired convention.
The final expression for V is therefore®

V =2n sin «a. (16)

Equation (16) yields a value of sin a which is completely unambiguous within the conventions we
have adopted. The value is

sina=+n-V. (17)

The method which emerges for finding the unambiguous orientation of the final coordinate
system with respect to the initial one for a given rotation matrix, can now be summarized as follows:

(a) Compute cos « from eq (4).

(b) Compute V from eqs (3).

(¢) Compute the length of V. If it is not zero 7 form a unit vector parallel to V by dividing it
by its length. Arbitrarily select m as being either this unit vector or its negative.

(d) For the choice of n in step (¢), compute sin « from eq (17).

(e) The values of cos a and sin « from steps (a) and (d) uniquely determine the value of «
whose sense of description with respect to n agrees with the handedness of the coordinate
system.® This angle lies between 0 and 2.

This method will be illustrated by means of several examples in the next section. For the

remainder of this section we consider some general properties of V for rigid rotations.

We first note from eq (14) that /? and therefore V vanishes when a is 0° or 180°. From eqs (3)
we see that for these angles, 4 is a symmetric matrix. Conversely, when 4 is symmetric (in addition
to being orthogonal of course), eqs (3) show that V is identically zero. Equation (14) then shows
that a symmetric A represents either the identity transformation (rigid rotation of 0°), or a rotation
of 180°. When A is symmetric, the axis of rotation cannot be determined from V since the division
in step (c) cannot be carried out. In this instance, it is necessary to solve the eigenvalue problem
for A corresponding to the eigenvalue + 1, in order to determine the direction of the axis.

Equation (17) for sin a can be expressed in an interesting alternative form. Using eq (1),
n - V takes the form

n - V=nVi= ni€juAjx = (€xijni) Aji, (18)
6 Equation (16) should be interpreted with caution. The components of V do not transform as a vector under the transformation definition of a vector. The com-
ponents of n however do transform as a vector. Equation (16) should not be regarded as a universal vector equation but simply as a condensed way of relating the
components of V to those of n in the initial or final coordinate systems only.
7The case V=0 for rigid rotations is discussed later in this section.
8 From now on the unqualified phrase “rotation about an axis™ willimply that the sense of the rotation about the axis agrees with the handedness of the coordinate
system.
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where in the last step we have used the cyclic permutation property (I 10) of the Levi-Civita symbol.
The object in parentheses on the right of eq (18) is the quantity Ny; as defined in eq (I 26), and
whose matrix representation is given in eq (I 27). The quantity n - V is therefore Nyjdx=tr (NA).
The sine of « is then given by

sin =13 tr (NVA). (19)

Equation (19) shows that sin «, like cos «, is calculable from the trace of an appropriate matrix.
It is an interesting calculation to check the consistency between eqs (4), (19), and the expo-

nential representation of 4, eq (I 28). We imagine n to be fixed and « variable. Then differentiating
eq (I 28) we have

dA

—=—NA.

do &,
We therefore replace the matrix NA in eq (19) by its value trom eq (20). Since the operation of
calculating the trace of a matrix commutes with that of differentiating the matrix with respect to
a parameter, we have for sin a from eq (19)

. 1 dA 1 d
sihn a=——=tr —=

B do —'Z':IZX-trA. (21)

The use of eq (4) for tr A reduces eq (21) to an identity.

4. Examples of the Use of the Intrinsic Vector to Determine the Axis and Angle
of a Rotation

We consider first a numerical example. The real orthogonal matrix

1 ]
=] =] ]
V2 V2
1 1 1
4== —1 — ] 1
2 V2 V2
—1 — 17 V2

has determinant unity and therefore represents a rigid rotation. Its trace is 1+ V2 so that from
eq (4), cos a= 1/V2. From eqs (3) the intrinsic vector is V=(1,—1, 0). We choose n to be parallel
to V so that nis (1/V2, —1V2. 0). Then from eq (17)

sin a=§ <\/L§+$—§>:\/L§

The angle « is therefore 45° Its sense of description with respect to n is right (left)-handed in a
right (left)-handed coordinate system.

