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A method is described for building an equation of state which gives an infinite specific heat C, at
the critical point approached from the one-phase domain. Interpolated PVT data are used on isochores
up to 100 K at densities to the liquid triple point. In addition to an accurate representation of these
data, the equation gives specific heats which agree well with experimental data along near-critical

isochores.
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Symbols and Units

and t refer to critical and liquid triple
points)

density-dependent coefficients of eq (5).

specific heat, J/mol K.

specific heat at p=0, J/mol K.

interaction specific heat, J/mol K.

density.

15.59 mol/1 for eq (3), [13].

(1.0/0.026176) mol/l, [19].

the joule.

the liter.

the[ gram mole, based on R in this work
Sl

pressure, 1 atm=0.101325 MN/m?2.

the gas constant, 0.0820597 1-atm/(mol-
deg) [5].

density reduced at the liquid triple point.

density reduced at the critical point.

temperature K, (NBS 1955).

32.93 K.

13.803 K, [19].

coexistence temperature, K.

a locus of temperatures, K.

1/d, molal volume.

1—=60(p)/T.

temperature reduced at the triple point.

the “compressibility factor™.

*This work was conducted at the National Bureau of Standards under the sponsorship
of the U.S. Air Force (MIPR No. 4355-9-7).
**Cryogenics Division, NBS Boulder Laboratories, Boulder, Colorado 80302.

1. Introduction

The objective of this work is an accurate form of an
equation of state to replace costly approximation
methods in the computation of thermodynamic prop-
erties [1, 2]'. As experimental specific heats C,
increase without limit on approach to the critical point
[3, 4], this behavior is included in the present equa-
tion. The nonanalytic term is selected to conform with
specific heats of parahydrogen at temperatures
relatively far removed from the critical point. The
general form of this isochoric equation of state can be
related to the well-known Beattie-Bridgeman equation.

Three particular benefits derive from the present
selection of temperature-dependent terms in the
equation. Coeflicients of these terms (found independ-
ently on each isochore of PVT data) are smooth func-
tions of the density. Given the critical temperature,
the present equation yields a critical density (and
pressure) from PVT data in agreement with the known
critical density of parahydrogen. Specific heats from
the present equation agree with experimental data
along near-critical isochores, without the use of
complicated adjustments to the equation for the critical
region. One may hope that present methods can be
applied to other substances.

Data used in this work are from [5, 6]. Excellent
reviews on critical phenomena are available [7, 8].

2. The Behavior of Specific Heats

Specific heats are related to (92P/dT?), from the
equation of state by integration along isotherms:

! Figures in brackets indicate the literature references at the end of this paper.
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where

Ct=Cy(p, T)—C(T)

is the interaction specific heat, and C(T) at p=0
refers to ideal gas states (translational and intra-
molecular effects only).

With any equation of state, eq (1) generally will
yield several temperature-dependent terms for G.
As T— T. along the critical isochore, however, there
may be a nonanalytic term which exceeds all others.
This term may be algebraic (T—T.)~*, [9], or it
may be logarithmic, —log (T'—T.), [10]. Assuming
the algebraic form, we examine some parahydrogen
data in figure 1 at p/p.=1.05. The slope of this
log-log plot corresponds to exponent a. For these
data at T >1.03 - T the exponent a=3/4 is not com-
parable with @=0.05 deduced for other substances at
T<1.03-T. [11]. We have used the argument w
in figure 1 because integration will yield a power of
T not exceeding unity in the equation of state. As
background for figure 1, our oxygen specific heats
were represented by use of a=1/3 together with other
terms [12].

3. An Origin for Temperature on Isochores

Consider the expression
Ci~[(T—T.)IT]

at densities departing from the critical isochore D—C
of ficure 2. We must replace T'c by a locus of tempera-
tures 6O(p) inside the coexistence envelope [12]
which may serve as the origin for temperature along
each isochore. If now we define the useful function
of temperature along each isochore,
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FIGURE 1. Interaction specific heats C* (J/mol K) for p—Ho..

