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A dynamical model for density fluctuations in a one-component fluid near the critical point is pro-
posed and compared with existing measurements in carbon dioxide. The model is described by a set
of linearized hydrodynamic equations modified to include a nonlocal pressure density relationship and
to include relaxation in the volume viscosity. Parameters for the model are found which are consistent
with bulk measurements. With these parameters the model reproduces, within experimental un-
certainty, the observed Brillouin spectrum of critical opalescence in CO,. The low frequency volume
viscosity is found to diverge as the —1/3 power of T'— T.. An additional modification of the hydrodynamic
equations, a frequency dependent thermal conductivity, is considered, but no definite conclusions can
be reached as the Brillouin line-width data lack sufficient precision.
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1. Introduction

The dynamical structure of density fluctuations in a
fluid is directly related to the spectral structure of
light scattered by the density fluctuations. This struc-
ture has been the subject of a large number of theo-
retical [1]' and experimental [2—4] papers. It has been
established that the linearized hydrodynamic equations,
suitably modified to include internal degrees of
freedom, represent a satisfactory model for the
dynamics of the long wave length density fluctuations
in many simple fluids.

In this paper we propose to compare a model for the
dynamics of density fluctuations in a one-component
fluid near the critical point with recent experimental
observations of the spectral structure of critical
opalescence. The intent is to determine the main
features of a model for critical fluctuations. We are
not so much concerned with the precise values of
parameters occuring in the model as we are that these
parameters be in agreement with the known properties
of the fluid system. The measurements are for carbon
dioxide at the critical density for temperatures greater
than the critical temperature. Three modifications of
the linearized hydrodynamic equations will be ex-
amined. The first modification is the introduction of
a nonlocal relationship between density and pressure
fluctuations [5]. The second is the introduction of a
frequency dependent volume viscosity and the third

*This work was supported by the Advanced Research Projects Agency of the Department
of Defense.
! Figures in brackets indicate the literature references at the end of this paper.

modification is the introduction of a frequency depend-
ent thermal conductivity [6, 7]. For convenience we
assume the single relaxation time form for the fre-
quency dependence of the volume viscosity and the
thermal conductivity. Given the model and the experi-
mental results currently available we conclude that
the first and second modifications in the hydrodynamic
equations are required. It is not possible to decide
whether or not the thermal conductivity is frequency
dependent.

2. Dynamical Model

Before we introduce the model for the density
fluctuations in terms of a set of linearized hydro-
dynamic equations let us briefly state what is found
experimentally. The spectrum consists of an intense
central component and two relatively weak Brillouin
components. The width of the central component may
be expressed (in units of rad/sec) as

Ce=xk2[1+ £2k2] 1)

where x=\/poC, is the thermal diffusivity at constant
pressure. Here A is the thermal conductivity, C,, is the
specific heat at constant pressure and p is the number
density. The wave vector of the fluctuation is £. For the
experiments to be considered £=2.18 X107 m~'.
The temperature dependence of x is found to be, for
CO, above the critical point, proportional to
| T—T.|~07=092 where T. is the critical temperature

(Te=303.2 K for CO,). Swinney and Cummins found
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£=(2.4%+0.51) X10?/| T—T¢ |*® m for CO; at the
critical density [4].

The Brillouin components exhibit a large dispersion
in the frequency shift wp=uvsk; that is, vg > Cy the
adiabatic sound speed. At the same time the width
of the Brillouin components is appreciably greater
than the width predicted by the unmodified hydro-
dynamic equations [2, 3].

Finally, the ratio of the intensity of the central com-
ponent to the intensity of the Brillouin components is
found to be proportional to | T— T | ~1:02+0-03 [2, 3].

The dynamical model for density fluctuations of
wave vector k is
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ot + poir(t) =0 2)
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Here px(t) is the kth spatial Fourier component of
the density given that at t=0 that component had the
value pi. Tx(t) and yi(t) =ik - v(t) are the cor-
responding Fourier components of the temperature
and velocity field. In eq (4) the entropy has been re-
placed by the temperature and the density using local
thermodynamic equilibrium arguments. The pressure
term in eq (3) has been also replaced by the tempera-
ture and density using a nonlocal relationship between
the pressure and the density. The Fixman modifica-
tion [5] was used so that

mC}

Y

C3Brpo
V

pi(e) == (1+ k2/K2) pie(£) +— T(2).

