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It is demonstrated analytically that the capillary depression C of a nearly planar meniscus is linearly
related to its meniscus height 2 by the relationship C =h/[1—1I(r/a)]. Here, a?=y/pg, p and y are
the density and surface tension of the liquid respectively, g, the acceleration due to gravity, r is the radius
of the capillary tube at the liquid-solid-gas interface, and I(z) is the modified Bessel function of the

first kind and zero order.

Key words: Bessel functions; calculus of variations; capillary depression; Laplace’s equation;
meniscus; meniscus height; nearly planar meniscus.

1. Introduction

Corrections due to capillarity must be known or
eliminated in accurate manometric procedures. The
problem of capillary depression (or rise) for arbitrarily
shaped gas-liquid interfaces has been studied ex-
tensively, both theoretically and experimentally. Little
attention, however, has been given specifically to
nearly planar menisci occurring in large bore precision
mercury manometers and which have been produced
by Moser and Poltz [1]! in the compression capillary
of a MclLeod gage to reduce errors due to capillarity.

It is well known [2, 3, 4] that a finite pressure differ-
ence exists across a gas-liquid interface whenever it
is not planar. Laplace [2] was the first to show theo-
retically that such local pressure differences were
solely determined from the mean curvature of the sur-
face and the surface tension of the liquid. This is a
statement of Laplace’s well-known nonlinear differ-
ential equation for liquid manometric work. Numerical
solutions [3, 4, 5, 6] of Laplace’s equation exist and
tables showing the dependence of capillary depres-
sions on meniscus heights and tube bores have been
constructed. Values appearing in these tables are for
arbitrary menisci, and interpolation is frequently
required when using them.

In this work only nearly planar menisci are con-
sidered, and their associated capillary depressions are
derived analytically.

2. Theory
The method of the calculus of variations [7] has been

used by Goodrich [8]in his study of the static meniscus.
This treatment of the static meniscus is similar to that

! Figures in brackets indicate the literature references at the end of this paper.
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of Goodrich in that the calculus of variations is applied.

Figures la and 1b represent the cross section of
portions of capillary systems which are capable of
producing nearly planar menisci which are of capillary
dimensions [1]. The coordinate systems and variables
used in this discussion are shown in these figures. In
these figures LMN and L'M’N’ represent portions of
the vessel. MO'M’ represents the liquid-gas interface.
00’0" is taken to be the axis of symmetry of the
meniscus. The xy-plane is perpendicular to OO’ 0" with
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Coordinate system and displacements for a nearly
planar meniscus.

FIGURE 1.
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z(x,¥) = Va2+y2and 6=tan'y/x (not shown in these
figures). This distance from OO’ to the gas-liquid-

solid interface is r. AA’ represents the position the
meniscus would take in the absence of capillarity.
ﬁg, displacements i(x, y) are taken with respect to

Let wy and wy be energies associated with the actions
of gravity and surface tension, respectively. Consider
the meniscus generated from the rotation of the seg-
ment O'M’ about OO’. For convenience of discussion,
consider the situation shown in figure 1b. The potential
energy of a column of liquid of unit cross-sectional
area and height ¥(x, y) is given by

w!1=%Pg¢2(xs y)v (1)

where p is the density of the liquid, g is the accelera-
tion due to gravity. The surface element zd6d{, where
d{ is an arc length measured along O’'M’, possesses a
surface free energy of amount yzd0d{, where 7 is the
surface tension of the liquid. This exceeds that of a
planar element zdfdz by amount wy=yzdf(d{—dz).
Elementary geometrical considerations give

d{=dz V1+ |V |2,

where V= (0y/dx, dy/dy). Thus the excess surface
free energy per unit area, i.e., zdfdz=1 is given by

wy=—y[1— V1+|Vy|]. 2)
The total energy of the static meniscus is taken to be

Wiwte 1= [ [ Gurrwndedy+ [ seras. @

The second term on the right is a line integral term and
has been included to take into account any energy
associated with the liquid-gas-solid interface along the
curve I" : x2+y2=r2 The double integral is to be taken
over the surface of the meniscus R. For |[Ay| <1, we
have

Wbt )1 =3 | [ (pevtyIVal2dady
+fﬂd)(s)ds. (4)
I

Suppose Y*(x, ¥) and ¢ *(s) are chosen such that

P (x, y) =(x, y) +ex(x, y)
and ¢ *(s) =dc(s) +eydpo(s)x(s), where € is a very
small number. Then the variation in the total energy,
SW=W[y*(x,y) | —W[P(x,y) ], is given by
W= [ | (oeairct y2u-vx)dudy

R

+y fl (buxds] + 0(€?), (5)

The

where O(€e2) represents the term of order €2

term yVi-Vx may be replaced by use of the identity

V- (xV{) =Vx-Vi+xV2. Furthermore,
V- ( W)_a() apP
ay’

vyhere P=xy,, Q= x> and ., s, are partial deriva-
tives of ¢ with respect to x and y. Then by Stokes’
theorem

ff <"0 ap)dxdy f(—PdﬁQdy),

eq (5) becomes

oW =e] | (pb—y V) xady +€ [ yoouds

+ ffr'YX(d'rdy_d’ydx) .