Open circles from [6}; filled circles from [2]; barred circle from [15].

w(p, T) =1—0(p)/T, 2)

we have in (1/w) a pole at the critical point approached
from the one-phase domain.

To build an equation of state we need a formula for
0(p). An absolute description is difficult to formulate
under the condition 6§ < T. For present work, therefore,
I define 0 as a fraction of the saturation temperatures
formulated in the appendix. The following is selected
from several definitions investigated:

0(p)=Tip) exp [—a- (¢ —1)*]. 3)

As the calculated T(p) terminates at the liquid triple
point, we must for the present eliminate PV'T data at
higher densities. Equation (3) is arbitrary, but it
permits us to go ahead with the formulation of an
equation of state. It obviously deserves further in-
vestigation. It is interesting to note that the van der
Waals’ school uses a similar locus defined by maxima
and minima of calculated isotherms inside the
saturation envelope [14].

4. Formulation of the Nonanalytic Term

Consider the calculation of specific heats by means
of (1) along the critical isotherm A—C—B of figure 2.
As C, is at a maximum at point C, it is necessary that
0%2P[dT?* change sign as density increases through the
critical point. Assuming that one term alone in the
equation of state is significant near point C, the change
of sign may be given by a coefficient, D(p), in the
abbreviated equation:

P~D(p)-¥(p,T)

where 02¢/dT*— © as T — 0+,

DENSITY

I
A
TEMPERATURE

FIGURE 2. Density-temperature phase diagram.
Ty(p) is the liquid-vapor coexistence envelope. Point C is the critical point.
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Consider next that PVT isochores at p < p have only
negative curvature, whereas at p > p. they have posi-
tive curvature at low temperature, changing to negative
curvature at high temperature [15]. To facilitate the
construction of a wide-range equation of state, let the
nonanalytic function have the same qualitative be-
havior as low-density isochores, figure 3.

Nonanalytic forms with monotonically negative
curvature include:

Yp, T) =w—ow-log v, (4a)
Up, T) = [w—w2/(2—a)]/[1-1/(2—a)],  (4b)
U(p, T) = w+8 0*log w, §= const. (4c)

All of these forms when used in (5) below give equally
good representation of PVT data provided we omit the
first point of every isochore (within 1 K of saturation).
With (4c), pressures on the near-critical isotherm at
33 K cannot be represented acceptably. Function
(4b) gives improving representation of PVT data as
a—1, leading to the selection of function (4a) for
the equation of state.

5. The Equation of State

Our method is to postulate temperature-dependent
terms in the equation of state. Coefficients of these
terms are found by least squares independently on
each isochore of PVT data. If, in addition to an accur-
ate representation of the data, we obtain coefficients
which are regular (smooth) functions of density, we
may hope to develop the extremely precise descrip-
tions required for these coefficients.
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FIGURE 3. Two different functions W(p, T), nonanalytic at T=6.

Equation of state (5) evolves from many exploratory
computations with the interpolated PVT data on
isochores [5]. Symbols are listed elsewhere. This equa-
tion uses w(p, T) defined by (2), 0(p) defined by (3),
and density-dependent coefficients 4, B, C, D:

(Z—1) - x/p=A+B-®(T)
+C-X(p, T)+D -VY(p, T). (5)

The temperature-dependent functions in (5) are

O(T)=x-[1—b-exp (—B/x)], (5b)
X(p,T)=0(p)T, (5¢)
V(p,T)=1—[w—ow-logw]. (5d)

Function ®(T) is designed for freedom in high-tem-
perature description of the second virial coefficient
and to give at the same time a sensible behavior as
T— 0. The condensation of two terms into one is
necessary to minimize the total number of terms in (5).

Function X(p,T) was selected by trial both for
simplicity in C(p) and for representation of PV'T data.
As we shall have D(p) =0 on the critical isochore, it
follows that the inflection on this isochore for para-
hydrogen is given by ®(T) and X(p, T) acting in
concert. Efforts to condense this behavior into a single
term have failed.

