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Co ndition s are exhibit ed unde r whic h s impl e, approximat e linea r relations may be found be tween 
se ts of success ive choices made by co ngru enti a l pse udo-ra ndom number gene ra tors. These re lations 
imply that the di s tributio ns in It-dime ns ional space produced by such gene rators can be ve ry highl y 
nonuniform . The result s a re illu strat ed with se ve ra l exampl es. Res tri c ti o ns o n the paramete rs of the 
ge ne rator to minimize diffi culti es of thi s sort a re di scussed. 
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1. Introduction 

Conside r a co ngrue ntial pseudo-rafldom numbe r generator of the form : 

(mod P), (1) 

whe re all the quantities involved are nonnegative integers. Generators of thi s type are commonly 
used to prov ide seque nces of pseud o-r a ndom numbers [1].1 For impl ementation on digital co rn· 
pute rs, P is freque ntly c hose n to be the word size of the co mpute r and M is c hosen as 2" + Nor 
10" + N, where N is a s mall integer , for binary and decimal machines, res pec tive ly. In prac tice, 
such a ge nerator is used to ma ke a c hoice between some number B of alternatives. For this pur­
pose, we form the qua ntity [BX) P] , where the square brac kets denote integer part. It is the 
purpose of thi s paper to point out that relatively short sequences of s uch quantities may be very 
hi gh ly nonrandom , in the sense that if such a seq ue nce is taken to re present a unit hyperc ube 
in a hypercube of side B, many of the possible unit hypercubes can never be selected. That is to 
say, knowledge of the last k choices produced by the generator gives us conside rabl e information 
about what the next choice will be, for distressingly s mall k. Nonuniform dis tributions of triple ts, 
corresponding to k= 2, have been observed by MacLare n and Marsaglia [2] , for several con­
gruential generators. As a special case, the results in this paper partly explain their findings. 

2. Results 

Consider a generator of the form (1), with 

M=R+N, (2) 

(mod P) , (3) 

I F i~ ures in bracke ts indicate th e li terature refe re nces a t the end of thi s pape r. 
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where N, k, and r are integers small in magnitude. By successive application of eq (1), we obtain: 

(mod P). (4) 

By using (3) and (4), we find: 

(mod P), (5) 

where we have set j = 0 for convenience. 
Equation (5) states that given the last k values of X, the next one is determined. This fact of 

itself is neither novel nor alarming; we already know from eq (1) that precise knowledge of just 
the last X tells us what the next one will be. However, we now show, with the aid of eq (5), that 
approximate knowledge of the last k values of X can enable us to predict the approximate value 
of the next. To show this , we suppose that the generator is to be used repeatedly to pick one of B 
alternatives , where B is a positive integer less than P. We first form from each Xj a new quantity 
bj, defined by: 

bj = [BXi/ P] , (6) 

so that 0 ~ bj ~ B - 1. In effect, we have divided the range of values of X into B intervals , labeled 
by the values bj . Then we can write: 

BX",/P= bm + Em, (7) 

where 0 ~ Em ~ (P -1) / P < 1. We now transform the congruence (5) into a congruence with 
modulus B. We first subtract the right-hand side of (5) from both sides, obtaining on the left-hand 
side an integer congruent to zero (mod P). Division of the left·hand side by P results by definition 
in an integer, and subsequent multiplication by B results, again by definition, in an integer congru­
ent to zero (mod B). Rear;ranging terms to restore the transformed right·hand side, we obtain: 

"" (k) ~o m (-N)"" - mbm == rbo+ ~-7J (mod B) , (8) 

where we have set: 

_ BC(R""- (1-N)"") 
~ = P(M-l) (mod B ), (9.1) 

k (k) 7J == 2: m (- N),," - mEm - rEo 
m=O 

(mod B). (9.2) 

By considering the maximum possible si:z;es of the positive and negative terms in eq (9), using 
the fact that the E'S are all less than unity, we find from eq (8) that given the last k of the b's, the 
next one can only be one of 5 possibilities, where: 

integer, 

5= (1+ INI)k+ 1(-N)k- r l-INlk- l, if ~ is an 

5= (1 + IN I)k+ I (-N)""- r l-INjk otherwise. 
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(We ignore the trivial case S = 1, obtained when the BX", are all multiples of P.) If S is less than 
B, this means that there will be sequences of length k + 1 which cannot occur at all. If we now 
choose: 

(11) 

(12) 

where d is 2 or 10 for binary or decimal computers, respectively, we find that eq (3) is satisfied 
by r = O and: 

k= [(w-l) /a] + 1, (13.1) 

the square brackets again denoting integer part. In the frequently employed special case of C = ° 
and M and all the Xj odd, eq (13.1) may be replaced by the stronger relation: 

k = [(w-l- [loga 2])/a] + 1. (13.2) 

3. Two Examples 

In thi s section , we apply the res ults of the precedi ng section to two ge nerators which have bee n 
disc ussed in the literature and found sati sfac tory by oth e r tes ts . The first [3] is a multiplicative 
co ngrue ntial generator with M =2 18+3, C = O, P = 235 , and the X j all odd. From eq (13) we find 
k = 2, so we expec t a three-te rm recursion relation, co ~respondin g to a se t of parallel planes in 
three-s pace. From eq (8) we find that the equation obeyed is bj +2 == 6bj + 1 - 9bj - YJ (mod B), and 
we can easily show from eq (9) that - 6 < YJ < 10, leading to only 15 possibilities for bj +2 , give n 
bj and bj+ l. Thus , if this generator is used to select unit c ubes at "random" in a cube of side ,gre ater 
than 15, some c ubes will ne ver be selected. 