As a second example we consider a rotation described by the Euler angles [4]. We assume a
right-handed coordinate system. The rotation matrix expressed in terms of these angles is

cos ¢ cos Y—cos 0 sin ¢ sin Y sin ¢ cos Y+ cos 6 cos ¢ sin s sin 0 sin s
A= | —cos ¢ sin Y—cos 0 sin ¢ cos P —sin ¢ sin Y+ cos 0 cos ¢ cos Y sin 6 cos s
sin ¢ sin 6 —cos ¢ sin 6 cos 0
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The trace of this equation leads to

(22)

In taking the square root of this equation to extract cos (a/2) we choose the positive root. This has
the effect of imposing the natural requirement that =0 when 6= ¢ =1y=0. The result for cos

(/2) is 0 i

«
5= €08 5 cos o (23)

COS

The components of V in either the initial or final coordinate system are

Vi=sin 6 (cos ¢+ cos ),

(24a)
Vs,=sin 6 (sin ¢ — sin ), (24b)
Vs=(1+cos 6) sin (¢ + ). (24¢)
The square of the length of V is
0 oty . ,0 0 . ¢+ﬂ
2 — 2 ~ 02 2 2= 2

V2=16 cos 5 €08 5 [sm 2+cos 5 sin 2 (25a)
=16 cos? —g— cos? d";‘b [sin2 dH;!er sin? g cos? ¢zw] (25b)

From eq (23), the factor before either of the square brackets in eqs (25) will be recognized as
[4 cos (af2)]>.

In paper I, section 3 the point was made that V is a vector only in the sense of being a set
of three numbers. In particular, it does not qualify as a vector under the definition based on the
transformation properties of the components of a vector. Nevertheless it is possible to obtain an
interesting representation of V by treating the components in eqs (24) as though they were the
components of a true vector and then expressing this vector in the nonorthogonal basis formed
by the unit vectors q, q', and (q X q')/sin 0. Here q is the axis about which the ¢ rotation is carried
out and ' is the axis about which the { rotation is carried out. The representation of V in this
basis is

V=(a+q) sin (@+¢)+(qXq')[1+cos(d+ (26)

It must be remembered however that it is legitimate to take the components of eq (26) only in either
the initial or the final coordinate systems, where the components are given by eqs (24). The com-
ponents of eq (26) have no significance in either of the intermediate coordinate systems in the
sequence of Euler rotations.

We treat as an example now the problem of determining the equivalent single axis and single
angle of rotation for a sequence of rotations of an initial coordinate system about each of two
intersecting axes. The principal results of this calculation, eqgs (29) and (32) are not new. However,
the derivation given here is believed to be the first derivation of these results by purely matrix
methods. Previous derivations have made use of the representation of rotations by means of dyadics
[5], and of the methods of spherical trigonometry [6]. The latter derivation gives a very clear geo-
metrical picture of the relation between the axes and angles of the component rotations and the
equivalent single axis and angle.®

9 The geometrical statement of the relation between two component rotations and the equivalent single rotation is known as the theorem of Rodrigues and Hamil-
ton. Whittaker [7] gives one statement of the theorem. A somewhat more precise statement will be found in reference [6].
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We assume a right-handed coordinate system. The first rotation is one of amount 8 about
an axis q. This is followed by a rotation about a second axis ¢’ by an amount B'. We call 0 the
smaller of the two angles between q and q’, and assume that its sine does not vanish. We orient
the initial coordinate system in such a way that q is along the positive z axis, and that the colatitude
and azimuth of q’ in this system are # and B respectively. This is illustrated in figure 3a. The

)

FIGURE 3. The initial and the intermediate coordinate system for the description of consecutive finite rotations about two
intersecting axes.

first rotation of the sequence is therefore about the z axis by an angle 8 and brings the original
x-z plane into coincidence with q', as illustrated in figure 3b. This rotation is described by R.(B).
The second rotation is by an angle B’ about q’. Since ' is now in the x-z plane the coordinate
system on which the rotation about q' operates is that in figure 3b. A tedious but straightforward
calculation, using for example eqs (I-25) and (I-26) with n= ', shows the matrix for this rotation
to be

sin? 0+ cos® 0 cos B’ cos 6 sin B’ sin 0 cos 6 (1 —cos B')
Ry (B')=| —cos 6 sin B’ cos B sin 6 sin B’ 27)
sin 6 cos 6 (1 —cos B) —sin 6 sin B’ cos? 6+ sin® 0 cos B’