Function W(p,T) gives the nonanalytic behavior
02V [9T?2— o as T— 6, i.e. as w— 0. Through defini-
tion (5d) this function approaches zero at high tempera-
ture. Its formulation was discussed above. At T > 6
we have W — (6/T)2.

Density-dependent coefficients of (5) at first are
obtained by least squares independently on each iso-
chore of PVT data. Extreme precision is required in
the representations of these coefficients because (5)
gives a small difference of large values. For this reason
we proceed in steps as follows:

(1) The original data for B(p) are seen in figure 4b.
We select a linear form; transpose the calculated term
B(p) - ®(T) to the left side of (5); and redetermine
A(p), C(p), D(p) on each isochore. Figure 4a gives
these data for 4 (p).

(2) A third order power series is selected for A(p)
after testing in combination with other variables in (5).
With the calculated 4(p)+B(p) - ®(T) on the left
of (5) we redetermine data for C(p) and D(p).

(3) We attack D(p) next due to our special interest
in the root near p.. The data of figure 4d suggest a
cubic, but a fifth order series is necessary to reproduce
PVT data. With three calculated terms transposed to
the left of (5) we average C(p) on each isochore, with
results in figure 4c.

For C(p) a seventh order series is found necessary
by trial. All of these results are summarized as follows:

C(p)=3Ci p,

i=0

3
A(p)zzAl 'piv
i=0
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B(p)=Y3 Bi-p',

i=0

D(p)=3Di-p'.

i=0

6. Discussion of Results

Interpolated data on 40 isochores are used at
densities through 37.0 mol/l. The first point of each is
omitted, leaving 953 PVT points for least squares
determination of coefficients [5].

The hidden constants a, b, 8 in (5) may be investi-
gated at various stages in formulating (5). Table 1
gives a survey using the above power series for
coeflicients 4, B, C, D. For each value of a, b, and 8
we observe the mean relative deviation of 953 pressures
in parts per ten thousand “PCT* 100” and also the
root in D (p), “D, ROOT” in mol/l. For values a=0.2,
b=0.39, B=10, the deviation is at a minimum 0.0203
percent and the root at 15.54 mol/l is in excellent
agreement with 15.27+0.30 mol/l from [16] and with
15.59 £0.05 from [2].

Table 2 gives all of the constants for equation of
state [5]. At this critical point, 32.93 K and 15.54 mol/l,
we obtain the following comparison with our vapor
pressure equation [17]

Table 3 gives calculated pressures (relative to the
critical pressure) along the critical isotherm at 32.93 K.
The small imperfection of this isotherm could arise
for many reasons, including the need for a smaller
critical exponent « at temperatures very near 7.

The most exacting check on (5), however, is the com-
parison of specific heats. We have selected data
along near-critical isochores for this purpose. In tables
4 and 5 the data of Younglove and Diller are diminished
to C;*. Density along the isochores is given on the first
row. Columns from left to right give T and C9; then C}
from [6] and as calculated with (5); and last the differ-
ence of these values.

The authors ascribe an uncertainty of ‘‘several
percent’ at temperatures near saturation. The greatest
difference, 0.46 J/mol K at 36.035 K in table 5, is 3.0
percent of the experimental C, It is interesting to
make similar comparison with calculated specific heats
from our monograph [2] in table 6 to see the increasing
deviations as T— T.. Tedious and costly adjustments
were required in [2] to conform with experimental C,
data, whereas (5) now gives acceptable values directly.