Here x~! is the two particle correlation length, po is
the equilibrium number density and m is the mass of
a molecule. Other quantities are C, the low frequency,
adiabatic sound speed, y=C,/C, is the ratio of the
specific heat at constant pressure C, to the specific
heat at constant volume C, and Br is the isobaric
thermal expansion coefficient. The nonrelaxing longi-
tudinal kinematic viscosity is &= (4/3ms+n)/mpo
where 7; is the shear viscosity and 7, is the frequency
independent volume viscosity. The relaxing part of
the volume viscosity is contained in the convolution.
We assume

b(t)= (C%—C3)exp(—t/7). (5)

The time dependence of b is arbitrarily chosen to be

an exponential decay. While there is no reason to
expect this simple form, we shall see that the data
are, at present, adequately represented using this
form. The “high frequency” speed of sound is C..
Equation (5) is a frequently used form for relaxing
viscosities.

In eq (4) Ao is the static thermal conductivity and
the relaxing part is A(z). Again we choose an expo-
nential decay:

TA(t) = (A= o) exp(—t/T). 6)

The high frequency thermal conductivity A, is prob-
ably equal to the thermal conductivity when T—T,
>20 K. Except near the critical point the thermal
conductivity is insensitive to small changes in the
temperature[8]. The form for eq (6) was chosen on the
supposition that only the critical anomaly in the ther-
mal conductivity can exhibit relaxation. Again the
factor exp [—t/7] was chosen for simplicity.

The spectrum of light scattered by density fluctua-
tions is specified by the correlation function
(pr(w)p-k) where pip(w) is the Fourier transform
of pr(t). We shall determine (px(w)p-x) for the
model by solving eqs (2)—(6) as an initial value problem
for px(t) given that pi(0) = px. Put another way, we
use the equations of motion (2)—(6) in lieu of the
conditional probability which relates px(t) to px. If
desired, the ensemble average indicated by the angular
brackets ( . . . ) may be computed using an equi-
librium ensemble. The initial value (pxp_x) is not of
special interest here as the Fourier components are
independent in this model. [If there were coupling
between py and pi+q the initial values would be im-
portant.] The reader is referred to reference [1] for
more detailed discussion of these calculations.

Solution of the model is straightforward when the
Laplace transform is employed. The transform of
pk(t) is

= f " oo (t)dt @

with similar expressions for Tx(z) and ¥ (z). With
the assumption that (pxT-x)=(p_r)=0 it
follows that
(pr(2)p-r ) _ F(2) ®)
(lpel?)  G(z)
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We have introduced the quantities ao=\o/poC, and
Q= N/ poCy.

‘An exact expression for (pi(w)p_x) may be ob-
tained from eq (8) by replacing z by iw and taking
1/ar times the real part of the resulting expression.

<pi(@p_r>_ Flin)
< |l > =Re Clia)" (11)
When this is done we find
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where F (iow) =F,+i Fs and G (iw) =G, +i G..
The explicit forms for F'; etc. are
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3. Comparison With Experiment

The frequency spectrum of density fluctuations
for the model may be computed by evaluating eq (12)
for various values of w. To do this requires specifie
values for the parameters ao, a., bo, Co, C., v, k, T,
7, and k. The wave vector k£ is determined by the
experimental configuration. In what follows we shall
use £=2.18X10’m~', the value appropriate to the
measurements of Ford, Langley, and Puglielli [3].
It is possible to make reasonable estimates for a.,
bo, Co, and C, using various experimental results.
We can also specify ao/y reliably. The remaining
parameters k, 7, 7 and y are to be determined by
requiring (px(w)p—_x) to correspond to the spectrum
observed for COs,. )

First let us specify a., and by. The critical anamoly
in the thermal conductivity may be detected 40 K
above the critical point in CO,. However, most of the
increase occurs for |T—T.| <20 K so a, was chosen
to be 1X 10-7m?/s which is comparable to ap at T— T,
=20 K [8]. The shear viscosity and the nonrelaxing
part of the volume viscosity are contained in b.
A value 1.5X10"7m?/s was chosen by assuming
My =ms and using measured values for ms [9].

The low frequency sound speed values Cy were taken
from figure 2 of reference [2]. These values correspond
to the thermodynamic sound speed corrected for the
vibrational degrees of freedom which are ““frozen out”
at the Brillouin frequency. This is the only place where
the vibrational degrees of freedom are expected to be
significant. Near the critical point the configurational
contribution to the specific heat is large compared to
the vibrational contribution so 7y, the ratio of the
specific heats, is not expected to depend significantly
on the vibrational specific heat. The high frequency
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sound speed values C, were assumed to be slightly
larger than the speeds obtained from figure 3 of refer-
ence [3]. For T—T.<1 K, C..=194 m/s was found to
yield good agreement with experiment. Values of C,
for T—T. >1 K are shown in table 1.

TABLE 1
I'-T7.;;K Co, m/s C..m/s

0.05 138 194

.1 140 194
1.0 160 194
2.0 177 196
50 198 208
10.0 2 225

The low frequency sound speeds, Cy, were taken from figure 2
of reference [2]. The high frequency sound speeds, C.., were taken
from figure 3 of reference [3].

