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The Cylinder Problem in Thermoviscoelasticity *

Warren S. Edelstein™*

October 25, 1968

Solutions are obtained for several axially symmetric plane strain problems involving a hollow
circular viscoelastic cylinder. The cylinder is assumed to be subject to planar, axially symmetric body
force and temperature fields. Displacement, traction, and mixed boundary conditions are considered.
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1. Introduction

In this paper we study a hollow thick-walled right circular cylinder composed of an isotropic
homogeneous viscoelastic material whose response to temperature is thermorheologically simple.
We solve the axially symmetric plane strain problem for this cylinder subject to three types
of boundary conditions:
(i) zero displacement at the inner and outer walls,

(ii) zero traction on both walls, and

(iii) zero traction inside, zero displacement outside.

The latter mixed problem was chosen to suggest the solid fuel core of a rocket. Our analysis
can be easily modified to deal with the case of a solid cylinder or with nonvanishing boundary
conditions.

Many problems in isothermal viscoelasticity are readily solved by means of Laplace trans-
forms. This technique has also been applied with some success in thermoviscoelasticity, for
example to sphere problems by Muki and Sternberg [1]' and Sternberg and Gurtin [2], and to
a contact problem by Graham [3].

In fact Valanis and Lianis [9] use Laplace transforms to obtain the solution of a thermo-
viscoelastic cylinder problem under the assumption, unnecessary in the present paper, of a constant
hereditary Poisson ratio.

Our method is fundamentally different from the above. It is a generalization of that used in [4]
to obtain existence for the displacement problem of isothermal viscoelasticity. The analysis in [4]
led to a Neumann expansion representation for the viscoelastic displacement field which involved
the inverse £-! of an elastic operator E. Also, convergence of the expansion depended on a Schauder
estimate for E. In order to assure existence of E~!' and of the estimate we were obliged in that
paper to confine ourselves to the displacement problem. For the solution of the cylinder problem
we obtain an analogous Neumann expansion. However, due to the extremely simple geometry
of the present problem an explicit representation of E~! is easily derived for a variety of boundary
conditions. Thus, our solution is altogether explicit, and moreover, estimates which suffice for
the convergence of the expansion are immediate.

Finally we remark that no attempt has been made to expound on the derivation of the con-
stitutive equations set forth below. Thorough expositions of the theory of linear viscoelasticity and
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thermorheologically simple materials are given in the papers [5, 6] of Gurtin and Sternberg. If
one accepts our field equations, then our analysis can be followed without consultation of any
of the above references.

We plan a sequel to this paper in which the effects of ablation are considered and numerical
examples are given.

2. Statement of the Problems

Consider a hollow circular cylinder with inner radius @ and outer radius . If x;, x», and x;
are orthogonal Cartesian coordinates oriented in such a way that the xs;-axis coincides with the
axis of the cylinder, then a set of cylindrical coordinates p, ¢, zis defined by

X1=p Cos @, X2 =p sin @, 203 —Z
where

0<p <o, 0<¢p<2m, —o<z< o,

The cylinder is composed of isotropic homogeneous viscoelastic material subject to a tem-
perature field® T'(p, ¢), where ¢ stands for time, and a body force vector

F=(F,, Fe, F.)
such that
F.=F,=0, F,=F(p,t).

We assume that the displacement field

u= (uﬁ)v Uy, uZ)
is axially symmetric and planar, i.e.,

w,=ue=20, u,=u(p, t). 2.1)

Let 0pp, ov¢e . . . and €y, €op, . . . denote respectively the components of stress and strain
in cylindrical coordinates. Then from (2.1) and the usual strain-displacement relations for these
coordinates ([7], p. 183) it follows that

_u(p, t)

ou
epp(P, t)zﬁ (p9 t)e e“"p(pa t)_ p 2 622:0

O=¢ep,=€p=¢€2

Let G;(t), G2(t) be respectively the relaxation functions in shear and isotropic compression
corresponding to the base temperature Tp. We assume that the cylinder has been at rest at the
reference temperature Ty up to time ¢t =0 and that the material with which we are dealing is ther-
morheologically simple.

