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A rev ie w of the scale d equation of s tate proposed for th e crit ica l region of Aui ds a nd magne ts is 
given using the language a ppropri ate fo r Auid s. Th e experiment al ev idence for the va lid it y of the basic 
hypo thes is underlyin g thi s equation of s tate is di scussed in de tail. Experim ent a l data in the crit ica l 
regions of CO2 , Xe , a nd He4 a re then analyzed us in g a c losed-form expression for the che mical potenti a l 
as a func tion of de nsit y an d te mperature, based on sca ling ideas. Agree me nt between the proposed equa
tion and the experimental data is fo und fo r the three subs ta nces_ The result s of the scaling of 1ljJ. , IIp, t 
da ta a re shown not to be in cont rad ic tion with the ana lys is, a lso based on scaling ideas, of independe nt 
experime nt al measure ments of both spec ifi c hea t and va por pressure. 
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1. Introduction 

The th erm odyna mic anomali es In the c riti cal 
region are us uall y described by means of power 
laws, ass um ed to be asymptoti cally valid a pproaching 
the criti cal point. Those of direct in teres t to us are, in 
Fisher 's notation [1] I: 

? Coexi ste nce c urve : !:J.p = B (- t) f3 (1.1 ) 
Critical isotherm : 

Here !:J.p = (p - Pc)/Pc, t = (T-Tc)/Tc a nd all proper
ti es are measured in reduced units th ro ugh th e a ppro
pri a te co mbina tions of c riti cal pa ra me ters. T hu s the 
te mperature is meas ured in unit s Tc, the de nsity in 
units pc, th e c he mi cal po te nti al j.L (P, T) in units Pc/Pc, 
th e specific hea t per unit volume pC,. in un its Pc/Te, 
etc. The cri tical densi ty, press ure and temperature 
are th erefo re unitv bv de finiti on. 

The scaled equation-of- state, recentl y proposed 
[2 , 3, 4 J, is a partial formulation of the thermody namic 
behavior in the criti cal region, in corporatin g these 
a noma li es . In thi s paper we d isc uss the c riti cal 
region of fluid s in the light of thi s theory. A revie w of 
the basic hypothesis and the formul ation of the scaling 
laws for fluid s is give n in sec tion 2. T he experi me ntal 
ev idence for the validity of the bas ic hypothesis is 
di scussed in de tail in sec tion 3. Our pre vious tes ts [5J 
of the exte nt to whi ch experimental data on fluid s 
possess the scalin g property are recalled , and the 
points where the earl y a nalysis needs improveme nt 
are discussed (sec. 4). An explicit expression for the 
equation-of- state in terms of scaled variables is pro
posed in section 5. The details of the procedure 
followed in analyzing the experimental data are given 
in section 6. The results of the analysis of the data, 
complete with internal and external consiste ncy 
checks, are reported in sections 7 to 9. Finally, con
clusions are presented in section 10. 

> 

Com pressibility: 
on the criti cal isor:hore, KT = rt-Y, T > Tc 
along the coexistence curve in the one-phase region: 

Specific heat at constant volum e: 
on the criti cal isochore, 

T < Tc 

Cv= (A +/a) t - cr T > Tc 

(1.3) 

Cv= (All/a ' ) (-t) -cr' T < Tc (1 .4) 

along the coexiste nce curve in the one-phase region: 

·On leave of absence from the Univers ity tJf RtJlll e, RfJmC, It aly. 
"Present add ress: Tem ple Universit y. Ph iladel phia , P enn . 19 122 
I Figures in brac kets indicule the lit e rature references a t the end uf thi s pape r. 

2. Scaled Equation-of-State 

The equilibrium thermodynamic properti es of a fluid 
are determined by the knowledge of either the Helm-
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hohz free energy per unit volume a(p,T) as a function 
of density p and temperature T, or of the corresponding 
free energy per mole A (v, T) as a fun ction of molar 
volume v and te mperature. In the first case the variable 
conjugate to the density is the chemical pote ntial 
p.= (a a/a ph while in the seco nd case the variable 
conjugate to the molar volume is the press ure 
p=- (aA /av)r. It is a question of which pair of conju· 
gate varia bles is mos t s uitable for di scussing thermody· 
namic properti es in the c riti cal region. We have made 
the choice on the bas is of symmetry arguments di s· 
c ussed more full y in the next sec tion. Magnetic 
criti cal phenomena s how, by definition , complete 
symmetry with respect to the line M = O. Thus , the 
spontan eous magnetizati on is fully symmetric around 
M =0. Since the analogy of magnetic and fluid criti cal 
phenomena plays such a basic role in scaling law 
theory, we choose the pair of variables which shows 
the bes t symmetry around the criti cal isochore. It 
is well kn9wn th at for s imple fluid s the phase boundary 
shows more symmetry around pc in the pT plane than 
aro und Vc in the vT plane. This and other sy mmetry 
co nsiderations (sec. 3) lead to a preference for the 
pair p. , p. 