The other quantity which may be specified is
ao/y=No/poC, the thermal diffusivity at constant
pressure. The width of the central component is, to
lowest order in k2, given by Aok2/poC, (see eq (1)). The
k* terms of this model may be found by seeking small
solutions to the dispersion equation

G(z) =0; (17)

G(z) is given in eq (10). The small z solution to eq (17) is

2 2 25
L [1 + k2 k2 —aok27<%— 1) s T]. (18)
% C3 W
Terms which are of order 1/y compared to the retained
terms have been dropped. Comparison with eq (1)
indicates that

1 (2
f=rimarfg=1 =5 19
Swinney and Cummins have determined ao/y by
measuring the width of the central component in
CO, and extracting the k2 coefficient from those
measurements [4].

The remaining parameters were evaluated as follows.
An initial value was assumed for y. [Once 7y is speci-
fied, ao is obtained from the data of ref. 4]. The vis-
cosity relaxation time 7 was adjusted so that the
Brillouin line width I's, as determined from the spec-
trum obtained by evaluating eq (12), was in agreement
with experiment. The sound speed v(k) is not very
sensitive to the value of 7 as wpr=v(k) k7 > 3. Next
the values of k and 7 were adjusted so that the central
component line width is reasonable. In practice
“reasonable” means &® nonnegative. The intensity
ratio was then checked for overall consistency. Then
a new value of y was chosen and the process was

repeated until satisfactory agreement with experiment
was achieved. No attempt to specify uncertainties
in the parameters was undertaken. The final choice
of values for 7, v, k, and 7 is listed in table 2.

TABLE 2
=1y K, m~! 7,8 v
0.05 2.4 X107 1.8Xx10-* 3500
0.1 3.71 X 107 1.5X10-* 1630
1 1.6 X108 8x10-1° 129
2 2.48 X 108 6x10-10 72
5 4.43 X 108 4x10-10 32
1 S S S | v 12

The values of the inverse correlation length k, the volume vis-
cosity relaxation time 7 and the ratio of the specific heats y as deter-
mined by fitting eq (12) to the spectrum of critical opalescence.

In determining -y and k we are guided by the expecta-
tion that these quantities would be proportional to
some power of T—T,; namely [10],

k=A(T—-T.)" (20)
and
y=B(T—T.)-7+e. 1)

The use of y in eq (21) follows standard notation
for exponents. Although this double meaning for
v is potentially confusing it should be clear from
the context whether the exponent y or y=C,/C, is
intended. The exponents v, y and a specify the tem-
perature dependence of the correlation length «-1!,
the specific heat at constant pressure C, and the
specific heat at constant volume C, respectively.
In the interval 0.05 K< T—T,<5 K we obtain agree-
ment with the experimental data using v =0.64,
A=1.6 X10°m!, y—a =1.1 and B=129.

The correlation length exponent v=0.64 is con-
sistent with other estimates [11]. There have been
no direct determinations of k for CO, so it is not
known whether or not A=1.6 X 10°m~! is a reasonable
choice. An independent determination of k by measur-
ing the intensity of the scattered light as a function
of wave vector (scattering angle) is needed.

The specific heat ratio exponent y—a=1.1 is
just barely in agreement with the exponents y and «
determined from equation of state data [12]. The
coefficient B=129 is to be compared with an ‘“‘ex-
perimental” value of y =120 for T—T.=1 K. This
number was obtained by subtracting out the vibra-
tional contribution to the specific heat ratio obtained
from equation of state data.

Although the Brillouin line-width data may be
fit using a frequency dependent thermal conductivity,
the data may also be fit using 7, the thermal con-
ductivity relaxation time, set equal to zero. For
example a set of values for 7 were obtained which
may be represented as

G20 Ot (TS Sls (22)
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in the interval 0.05 K<T—T.<2 K. This form
hasno significance as forT—7T.=0.05 K, 7=5X10"10g
and 7=0 vyield Brillouin line widths lying within the
uncertainty of the measured value. Until more precise
Brillouin line-width data become available it will
not be possible to decide whether or not a frequency
dependent thermal conductivity is an appropriate
feature of a dynamical model of critical point density
fluctuations.

The values for the relaxation time 7 may be approxi-
mately represented as

7=8X10"1°|T—T|~"3s (23)
The value, —1/3, of the exponent in eq (23) is an un-
expected result in that a —1/3 power divergence of
the volume viscosity has not been suggested by theo-
retical attempts to determine transport coefficients in
the critical region [6, 7].

Two other sets of parameters were considered. The
first of these had the specific heat ratio exponent
vy—a=1. While an acceptable fit to the experimental
data was obtained, this set of parameters was rejected
because y—a=1 is not consistent with y and « deter-
mined from equation of state data. The second set of
parameters had y —a=1.2. It was not possible to
fit the intensity ratio data with the second set.
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FIGURE 1. Comparison of experimental and computed Brillouin

line widths.
The circles are the computed line widths. The solid lines indicate the uncertainty in
the experimental results, This includes both the quoted uncertainty and the spread of the
data in figure 3 of reference [3].