The Beattie-Bridgeman equation [18] may be written
in the abbreviated, isochoric form

(Z—-1) -xlp=A(p) +B(p) -x+D(p)/x2. (7

d log P|d
P, atm P, MN/m? log T We note absence from (7) of a term in 1/x like X (p, T)
Equation (5) 12.628 1.2795 4.960 in (5). This might be related to the fact that C(p) in (5)
V.P. eq,[17] 12.673 1.2841 4.833 is the only coefficient with origin near zero, figure 4c.
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FIGURE 4. Density dependence of coefficients A, B, C. D.
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TABLE 1. Survey for constants a, b, and 8 TABLE 3. Calculated critical isotherm
a=0.10 d, mol/l 1212
B b = 0.38 0.39 0.40 0.41 5.0 0.7373
8.00| PCT* 100= 3.46 3.62 3.94 4.36 6.0 .8165
8.00| D, ROOT= 14.41 14.61 14.87 15.12 7.0 .8779
9.00| PCT* 100= 2.62 2.88 3.29 3.81 8.0 9237
9.00| D, ROOT= 14.90 15.14 15.40 15.68 9.0 .9564
10.00| PCT* 100= 2.16 2235 2.69 32
10.00| D, ROOT= 15.18 15.44 15.70 15.98 10.0 9785
11.00| PCT* 100= 2.57 2.39 2.56 2.88 11.0 9918
11.00| D, ROOT= 15.28 15.53 15.79 16.06 12.0 19991
13.0 1.0020
14.0 1.0021
a=0.20
14.5 1.0015
15.0 1.0008
B b = 0.38 0.39 0.40 0.41 15.5 1.0001
8.00| PCT* 100= 3.32 3.62 4.17 4.85 16.0 0.9994
8.00( D, ROOT= 14.52 14.73 14.96 15.20 16.5 .9989
9.00| PCT* 100= 2231 2.63 3.22 3.95
9.00| D, ROOT= 15.01 15:25 15.50 15.77 17.0 .9987
10.00 | PCT* 100= 2.25 2.03 2.32 2.88 18.0 .9995
10.00 | D, ROOT = 15.30  15.54  15.80 16.08 19.0 1.0040
11.00 | PCT* 100= 3.51 3.01 2.67 Pl 20.0 1.0149
11.00 | D, ROOT= 15.41 15.64 15.89 16.16 21.0 1.0367
22.0 1.0748
a=0.30 23.0 1.1367
24.0 1.2309
25.0 1.3676
B b = 0.38 0.39 0.40 0.41 26.0 1.5584
8.00| PCT* 100= 3.56 4.09 4.95 6.04
8.00| D, ROOT= 14.61 14.80 15.01 15.24
9.00| PCT* 100= 2.50 2.70 39517 4.65
9.00 | D, ROOT= 1551 15.33 15.57 15.84
10.00 | PCT* 100 = 3.17 2.35 2407 2.88
10.00 | D, ROOT = 15.41 15.64 15.89 16.17
11.00 | PCT* 100 = 527  4.45  3.72 3.16 S 4 e
11.00 | D, ROOT = 15.54 15.76 15.99 16.26  TABLE 4. Comparison of C¥ from [plwith calculated values from (5)
C¥ at 13.28 mol/l
T, K &5
TABLE 2. Constants of eq (5) for parahydrogen Lt Cale o
34.216 12.47 5.20 5.30 —0.10
a=0.2, b=10.39 B=10 36.402 12.48 2.79 3.09 —.30
38.384 12.48 2.08 2.21 = .1k
40.214 12.49 1.66 o —.07
Ao= —9.1083 1777 C,=—488.5219 0867 42.107 12.51 1.41 1.41 —.00
A= —2.3668 5605 C;= 606.6850 4566 43.985 12.52 1525 1.20 .05
A= 5.5797 7042 Ce=—416.4729 0930 45.940 12.55 1.13 1.06 .07
As=  2.4230 4292 C;= 120.7198 4869 47.994 12.59 1.02 0.95 07
b= 1.2931 9156 Dy= —2.0898 5994 50.057 12.63 0.97 838 09
59.868 13.08 80 T 05
Bi= 0.8959 3072 D=  8.0374 2211 69.974 13.98 70 72 —.02
Co= 0.1377 8548 D,= —1.2966 5749 80.206 15.34 69 10 —.01
Ci= 14.4323 0065 D= 19772 8697 90.055 16.94 63 68 —.05
C,=—79.1011 8291 ,Ds= —6.3883 7912
C;= 242.3988 7393 Ds= 6.2341 2613
Note: C;¥ in J/mol K.