Widom [2], usin g c he mical potenti al, density and 
temperature as variables , first proposed an equation· 
of-state for fluid s; it is exactly equivalent to those 
proposed for the Ising model and for magnets [3 , 4], 
a s was shown by Griffith s [4]. The main assumptions on 
whic h thi s equation is based are the plausible ones that 
free energy and chemi cal potential are regular in p 
and t throughout the e ntire one-phase region with 
possible exclusion of the phase boundary. Moreove r, 
the quantity t:.p. = p.(p , t) - p.(Pc, t ) is also assumed 
to be regular throughout th e entire one-phase region, 
and , at leas t asymptoti cally , anti symm etric around p c. 
It should be emphasized that regularity of p. and t:.p. 
implies regularit y of p.(Pc, t) at the criti cal te mpera
ture, as is the case in the lattice gas . 

In the following, a review of the prope rti es of the 
equation-of-state is given according to Griffiths' 
formulation [4]; the n, the derived properties of the 
free energy and the specific heat are examined. 

2.1. The Equation-of-State 

The asymptoti c equation for the phase boundary, 
eq (1.1 Y, suggests the introduction of a variable x 
defin ed by 

x = t/ It:.p ll/{3. (2 .1) 

In terms of thi s variable , it is hypothesized that the 
equation of state is of the form: 

t:.p. = t:.p lt:.p lo- Ih( x). (2.2 ) 

The qu antit y h(x ) is a func tion of th e vari able x only, 
whi ch accordin g to the require me nts of a nalyti city of 
a(p, t), p.(p , t ) , a nd t:.p.(p , t) must have the following 
properties : 

(1) It is a real positive fun ction of x everywhere in 
the range - X I) < X < x which vanishes at the phase 
boundary X=-Xo , XO=B - I/{3, with a finite slope : 

(2 .3) 

and from the de finition given in eq (1.3) 

y ' = /3(0-1) 

f' = [/3 - lh'(- xo) x h-Y' ]- I. (2.4) 

About x = 0 h (x) possesses the series expansion 

y. 

h(x) = L hjxj= ho +hIX+h2X2 + ... 
J~ O 

so that on the critical isotherm 1t:.p.1 = ho lt:.plo and 
from the definition in eq (1.2) 

t:.=ho (2.5) 

(2) For large x, h (x) has the series expansion 

y. 

h(x) = L 'Y/nX{3(O+I-211 ) (2.6) 
n = 1 

which means that 

( ap.) = [K,,] - ,! = 'Yl t{3(8 - I) a l p - pc ·,1 
p P~Pc 

(2.7) 

and 

y=/3(8-1) =y ' 

f= 'Y/II (2_8) " 

(3) The compressibility is given in general by 

(2.9) 

For it to be nonnegative h (x) must s ati sfy the condition '\! 

/3oh (x ) ~ xh' (x). (2.10) "I 
Thus , with the definition y = /3 (0 - 1), the scaling . 
law eq (2.2) is consistent with anomalies (1.1 , 1.2, 
1.3). 

2.2. The Free Energy 

The free energy per unit volume a(p, t) is only 
partially d e t e rmin e d by the equation of state : 
p.= p.(p , t) = (aa/ap),. First, since the scalin g law 
equation is an expression for t:.p. , an unknown function 
p.(pc, t) multiplied by p enters into the expression 
for a(p, t). Secondly , an integration constant Ao(T) 
will occur additively. It is assumed that Ao(T) is 
an analyti c fun ction of the temperature. 

In the general case a#0(0 < a=2-/3(0+1)< I) \ 
we have the following expression for the free energy: 
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(2 .11 ) 
with aa(X) related to hex) through: 

-xa~(x) + (2-a)aa( X) =f3h(x) (2 .12) 

aa(X) is analytic everywhere for - Xo < x < 00; near 
x = 0 it can be written in the form 

aa(X) = f3{~+~ 
2-0' I-a 

-xlxl l - a fo.1· [hey) -h1y-ho] lyla-3dy}. (2.13) 

In the two-phase region Go (x) is constant and equal 
to its value on the phase boundary aa( - xo). (The 
numerical value of aa(- xo) ca n be evaluated by usin g 
in eq (2.13) th e se ri es expansion for he y) near y= 0 
with as man y terms as necessary to cove r the range 
- xu, 0). 