In order to express concisely the plane strain stress-strain relations for a thermorheologically
simple material and to avoid needlessly detailed equations in the sequel, we introduce the following
operator notation. Given any differentiable function G(t) defined on [0,©) we associate with it
the thermoviscoelastic operator V¢ by defining ?

Vel (o, 0 =GO, 0+ [ 0 ([ oo dr)e (o, ¢)) ftp, ' 2.3)

*In this paper, we have not attempted to determine the minimum sufficient smoothness of the given data. All given functions are assumed to be several times
continuously differentiable.
a6

"(,"”(u):a
u
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Here, T(p, t) is the temperature field introduced above, and ¢(T), the so-called shift factor, is a
prescribed function which governs the change in material properties induced by a temperature
field. The function ¢ has the properties

d
¢T)=1, ¢(T) >0, 25> 0. (2.4)
Notice that for G(0) # 0, V¢, is a Volterra-type integral operator of the second kind. We shall assume
that all the thermoviscoelastic operators which we encounter are of the second kind.

It is also convenient to define

M(t)=3%G=(t)— Gi(t)) (2.5)
Gi(0)=7y, M(0)=p (2.6)
t
glp,t,t')=Gv ([ w(T(qu))dT> elTp,t") (2.7)
t
mp, t, t')=M™" (f oT(p. T))dT) elTp, t"] (2.8)
.
so that Vi, and Vy take the form
Ve fp. t)="vf(p, l)+J'tg(p. t, t")f(p, t"dt' (2.9)
0
t
Vuf(p, t)=uf(p, z)+f mp, t, t')f(p, t')dt'. (2.10)
0

Finally we introduce the function

D(p, t)=aV,O(p, t). (2.11)
The function O is defined by
1 T(p, )
O(p, t)z—f a(T")dT", ap= c(Ty)
®o Jr,

and is known to thermoviscoelasticians as a “pseudotemperature.” The prescribed material func-
tion «(T') is called the coefficient of linear thermal expansion.

The thermoviscoelastic stress-strain relations appear in many papers, for example Sternberg
and Gurtin [2]. Written in terms of Cartesian coordinates and with the present operator notation
they take the form

aij(p, t)=Ve€ij(p, t)+ 8iiV verr(p, t)— 6i;P(p, t). (2.12)
In this equation, Latin subscripts take the range 1,2,3 and summation over repeated indices is

implied. In the case of plane strain, Sternberg and Gurtin [2] apply Laplace transforms to solve
for 0., in terms of the other stresses in the form

Ty = V;(O'pp+0'¢w)—a0VEe (213)
where 4
= 3G MG ()
E* — 1 2
"= Crm+265m)

- GFm)—Gi(n)

* - .
YO G+ 2GE ()

4 For fdefined on [0, %) f'h))=J;x e f(t)de.
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From equations (2.12), which are invariant under a change of coordinate systems, and (2.2)
we obtain the plane strain axisymmetric stress-strain relations

ou d
Tpp = V(,‘l <a—p>+VM <a_z+p2)—q)
2.14)

Ope=0¢;=0:p=0.

Due to (2.13 and (2.14), the quasistatic stress equations of equilibrium ([7], page 184) reduce to the
single equation
J

1
@ a'pp+p (Opp—0ep)+ F=0. (2.15)

If we substitute from (2.14) into (2.15) and apply the notation (2.9), (2.10) then the quasistatic
displacement equation of motion takes the form

%u 9 (ulp, t)>
ap* ’tHap( P

og L, Om ny Ou ;
+<ap(’”t’”+ap(p"’”)ap(p’”

+g—:')"— (0s £, ') %} dt'=Hp,t) (2.16)
where
1 (/8D
L _ . 2.17
Hip. == ((5) to- 0= Feo. ) 217

