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Conditions are exhibited under which simple, approximate linear relations may be found between
sets of successive choices made by congruential pseudo-random number generators. These relations
imply that the distributions in n-dimensional space produced by such generators can be very highly
nonuniform. The results are illustrated with several examples. Restrictions on the parameters of the
generator to minimize difficulties of this sort are discussed.
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1. Introduction
Consider a congruential pseudo-random number generator of the form:
Xjpn =MX;+C (mod P), (1)

where all the quantities involved are nonnegative integers. Generators of this type are commonly
used to provide sequences of pseudo-random numbers [1]." For implementation on digital com-
puters, P is frequently chosen to be the word size of the computer and M is chosen as 2¢+ N or
10+ N, where N is a small integer, for binary and decimal machines, respectively. In practice,
such a generator is used to make a choice between some number B of alternatives. For this pur-
pose, we form the quantity [BX;/P], where the square brackets denote integer part. It is the
purpose of this paper to point out that relatively short sequences of such quantities may be very
highly nonrandom, in the sense that if such a sequence is taken to represent a unit hypercube
in a hypercube of side B, many of the possible unit hypercubes can never be selected. That is to
say, knowledge of the last & choices produced by the generator gives us considerable information
about what the next choice will be, for distressingly small £. Nonuniform distributions of triplets,
corresponding to k=2, have been observed by Macl.aren and Marsaglia [2], for several con-
gruential generators. As a special case, the results in this paper partly explain their findings.

2. Results

Consider a generator of the form (1), with

M=R+N, 2)
Ri=r (mod P), (3)
! Figures in brackets indicate the literature references at the end of this paper.
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where N, k, and r are integers small in magnitude. By successive application of eq (1), we obtain:
Xjtm=M"X;+ (M™—1)C/(M—1) (mod P). 4)

By using (3) and (4), we find:
ko (k
S (1) M = o+ C{RE= 1=N)H (M—1)  (mod P), 5)
m=0

where we have set j =0 for convenience.

Equation (5) states that given the last & values of X, the next one is determined. This fact of
itself is neither novel nor alarming; we already know from eq (1) that precise knowledge of just
the last X tells us what the next one will be. However, we now show, with the aid of eq (5), that
approximate knowledge of the last £ values of X can enable us to predict the approximate value
of the next. To show this, we suppose that the generator is to be used repeatedly to pick one of B

alternatives, where B is a positive integer less than P. We first form from each X; a new quantity
bj, defined by:

bj = [BX,/P], (©)

so that 0 < b; < B— 1. In effect, we have divided the range of values of X into B intervals, labeled
by the values ;. Then we can write:

BX /P =bm+ €n, (7)

where 0<e,< (P—1)/P<1. We now transform the congruence (5) into a congruence with
modulus B. We first subtract the right-hand side of (5) from both sides, obtaining on the left-hand
side an integer congruent to zero (mod P). Division of the left-hand side by P results by definition
in an integer, and subsequent multiplication by B results, again by definition, in an integer congru-
ent to zero (mod B). Rearranging terms to restore the transformed right-hand side, we obtain:

k k
> (m) (==, = finar =1 (mod B), ®)

m=0

where we have set:

BE(RESIEEND)
P(M—1)

4 (mod B), 9.1)

k()
7 ,,,E:O (m) (—N)k-me,, — reg (mod B). (9.2)
By considering the maximum possible sizes of the positive and negative terms in eq (9), using
the fact that the €’s are all less than unity, we find from eq (8) that given the last k of the b’s, the

next one can only be one of S possibilities, where:

S=QQ+|N|)s+|(—=N)k—r|—|N|*—1, if { is an (10.1)
integer,

S

(1+|N|)k+|(—=N)k—r|—|N|* otherwise. (10.2)
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(We ignore the trivial case S=1, obtained when the BX,, are all multiples of P.) If S is less than
B, this means that there will be sequences of length £+ 1 which cannot occur at all. If we now
choose:

R=d", (11)
E—d=, (12)

where d is 2 or 10 for binary or decimal computers, respectively, we find that eq (3) is satisfied
by r=0 and:

k=[(w—1)/a]+1, (13.1)

the square brackets again denoting integer part.In the frequently employed special case of C=0
and M and all the X odd, eq (13.1) may be replaced by the stronger relation:

k=[(w—1— [loga 2))/a]+ 1. (13.2)

3. Two Examples

In this section, we apply the results of the preceding section to two generators which have been
discussed in the literature and found satisfactory by other tests. The first [3] is a multiplicative
congruential generator with M=21¥+4+3, C=0, P=23, and the X all odd. From eq (13) we find
k=2, so we expect a three-term recursion relation, corresponding to a set of parallel planes in
three-space. From eq (8) we find that the equation obeyed is bj.» = 6bj.1 —9b; —m (mod B), and
we can easily show from eq (9) that —6 <1< 10, leading to only 15 possibilities for bj;», given
b; and bj,1. Thus, if this generator is used to select unit cubes at “random” in a cube of side greater
than 15, some cubes will never be selected.