589



TABLE 5. Comparison of C from [6] with calculated values from (5)

C ¥ at 16.18 mol/l
T, K Cs
Publ Cale Diff
33.889 12.47 6.17 6.07 0.10
36.035 12.48 873 3.19 =~ 46
38.194 12.48 1.90 2.13 - 28
42.244 12.51 1.30 1.30 .00
44.245 12353 1.16 1.11 .05
46.166 12.55 1.08 0.99 .09
49.986 12.63 0.98 .87 11
59.894 13.08 .84 .81 .03
69.931 13.98 .85 .83 .02
80.052 15.31 .19 .83 —.04
89.943 16.94 .76 .81 —.05

Note: C¥ in J/mol K.

TABLE 6. Comparison of C¥ from [2]| with calculated values from (5)

C}¥ at 15.50 mol/l
T,K 5
Publ Calc Diff
33.000 12.47 7.24 13.09 —5.85
34.000 12.47 5.44 5.91 —0.47
35.000 12.48 3.69 4.23 —.54
36.000 12.48 2.89 3.30 — 41
37.000 12.48 281 6] 2.69 — .53
38.000 12.48 2.08 2.26 —.18
39.000 12.49 1.84 1.94 —.09
40.000 12.49 1.65 1.70 ~ 05
42.000 12.51 1.37 1.36 .01
44.000 12.52 1.20 1.15 .04
46.000 12.55 1.08 1.02 .06
48.000 12.59 1.00 0.93 .07
50.000 12.63 0.96 .88 .08
55.000 12.81 91 .81 .10
60.000 13.08 .84 .80 .04
65.000 13.47 .80 .80 —.00
70.000 13.98 17 .80 = {15}
75.000 14.59 17 .80 —.04
80.000 15.31 .76 .80 —.04
85.000 16.10 17 .79 - 02
90.000 16.94 .19 .78 .01
95.000 17.82 .81 7 .05
100.000 18.69 .84 85 .09

Note: C¥ in J/mol K.

The term 1/x? in (7) is qualitatively similar to W (p, T)
at T > 6. Equation (7), however, suffers from coefficient
D(p) which is negative at all densities [18].

The virial equation [18] probably can be related to
(5) only at such high temperatures that the last two
terms of (5) are negligible. Figure 2 suggests that 6(p)
may not be analytic at p=0.

7. Appendix. Temperature-density Formula for
Coexisting Liquid and Vapor

This relation from [13] is in reduced variables,

7=T/T., and o = d/d.,

(1-1/7) — — i «p—O"
e o (1-1/1) = | (0' |)8/3 e u'f(o)’
where

f((T) Ea1+a2'a'“‘/3+a3'(r‘/3+ .
as-ofB3+as-cd+as o’

Values for the constants are,

ap= 2.97647 as= 0.620 5095
a,= 2.030 0583 as=—0.421 81139
a;=—0.058 7951 ag= 0.682 5745-10-°
az;=—1.856 5706

The temperature-density relation for coexisting:

liquid and vapor is central to the present equation of
state. Simplification and increase of accuracy in the
description of this relation therefore is valuable, as
obtained with the following form using symbols defined
above,

Afr=1)=[a—1[*-F(p),
F(p) =ay-log. (1/p) tas+as-p+...+as:p"
Constants used and found for this expression are:

T.=32.953 K, d.=15.59 mol/l,

a;= 0.300 6242 as=—237.846 2970
a;=— 0.567 0332 ar= 331.544 2639
az=  3.838 7436 ag=—231.236 7070
a;=—19.378 2878 ay=  64.190 7466
as= 89.909 2005

Maximum relative deviations for 7 are 0.03 percent as
compared with 0.52 percent in [13]. The overall rms
relative deviation is 0.016 percent as compared with
a mean relative deviation of 0.062 percent in [13].
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