The sequence of rotations about q and q' is therefore described by the matrix

Ru(a) =Ry (B')R=(B),

where n and « are the axis and angle of rotation for the single rotation which is equivalent to the
sequence of two. By direct calculation using eqs (5) and (27) the matrix R, («) is found to be

Ru(a)=

(sin? 6+ cos? 0 cos B') (sin% O+ cos? 6 cos B') sin 6 cos 6 (1 —cos B')
cos 3—cos 6 sin B8 sin B’ sin B+ cos 6 cos B sin 3’

—cos 6 cos B sin B’ —cos 6 sin B sin B’ sin 6 sin B’ (28)
—sin 8 cos B’ + cos B cos B’

sin € cos 6 cos B sin 6 cos 0 sin 3 cos? 6+ sin® 6 cos B’

(1 —cos B')+ sin 6 sin B (1—cos B") —sin 6 cos B

sin B’ sin B’
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The cosine of « is computed from eq (4). The previous example of a rotation described by Euler
angles suggests that a simplification of the final results is achieved by working with half angles
rather than angles. The trace of eq (28) then leads to

’ ’ 2
o . . -
cos®> —= ((308 g Ccos ﬁ‘ — sin é sin '@_ Cos 0)

2 2 2 2

In taking the square root of this equation to find cos («/2) the ambiguity in sign is removed by
requiring that for 3=3'=0, cos (a/2) =+ 1 rather than — 1 so that « is zero rather than 277. With
the choice of the plus sign for the square root, we have

o B . B B. B

COS — = €0S 5 €o0s - — sin 5 sin — cos 6. (29)

2 2 2 2 2

The components of V for Ra{) in the coordinate system of figure 3a, are
P

_ B . B < B oo B i B B )

Vi=4 cos o sin’y sin 0 €os 5 €08 - —sin o sin g cos 0, (30a)
_-E-B'~<§B_'_-E-E' )

Vo=4 sin 5 sin 5 sin 0 | cos 5 €0s 5-—sin 5 sin 5 cos o), (30b)

—a(sinB cos B cos B in B )(E B _ .. B B )
V=4 (sm 5 Cos 5 + cos 5 sin 5 cos 0 || cos o Cos 5 —sin g sin - cos 0). (30¢)
From eq (29) we recognize the common parenthetic factor in each of the components of V as cos
(a/2). Since V may be written as 4 n sin («/2) cos («/2), we can cancel this common factor thereby
reducing eqs (30) to the following equations for the components of n:

.a_ BB

ny sin 5= cos 5 sin 5- sin 0, (31a)
.o . BB .

nz sin 5 =sin < sin - sin 0, (31b)
in “—sin Boos B BinB

ng sin B sin 9 Ccos B + cos D) sin D) cos 6. (31lc)

Unlike the components of V, those of n obey the transformation definition of a vector. Therefore,
eqs (31) represent the components in the coordinate system of fig. 3a, of a vector equation which
is valid in all coordinate systems. An instructive form of this equation is obtained by expressing
it in the nonorthogonal basis consisting of the unit vectors q, q’, and (q X q’)/sin 6. Omitting the
algebraic steps leading to this form, the result is

n sin g——“ q sin 'g cos %-&- q' cos [—23 sin %— (X q’) sin g sin 'g— (32)

We observe that since « lies between 0 and 27, sin («/2) is positive. Hence a/2 and there-
fore a, are completely determined by eq (29). The axis n is then completely determined by eq (32)
without the need to first form V. To illustrate this procedure consider a right-handed coordinate
system and the axes whose representation in this system are q= bz, q' =b.. The angle between
these axes is 90°. We take rotation angles 8 and B’ of 90°. The first rotation is clearly R.(7/2)
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and brings the x axis into coincidence with q'. The second rotation is therefore R.(7/2). The
net rotation is