Three types of boundary value problems are considered, namely,
(i) The displacement problem (first boundary value problem)

uwa, t)=ub, t)=0,( > 0) (2.18)
(i1) the traction problem
oppla, t)=opp(b, t)=0, and (2.19)
(iii) the mixed problem
0=oppla, t)=ulb, t). (2.20)

Cur task then is to find a function u(p, t) which satisfies (2.16) for (p, ¢) in [a, b] X [0, ©) subject
consecutively to each of the boundary conditions (2.18), (2.19), (2.20) where o, is defined in terms
of u by (2.14). Stresses are then computed via (2.13), (2.14).
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3. The solution

We define the differential operator E and the integrodifferential operator B as follows:

Ef(p, t) f(p, t)+5% (f—(’;—”) 3.1)
Bftp, == | liep. 1.0+ mip, 1, OV, 1)
+(E e e 0) Lo 3.2)
+g_;n(p’t’ nLe.t }
Then (2.16) reduces to
Fu+Bu=H. (3.3)

Our plan of attack is as follows: consider the model equation
Ef+Bf=P (3.4)
for which we seek a solution f(p, t) in [a, b] X [0, %) subject to the boundary conditions
M.fla, t)=Myf(b, t)= 0 (t>0). (3.5)

Here M, and M, are some sort of linear integrodifferential boundary operators. Let E-! be that
operator which assigns to a given function Yi(p, ¢) a unique function f which satisfies

Ef=1y (3.6)

in [a, b[ X [0, ®) and (3.5) for t = 0. Then clearly we obtain a solution f for (3.4), (3.5) by first finding
a solution Y for the equation

y+BE-W=P 3.7
and then setting
f=E' (3.8)

The advantage to be gained by dealing with (3.7) rather than (3.4) lies in the fact that (3.7) is a
sort of generalized integral equation and may be solved by the method of successive approximations.
This decomposition of a viscoelastic problem into an elastic problem and an integral equation was
introduced by Fichera in [8].

The formal solution of (3.7) is

=+ BE-")-'P
y=S (= 1)(BE-'yP (3.9)
n=0
so that
f=> (=1)E-\BE-")P. (3.10)

n=0
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We shall now set forth sufficient conditions for the uniform convergence of the series (3.9),
(3.10) in any rectangle [a, b] X [0, t] (¢ finite).
To this end, we define the norms >

[All(¢) =1.u.b.{|h(p, T)|: (p, T)€[a, ] X [0, ]} (3.11)
Ik oh
o =[] o+ 4] o 3.12)

and postulate the existence of a nonnegative nondecreasing function /NV(z) such that for any smooth
function 6(p, ¢t) and ¢ =0,

|E=16]li (¢) < N(¢)| 6] (). (3.13)

It is clear from (3.2) that for smooth g and m, B satisfies an inequality of the form

Bt < Q) [ QBRI + ) dr 3.14)

For example, one may take

0@) = L max {l.u.b.{Ig‘(p,T,s) +m(p, 7,5)|: (p,7,5) €[a, b] X [0, t] X [0, ¢]},
[y+pl

1.u.b. {’g_i (p, 7, 8)|+ ‘%—’Z (p,7,8)|:(p, 7, s)ela, b] X [0, t] X [0, t]}}

The function Q so defined is clearly nonnegative and nondecreasing.
By replacing A by E-16 in (3.14) and applying (3.13) we obtain the estimate

t
BE-4l0) < 00 (1+N ) [l (3.15)
From (3.15), it follows by a standard iteration argument that

IBE=1)"6ll(e) <

Q) AL+N(@®)0)"
. el 1) (3.16)

Thus the series (3.9) converges uniformly in any rectangle [a, b] X [0, t]. Since (3.13) implies that
E -! is continuous with respect to the uniform norm in such a rectangle, it follows that (3.10) also
converges uniformly in [a, b] X [0, t] and that interchange of E-! and the sum sign is permissible.
Thus, sufficient conditions for the uniform convergence of (3.9) and (3.10) are the existence of the
nondecreasing bounding functions N(¢) and Q(¢). The boundedness of Q follows if we assume that
G1, G2, ¢, and T are sufficiently smooth. The function N(¢) depends on the latter functions together
with the boundary conditions.