For the second example [4], we choose a mixed congruential generator with M=211+1,
C=1446722743 octal, P=228. Then from eq (13), k=3, so we shall have a four-term recursion
relation, given by eq (8). According to eq (10), if three successive b’s are known, the next can only
be one of 7 possibilities, if B is a multiple of 64, or 8 possibilities otherwise.

4. Discussion

In the preceding sections, we have shown that under certain circumstances, a generator of
the form of eq (1), used with eq (6) to choose from among B possibilities, may have the property
that knowing the last several choices made by the generator, we can predict that the next choice
will be one of S possibilities, where S may be much smaller than B. This property constitutes a
rather serious violation of the usual concept of a random choice. (Its disadvantages would be
immediately obvious to, say, a casino operator who proposed to use such a generator in place of
the conventional roulette wheel.) It should perhaps be noted that as one might expect from the
form of eq (9), choice among the possibilities which are allowed is by no means made with equal
frequency. Thus, to obtain the appearance of randomness, it is not sufficient merely to ensure
that S is not less than B. Rather, one would expect that S needs to be considerably greater than B.
Two examples may be found in the work of MacLaren and Marsaglia [2]. Among the generators
for which they found poor triplet distributions were those with M=2143, C=0, P=23%, and
M=10+3, C=0, P=10", For both generators, we find k=2, so that we expect triplets to be
poorly distributed. From eq (10) we find S= 15 in both cases. Since B= 10 for the work in reference
2, no triplets are absolutely forbidden by eq (8). However, a chi-square test showed the distribution
to be extremely nonuniform.
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It is clear that in the cases of interest eq (10) will tend to be dominated by the first term on its
right-hand side, i.e. (1+ |N|)%. The form of this term might suggest the use of a small multiplier,
which from eq (3) will prohibit a small £. However, small multipliers give rise to other undesirable
characteristics [5]. We need, therefore, to choose a nonsmall multiplier and a modulus such that
for all possible decompositions of the multiplier according to eq (2) and (3), the value of S predicted
by eq (10) is as large as possible (or, at any rate, considerably larger than some preselected number
B of choices for which the generator is used). We do not see a way of going from eq (2). (3), and (10)
to a formula for choosing M and P. However, these equations may be used to test a given trial
M and P, in an obvious if somewhat laborious way.

As already remarked, generators of the forms implied by eqs (11) and (12) are especially
common, because the implied division need not be performed explicitly. For generators of this
form, eq (13) guarantees a recursion relation with r=0, for a value of £ which will be small unless
the multiplier is quite small. In this case, keeping S large amounts to requiring that the multiplier
lie far from any multiple of all powers of d which are high enough to give rise to a small value of k.
Again, it is not easy to see how this requirement can be turned into a prescription for choosing an
optimum multiplier, but it is relatively easy to test trial multipliers.

If the modulus P is prime, eq (3) has no solutions with r=0. However, this does not make the
choice of multiplier any easier. One can see from eq (10) that the effect of a small, nonzero value
of r may be to decrease the value of S. Therefore, it is not clear that anything is gained by reject-
ing moduli of the form of eq (12).

Finally, we may note that whatever effect a nonzero constant C may have upon other statistical
properties of a generator, it has virtually no effect upon the recursion properties discussed here.
From eq (10), we see that a nonzero value of C can increase the number of possibilities by at most
one, and that only for a suitable choice of B.

5. Conclusions

It seems clear that injudicious use of a congruential pseudo-random number generator can
easily lead to highly nonuniform distributions in more than two dimensions, and that neither
a nonzero additive constant nor a prime modulus will avoid this difficulty. Furthermore, routine
testing of the multidimensional distributions produced by a generator may well not show up dif-
ficulties of the sort discussed here. Since B* cells of storage are required to test a k-dimensional
distribution, if % is greater than three, the storage capacities of present-day computers are likely
to limit B to smaller values than those occurring in practice.

Note added in proof: A recent paper by G. Marsaglia [Proc. Nat. Acad. Sci. 61, 25 (1968)]
also deals with limitations on the randomness of n-tuples produced by congruential generators.
The limitations established are weaker than those set forth here, but are independent of the choice
of multiplier.
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