In terms of the normal and tangential directions at I,
the differential elements dx, dy and the partial deriva-
tives i, s, become —sin 6ds, cos 6ds,

Ch cos 6 andg—d-l sin 6,
an on

respectively, so that Y,dy —{dx can be written as
Mds. Thus,
an

W= [[ (ph—y7H)xxdy

+ey f ((i)o

The necessary condition that # is a minimum is 6/ =0
for arbitrary variations x(x, y) [7]. Hence, we obtain
the equations

l’b) xds. (6)

Va(x, ) == h(x, ) =0 )
and
M—*— d)o:(), (8)
an

where a?=y/pg. Solutions of eq (7) give functions that
minimize W, while eq (8) provides the condition for the
evaluation of the constants of integration. It is eq (7)
which is now pertinent.

Since the gas-liquid interface is taken to be a surface
of revolution, ¥ is a function of z alone and eq (7)
transformed to cylindrical coordinates (z, #) becomes

d"zllf(Z/a)

1 dis(z/a)
20) | WD ofa) = 9)
A solution of eq (9) is
Y(zla) =Cily(z/a) (10)

where Iy(z/a) is the modified Bessel function of the
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first kind and zero order. The meniscus height h is
given by the difference of ¢ at z=0 and z=r, and
eq (10) becomes

& hI()(Z/a)

"'(Z/“)Z—I—L,(r/a) (11

where the plus and minus signs refer to capillary
depression and rise, respectively. The capillary
depression C=1(0) (see figure 1) is linearly propor-
tional to the meniscus height, h for a specific value of
the ratio r/a. Differentiation of eq (10) gives

hli(z/a)
=t
Viblale) == a[l1—1Iy(r/a)]
where I,(z) is the modified Bessel function of the first
kind and order one. The condition for validity of linear
behavior between C and h is that |Viyi(r/a) | < 1.

(12)

3. Results and Discussion

In eq (10), vertical displacements of the meniscus
are taken with respect to a carefully selected planar
surface such that the value of the capillary depression
is given by C. The condition that a meniscus be nearly
planar implies that A <r. The condition that only
menisci of capillary dimensions are to be considered
requires that 0 < r/a <1, since a ~ 2 mm for mercury.
However, larger values of r/a are admissible so long
as the condition that the meniscus be nearly planar
is met.

Table 1 gives capillary depressions C=1(0), from
eq (I11) for some values of r/a. Table 2 gives a com-
parison of the capillary depressions predicted by
eq (11) to those obtained from numerical solutions of
Laplace’s equation as performed by Akiyama,
Hashimoto, and Nakayama [5], and Gould and Vickers
[6]. Table 2 shows that results of this paper are in fair
agreement with those obtained by numerical methods.

Figure 2 shows the dependence of -capillary
depressions on meniscus heights for some values
of r/la. The solid lines are the linear behavior pre-

TABLE 1. Ratio of the capillary depression to the meniscus height
of a nearly planar mercury meniscus for some values of r/a
T Qs 20| .30 | .40 | .50 | .60 | .70 | .80 | .90
Ratio........... 100 | 44.2 | 24.7 | 15.7 | 10.9 | 7.91 | 6.01 | 4.69
TABLE 2.  Comparison of capillary depressions for a meniscus height
of mercury equal to 0.1 mm
rla AHN* GV** | This work | Difference | | Vi |
mm Hg mm Hg mm Hg Percent
.34 B 34 s 3.43 2.9 .3
543 |l 1.32 1.33 0.8 .2
1] G| FER— 573 .578 0.9 ol
.96 A1T | .409 2.0 1

*Values taken from Akiyama, et al. [5].
**Values taken from Gould and Vickers [6].

dicted by this paper. The dotted lines are loci of
constant V. These dotted lines approach the axes
asymptotically as r/a approaches zero or becomes
very large. The points represent values obtained from
numerical solutions of Laplace’s equation. This figure
shows that within the validity of the assumptions,
capillary depressions are linearly related to meniscus
heights. The figure shows that this linear relationship
compares fairly well with results obtained from numer-
ical solutions of Laplace’s equation for | V| < 0.5
and r/fa > 0.35.
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FIGURE 2. Capillary depression versus meniscus height for nearly
planar mercury menisci.

()pm‘\ and solid circles indicate values from numerical solutions of Laplace’s equation:
open circles, Gould and Vickers; solid circles, Akiyama, et al. Dotted lines indicate values

of |V .

In summary, it has been shown that capillary
depressions for nearly planar menisci are linearly
related to their meniscus heights. Conditions for the
validity of this behavior have been given.

The author is indebted to Stanley Ruthberg for
suggesting this problem. The author is grateful to
H. P. Waters for some helpful discussions in connection
with this work.
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