The type of fit obtained for the Brillouin line width
is shown in figure 1 and for the intensity ratio as shown
in figure 2. The error band in figure 1 is taken from
reference [3] and represents experimental uncertainty
and spread in the data. No uncertainty for the intensity
ratio is quoted in reference [3], but the scatter in the
data is such that our computed values are compatable
with the experimental values. The central component
line widths are not indicated as the computed values
were required to agree with the experimental widths.

4. Discussion

It is not reasonable to expect the single relaxation
time model for the volume viscosity to provide an
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FIGURE 2.  Comparison of experimental and computed intensity
ratios.
The solid circles are computed values: the error bars indicate the spread of the experi-
mental points in figure 3 of reference [3]. The solid line, 180|7 —T.| "%, was drawn through

the computed points “by eye”. It is, on this plot, indistinguishable from 185|T— 7’| -1
which is the least squares fit to the experimental points.

adequate description of density fluctuations in the
critical region. More probably a model with a “distri-
bution of relaxation times’ will be found when im-
proved data become available, to yield a better
description [13]. This would require a modification of
eq (5) with corresponding changes in eqs (9), (10),
(13), (14), (15), and (16).

A fairly good test of the single relaxation time model
can be made by measuring the Brillouin sound speed
as a function of wave vector. With a single relaxation
time the dispersion in vg, the Brillouin speed, occurs
over a fairly narrow range in £ With a distribution of
times the range in k£ over which dispersion in vp is
exhibited increases and the increase in vz with in-
creasing k is less abrupt. We have determined vy as
a function of £ using the parameters in tables 1 and
2. These speeds are plotted in figure 3 as functions of
T—T, for four different values of the wave vector £.
The limiting curves for C, and C, are also shown.
The minimum in vg is due to the decrease in Cy as
T—T.. The wave vector dependence is shown in
figure 4. There (vp/Cy)? for different T—T is plotted
as a function of k. If a “distribution of relaxation times”
model were used, the slope of the curves in figure 4
would be less steep.

A dynamical model for long wavelength density
fluctuations in a fluid near the critical point has been
described by the linearized hydrodynamic equations
which were modified to allow for nonlocal pressure-
density relationship and to allow for frequency depend-
ence in the volume viscosity. The parameters of this
model may be chosen so that the calculated spectrum
is in agreement with the observed spectrum. The
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FIGURE 3. The Brillouin speed vy versus T —T, for several values
of wavevector.
Curve 1, C.; curve 2, k=2.18 X 10-"m~! (§=166°) curve 3, k=1.54X 107m~"' (6 = 90°);
curve 4, k=1X107m~" (6 = 54°); curve 5, k=5X10m! (= 26°); curve 6,Co.

1.0 | L
0] | 2
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FIGURE 4. The dispersion in the Brillouin spegd as a function of
wavevector is indicated as (vg/Co)? versus k for several values of

=1
Curve 1, T—t.=0.05 K; curve 2, T—T.=0.1 K; curve 3, T—T.=1K; curve 4, TT Te
=9 K: curve 5, T—T.=5 K. The limiting values (C../Co)?* are shown as horizontal lines

for curves 3, 4, and 5.

parameters are consistent with other measurements
although this could change as more precise measure-
ments are made. ,

Two comments are in order. The first is that near
the critical point, the intensity ratio is not a measure
of the ratio of the specific heats. As shown in figure 2,
calculated values of the intensity ratio are described by

[
80T [
21 | |

B

To obtain this set of values we used
=129 =T, -t%

Obviously I /2] 5 # y— 1. The intensity ratio measures
not only y but also (vgk7)2. Unfortunately neither of

these quantities enters in a very simple way. Never-
theless the intensity provides an important overall
consistency check on the parameters of the model.

The second comment is that the £* term in the
central component line width is not simply a measure
of the two particle correlation length. This is seen
clearly in eq (19).

A more careful evaluation of the model could be
made if two sets of measurements were to be per-
formed. The correlation length, k!, has been used as
an adjustable parameter. It should be determined from
other light scattering measurements [14].

The values of k used in this paper imply a consider-
able angular dissymmetry in the intensity of the scat-
tered light for T—T.< 0.1 K. This is just the region
where multiple scattering becomes important so it is
not possible to say if our values of k are consistent with
the measurements discussed in reference [14]. The
uncertainty in the Brillouin line width measurements
is too large to permit any meaningful evaluation of the
frequency dependence of the thermal conductivity.
The line width measurements should be made with
greater precision.

I thank Norman Ford, Harry Swinney, and Herman
Cummins for their comments on an early version of
this work.
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