1 0 0 0 1 0 0 1
Ra (@)=R (@[2)R.(m[2)=]| O 0 1) —1 0 c)={0 0 INIE (33)
0 —1 0 0 0 1 1 0 0

Using eqs (3) and (4) we get from the matrix on the right that cos a=—1/2,V=(1,1,1). Choos-
ing n parallel to V we find n= (1/\/3—, 1/V3,1/V3) and sin = V3/2 so that « is 120°. The same
results follow from the formalism of successive rotations without having to carry out the computa-
tion in eq (33). From eq (29) we find cos («/2)=1/2. Since sin (@/2) must be positive we have that
sin (@/2)= V3/2.Hence a/2 is 60° and « is 120°. From eq (32) we find that the representation of
n in the initial coordinate system is n=(1, 1, 1)/ V3.

5. The Intrinsic Vector for Improper Rotations

In this section we examine the case p'/p=—1. We demonstrate first that 4 has the property
of being ““factorable” into a product of a pure reflection in an arbitrarily chosen plane followed
or preceded by a proper rotation whose axis and angle depend on the plane of reflection. We will
work out only the case where the reflection precedes the rotation. The analysis is nearly identical
for the case where the reflection follows the rotation.

For an arbitrary unit vector o the improper orthogonal matrix I1(o) defined by

(o) = 8200 (34)

is the matrix for a pure reflection in a plane perpendicular to . For a given improper orthogonal
transformation matrix 4, we define the matrix B as

B =All(o). (35)

The matrix B has determinant one and satisfies the first orthogonality conditions. It therefore repre-
sents a proper rotation.'’ Since [I1(o)]2=1, we can write

A=Bll(0o). (36)

This demonstrates the factorability of 4 into a product of a reflection in an arbitrary plane, followed
by a rotation. The axis and angle of the rotation are determined from eq (35). The trace of B is given
by

tr B=tr A—20iAjjo;. (37)

The intrinsic vector W belonging to B is determined from eqs (1), (34), and (35). It is

Wi= €ijxBijx="Vi=2€ijx (Ajmom) k. (38)

where V is the intrinsic vector belonging to 4.

There are interesting special cases of eqs (35)—(38). The first is the case where o is chosen
parallel or antiparallel to V. In that case the last term on the right of eq (38) is proportional to
€iji) iV . which is zero. The intrinsic vector for B is therefore identical to that of 4. The factorization
property of 4 then states that 4 is expressible as a reflection in a plane perpendicular to the intrinsic
vector of A followed by a rotation about that intrinsic vector, of a specified amount.

10 The matrix B also satisfies the second orthogonality conditions, as is true of any product of matrices each of which obeys those conditions.
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The second interesting special case is that in which A itself is a reflection in some plane. If
the plane of reflection of 4 is perpendicular to o . then B in eq (36) is simply the identity matrix.
Therefore, we assume that the plane of reflection of 4 intersects that of [I(o). We take the plane
of reflection of 4 to be specified by the unit normal vector g. We define the angle 6 at which the
plane perpendicular to o and that perpendicular to g intersect as the smaller of the angles between
o and g. This is illustrated in figure 4 which represents the normal trace of the intersecting planes
in the plane of the figure.

FIGURE 4. Normal trace of a pair of intersecting planes, in the plane of the page.

To compute the matrix B on the left side of eq (35) we observe that the application of 11(o)
reflects the initial coordinate system in the plane perpendicular to @. This means that the appro-
priate 4 to use in eq (35) is not II(g) but rather [1(g"). where the primed argument implies that
the components of g to be used are those in the coordinate system which results from the initial
one by the application of [1(o). From eq (34), these components are

gi=ljlo)g=g—2(g" oo

Since g - @ is cos 6, we have
& =g — (2 cos 0)a:. (39)

In terms of these components the matrix B in eq (35) is given by
Bij= (8 — 2gigs) (81— 2000) ,
= 8+ 4(gow) g0y — 20105 — 28 ). (40)

letting o denote the angle of the rotation represented by B. eq (37) leads to

cosa=2(gro)2—1.