For the second example [4] , we c hoose a mixed congruential generator with M=2 11 +1, 
C = 1446722743 octal, P = 228. Then from eq (13), k=3, so we shall have a four-te rm recursion 
relation , give n by e q (8) . According to eq (10) , if three success ive b's are known , the next can only 
b e one of 7 possibilities, if B is a multiple of 64, or 8 possibilities otherwise. 

4. Discussion 

In the preceding sect ions, we have shown that under certain circumstances, a generator of 
the form of eq (1), used with eq (6) to choose from among B possibilities, may have the property 
that knowing the last several choices made by the generator, we can predi ct that the next choice 
will be one of S possibilities, where S may be muc h s maller than B. Thi s property constitutes a 
rather serious violation of the usual concept of a random choice. (Its disadvantages would be 
immediately obvious to, say, a casino operator who proposed to use such a generator in place of 
the conventional roulette wheel.) It should perhaps be noted that as one might expect from the 
form of eq (9), choice among the possibilities which are allowed is by no means made with equal 
frequency. Thus, to obtain the appearance of randomness, it is not sufficient merely to ensure 
that S is not less than B. Rather, one would expect that S needs to be considerably greater than B. 
Two examples rna y be found in the work of MacLaren and Marsaglia [2]. Among the generators 
for which they found poor triple t distributions were those with M=2 17 +3, C=O, P = 235 , and 
M = 105 +3, C=O, P = 10tO. For both generators , we find k=2, so that we expect triplets to be 
poorly distributed. From eq (10) we find S = 15 in both cases. Since B = 10 for the work in reference 
2, no triplets are absolutely forbidden by eq (8). However, a chi-square test showed the distribution 
to be extremely nonuniform. 
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It is clear that in the cases of interest eq (10) will tend to be dominated by the first term on its 
right-hand side, i.e. (1+ INI)k. The form of this term might suggest the use of a small multiplier, 
which from eq (3) will prohibit a small k. However, small multipliers give rise to other undesirable 
characteristics [5]. We need, therefore, to choose a nonsmall multiplier and a modulus such that 
for all possible decompositions of the multiplier according to eq (2) and (3), the value of S predicted 
by eq (10) is as large as possible (or, at any rate , considerably larger than some preselected number 
B of choices for which the generator i's used). We do not see a way of going from eq (2), (3), and (10) 
to a formula for choosing M and P. However, these equations may be used to tes t a given trial 
M and P, in an obvious if somewhat laborious way. 

As already remarked, generators of the forms implied by eqs (11) and (12) are especially 
common, because the implied division need not be performed explicitly. For generators of this 
form , eq (13) guarantees a recursion relation with r= 0, for a value of k which will be small unless 
the multiplier is quite small. In this case, keeping S large amounts to requiring that the multiplier 
lie far from any multiple of all powers of d which are high enough to give rise to a small value of k. 
Again, it is not easy to see how this requirement can be turned into a prescription for choosing an 
optimum multiplier, but it is relatively easy to test trial multipliers. 

If the modulus P is prime , eq (3) has no solutions with r= 0. However, this does not make the 
choice of multiplier any easier. One can see from eq (10) that the effect of a small, nonzero value 
of r may be to decrease the value of S. Therefore , it is not clear that anything is gained by reject­
ing moduli of the form of eq (12). 

Finally, we may note that whatever effect a nonzero constant C may have upon other statistical 
properties of a generator, it has virtually no effect upon the recursion properties discussed here. 
From eq (10), 'we see that a nonzero value of C can increase the number of possibilities by at most 
one, and that only for a suitable choice of B. 

5. Conclusions 

It seems clear that injudicious use of a congruential pseudo-random number generator can 
easily lead to highly nonuniform distributions in more than two dimensions, and that neither 
a nonzero additive constant nor a prime modulus will avoid this difficulty. Furthermore, routine 
testing of the multidimensional distributions produced by a generator may well not show up dif­
ficulties of the sort discussed here. Since Bh' cells of storage are required to test a k-dimensional 
distribution, if k is greater than three, the storage capacities of present-day computers are likely 
to limit B to smaller v'alues than those occurring in practice. 

Note added in proal A recent paper by G. Marsaglia [Proc. Nat. Acad. Sci. 61,25 (1968)] 
also deals with limitations on the randomness of n-tuples produced by congruential generators. 
The limitations established are weaker than those set forth here , but are independent of the choice 
of multiplier. 
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