Each of the boundary value problems (i), (ii), (iii) may be reduced to a problem of the form
(3.4), (3.5). However, the operators M, and M, appearing in (3.5) will be different in each of the three
cases. Thus, we must derive three different inverse operators E;!,E,; !, E5! corresponding respec-
tively to (i), (ii), and (iii) and find nonnegative, nondecreasing functions N,, N2, N3 such that for any
function ¢ and ¢ = 0, £~} and N; satisty (3.13). Then by the above theory, the solution of each of the
three problems will have a uniformly convergent representation of the form (3.10).

5 6 and h denote arbitrary smooth functions of p, t.
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(i) The Displacement Problem
Let E;'6 be that function h which satisfies

Eh(p, t)=06(p, t) (3.17)
in [a, b] X [0, x)

and

h(a, t)=h(b, t)=0 (3.18)

for t = 0. By elementary techniques we obtain from (3.1), (3.17), and (3.18) the representation

E;'O(p, )=~ J oGy 1) L yl ¥ (’ZZ__"Z) f ey, ) E=1) 4y, (3.19)

It is obvious from (3.19) that a constant N; depending only on a and b exists such that
[ET1O(2) < NA[lOl|(0). (3.20)

Thus the displacement problem (2.18), (3.3) has the solution

DMs

u—=

(= "EYBES)"H, (3.21)

n=0

where E;! is given explicitly by (3.19).
(i1) The Traction Problem
For this problem, it is convenient to modify the operator notation (2.9), (2.10) as follows:

Ve [fd, ) () =yf(d, t)-+-J (c, t, t")f(d, tdt'

(3.22)

t

velf(d,t')]t) = ufld, t)+f mic, t, t")f(d, t")dt'.
0
Then by (3.3), (2.14), and (2.19) the traction problem takes the form
Fu+Bu=H (3.3)
= Ja a_u 4 a ai / lt((I., [,)

D(a, t)= V"'[ap (a,t )](t)+ A, [ap (a, t")+ p ] (t) (3.23)
O, t)=V" [%(b t)]()+V" [a (b, )+~ LU )] (). (3.24)

We seek a solution u for this problem in the form
u=v+w (3.25)

where w is to be chosen in such a way that v satisfies a problem of the form (3.4), (3.5). Plugging
(3.25) into (3.3) we obtain

Ev+Bv=H—FEw— Bw. (3.26)
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Also we demand of w that it satisfy the boundary conditions

®(a, )=V, [gi;’ o t')] &)+ V8, [—p (a, ) + 442 ")] (t) (3.27)
®(b, 1)=V", [g—: (b. t')] (t) + V4, [ap (b, t') + W(bz; t')] (t). (3.28)

Then u defined by (3.25) will satisfy (3.23), (3.24) provided v satisfies

0=ve [S—Z (a. z')] (1) +V"M[§—Z (a, ') +&a‘—)] (1) (3.29)

0="w2 [ﬂ (b, t')} (t)+Vg,[a—“ (b, z')+”—(b’—‘)] (1). (3.30)
'lap ap b
The function w is by no means uniquely determined. We assume one of the form

w(p, t)=(p—a)? ¢:(t) + (p—b)* ¢a(t) (3.31)

where the functions ¢;, ¢. are to be determined by a substitution of (3.31) into (3.27) and (3.28).
In this way we arrive at the equations

®(a, t)—[2(7+u)(a—b)+#( —b)* ]mt)

+ L’ {2(a—b) [g(a, t,t')+m(a,t, t')] +m(a,t,t) @} o (t")dt’

o (b, t)=[2(7+,u)(b—a)+u (b‘b“’z]mn

+ fot {2(b—a)[g(b, t,t'y+m(b, t,t')]+m(b, t,t") (b;ba)i} e1(t")dt'.