Using eq (39) for the g in the product g0 ;. we have gyor = — cos 6. Therefore
cos @= cos 26. (41)
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The intrinsic vector #” for B is computed from eq (38). Observing that V is identically zero
for a pure reflection we have
W;=—4 cos ()Eij[;g'j()'k. (42)

The product €rgjor may be computed with the help of eq (39) and is seen to be identical to €,
Zjok. Therefore
W= 46,‘1.-)0’/.-#} cos 0, (43)

where we have used the antisymmetry property of the Levi-Civita symbol. Now the vector product
€irjor; is identical to the conventional right-handed cross product of o and g if the initial coordinate
system is right-handed. However, since € has no intrinsic handedness, the vector product is identical
to a left-handed cross product of o and g if the initial coordinate system is left-handed."* We may
therefore rewrite eq (43) in the form

W =4n sin 6 cos 0 = 2n sin (26), (44)

where n has the sense of the right-(left-)handed cross product of & and g when the initial coordinate
system is right-(left-)handed. If we now define the axis of rotation of B to be always identical to
n, then we may write

W= 2nsin a. (45)
Comparing eqs (44) and (45) we have
sin a = sin 26 (46)
From eqs (41) and (46) we can set
a=260. (47)

We have therefore proven by matrix methods. with the help of the intrinsic vector, the classical
property that a sequence of reflections in each of two intersecting planes is equivalent to a rotation
about an axis along the line of intersection of the planes by an angle which is twice that between
the planes. This method of representing a rotation by a sequence of reflections can be used to
construct a less cumbersome (but less direct) derivation of eqs (29) and (32) for a sequence of rota-
tions about intersecting axes. Since one of the planes of reflection in the pair of reflections equiva-
lent to a given rotation, is arbitrary, one simply has to choose the plane of the second reflection
for the first rotation in the sequence to be identical to the plane of the first reflection for the second
rotation of the sequence. Thus the sequence of two rotations is shown to be equivalent to a sequence
of two reflections. Equations (29) and (32) then follow from a calculation which is much less laborious
than the one presented in section 4.

The third special case of eqs (35)—(38) which is of interest is the case where 4 is a coordinate
inversion with respect to the origin,

44,‘1':"8,‘]'.

From eq (37) we compute tr B=—1 for this case so that the angle of rotation of B is 180°. No addi-
tional information is furnished by eq (38), which gives W= 0. The characteristic direction of B for
this case must be found by solving for the real eigenvectors of B belonging to the eigenvalue + 1.
From eqs (34) and (35) we see that

B,‘jZZ(TiO'_;*‘Sij.

One readily finds that the characteristic direction of B is the direction of o. Thus we have the
well-known result that a coordinate inversion is equivalent to a reflection in an arbitrary plane
followed by a rotation of 180° about the normal to that plane.'2

1 This distinction between the vector product and the cross product is almost universally ignored in the literature.As a result, the transformation properties of
the cross product are usually confused with those of the vector product. In particular, the cross product of two polar vecters is usually held up as the prototype of an
axial vector whereas in fact the cross product is a polar vector. It is the vector product which is an axial vector. These points will be amplified in a forthcoming paper.

'2 In addition to its factorability as a product of a reflection and a rotation, 4 can also be factored into a product of a rotation preceded or followed by a coordinate

inversion.
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When we discussed rigid rotations we saw that the vanishing of V implied that 4 was either
the identity matrix or a matrix representing a rotation of 180°. For improper rotations a vanishing
V means that 4 represents either an inversion with respect to the origin or a reflection in some
plane. To see this we observe that when V vanishes, 4 is both symmetric and orthogonal and hence
its eigenvalues are each plus one or minus one. Since the product of the eigenvalues must be minus
one we get two distinct situations, one with two-fold degeneracy and one with three-fold degeneracy.
In the two-fold degenerate case one of the eigenvalues is — 1 and the other two are + 1. The A4 for
this case is a matrix for pure reflection in a plane perpendicular to the characteristic direction
which belengs to the eigenvalue —1. The eigenvalues + 1 correspond to any pair of mutually
orthogonal directions in the plane of reflection. In the three-fold degenerate case all of the eigen-
values are — 1, and A4 is the inversion matrix.
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