Since these are, in general, Volterra-type integral equations of the second kind their solution
presents no difficulties. We may thus regard w as known, so that the traction problem has been
reduced to that of finding a function v which satisfies (3.26), (3.29) and (3.30). To this end, we define
E3' to be that operator which assigns to a given function 6(p, t) the function h(p, t) which satisfies
(3.17), (3.29), and (3.30). In order to derive E;', we write the general solution of (3.17) in the form

1 [~ 2 — 2
ho. 0= f 000 (55 )dy+c1(z>p+ calt), (3.32)

= [

The functions ¢;(t), c2(t) are determined by a substitution of the expressions (3.32), (3.33) into
(3:29), (3.30). They are governed by the equations

Then

)dy+f O(y, t)dy—+ci(t) ~CZF§;)’ (3.33)

0=V aules (1)1 () =5 Vi [ ()] () (3.34)

L) =VBauler(t)] (0 =55 V2 [a(t)] (@) (3.35)
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where

)=V [éfo( 0 (B55) o] o0 (,w[f:e(y,t')dy] (t). (3.36)

Except in singular cases, which we choose to disregard, all of the operators of the form V are
Volterra-type integral operators of the second kind. Thus, they all have inverses, V;!, which are
operators of the same kind. Hence the system (3.34), (3.35) is readily solved, and we have

1 o - ,
C'(t):; VetV G, [ > VertanV e, — b2 VcllszV?();I] v 11+2M[ (¢')](2)

(3.37)
C)(t)_[ 2 (|1+2MV b2 V51+2MVI}J Vclsz[ ("] @)

An explicit representation for E;! is obtained by combining (3.32), (3.37), and (3.36). It is clear
from the form of these equations that there exists a nondecreasing function N, (t) such that

[E5'6]li(¢) < Na(2)[16]|(2). (3.38)

Consequently, we can write for the solution of the traction problem
u(p,t)=w(p,t)+ 2 (—1)"Es"(BEs")"(H — Ew—Bw) (p, t). (3.39)
n=0

(i11) The Mixed Problem

This problem is somewhat simpler than (ii). Thus, in the remainder of this paper we return to
the earlier notation (2.9), (2.10).

We seek a function u(p, t) which satisfies

Fu+Bu=H (3.3)

®(a, t)=Ve, (ﬂ> (a, 1)+ Vu <@+’—‘) (a, 1) (3.40)
ap aip p
O0=u(b,t). (3.41)

In order to deal with the inhomogeneity in (3.40), we again assume a solution of the form

u=v+w (3.42)
where
Ev+Bv=H— FEw—Bw (3.43)
0= VG,( )(a t)+Vu (— E) (a,t) (3.44)
ip p
=u(h, 1) (3.45)



An appropriate w is evidently given by

w(p,t)=(p—b)e(t),

where ¢ satisfies

®(a. t)=[‘y+,u. <1+<“—;§))] (p(t)+£ [g(a, 6 t')+mla, t, t) (1+<a7_b))] o(t')dr'.

Let E;! be that operator which assigns to a given function 6(p, t) that function A(p, t) which
satisfies (3.17), (3.44), and (3.45).
We write the general solution of (3.17) in the form

h(p, t):%f: 0(y, 1) <y2;”2) dy+cl(t)p+cz—‘(fl.

Condition (3.45) implies the further restriction

hp. 0= [ 000y (55E) ayteto) (o) (3.46)

Due to (3.44), c(t) must satisfy the integral equation
b2 , 1 b , —
[(1+5) v+ 2] teeno=g 7, [ 66.0) (555 ar] 0

+Vé m Ub 0(y, t')dy] (1) (3.47)

The existence of N3(t) is clear from (3.46), (3.47), so that the solution to the mixed problem takes
the form

u(p, 1) =w(p, 1) +i (=1)"E3'(BE3")"(H — Ew—Bw) (p, t).
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