For large pos itive x , aa(X) ca n be expanded as 

1 x 

aa(X) =Cx2-a+"2 L n- lT/nX 2- a- 2/3 n (2.14) 
' 1/ = 1 

the constant C being given by 

In the case a = 0 , the free e nergy is given by 

a (D.p , t) =Ao(T) + /-t (Pc, t)p + lD.plo+1 ao(x) 

+ h2tZ ln lD.p I 

with ao(x) sati sfying the differential equation 

(2 .15) 

(2.16) 

(2.1 7) 

The necessary and sufficient condition for the heat 
'7 capacity to be positive is that a~(x) :;:; 0 for all x in the 

range -xo<x <oo. This is hard to translate into any 
simple condition on h (x) or it s derivatives. However , 
the condition that for all x in the range - xo < x < 00 

h" (x) be nonnegative is sufficient for the positivity 
of the heat capacity and is useful in constructing 
functions. 

> 

p(p,., t) = -Ao(T) - Ct z- a, t > O. (2 .19) 

The nonanalyti c term is of the form Itlz- a . Its co
e ffi c ie nt s for positive t differs from that for negative t. 
Howe ve r both coefficients are r elated to h (x), through 
eq (2.13) and (2.15) respectively. They are both pos
itive since aa ( - xo) and C are negative. Since the 
che mical potential along the critical isochore is as
sumed non singular at t = 0, the singularity in the 
pressure is directly related to the singularity in the 
specific heat according to the scaling laws. Indeed 
the second de rivative of the pressure on the critical 
isoc hore according to eq (2 .19) dive rges with the ex
ponent a and the sa me expo nent is found for the 
specific heat. From 

(a') ) 
pC,.= -T a~~ p 

(T in unit s Te, pCI' in unit s PelTc) (2 .20) 

the scaling equ ations for the specific heat are derived 
to be: 

_ C IT=d2Ao+d2/-t (Pc:.!l+A d 2/-t(Pc!....i) 
p" dt2 dt2 up dt2 

+ a( - xo)x~-2(2 -a) (l-a) (- t) -o 

two-phase region (2.21) 

_ C IT=d2Ao+d2 /-t(Pc0.)+D. d2/-t(Pc,-.!) 
p ,. dt2 dt2 p dt2 

+ l D.p l -a/ /3 a ~ (x) 

one-ph ase region. 

The s ingular behavior is described by the term with 
(- t) - a in the two-phase region and by the term with 
lD.pl - a//3 in the one-phase region. It is th erefore de
rived co mpletely from the properties of hex) ; in partic
ular along the critical isochore in the one-phase 
region: 

a~(x) =C(2- a) (l-a)x - o . (2.22) 

Thus pC "IT behaves as ca; also on a ny other isochore 
t- a is the asymptotic be havior fOJ" large x . The complete 
expressions for the specific heat on the critical isochore 
are: 

From the thermod yna mic relation P = /-tP - a 
through eq (2 .2 , 2.11), the equation of state in th~ __ Cr=d2Ao+~,.Jl 

T dt2 dt2 
variables p, D.p , t may be de rived : 

'. pcp, T)= D.p lD.pl o- lh(x) + lD.p lo+1 [hex) -aO'(x )] 
+ aa ( - xo) xff- 2 (2 - a) ( 1 - a) ( - t) -0' , t < O 

-Ao(T). (2.18) _C!,=d2Ao+~,.Jl 
T dt2 dt2 

The behavior of th e vapor pressure p,,(t) and the +C(2- a)( l-a)t- 0', t > O (2.23) 
pressure above Tc on the criti cal isochore will then 
be given, respectively, by in strikin g analogy with (2.19). 
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The coefficients defined in eq (1.4) are found to be 
related to the properties of h (x) by: 

A+/a=-C(2 - a) (1- a) = f3 L" h"(y)ya- 1dy 

AIi./a=- (2-a)(1-a)aa( -XO)x{f- 2 

(2.24) 

while the discontinuity in the specific heat across the 
phase boundary, /lpCv , is given by 

(2.25) 

For the case a = 0 , analogous expressions can be de
rived from a free energy of the form (2.16). In this case 
the specific heat has a symmetrical logarithmic sing
ularity on the critical isochore with a superimposed 
finite jump and the pressure at p = pc has singular 
terms of the form at 2 In It I + bt2 with the same value 
of a but different b depending on whether T ~ 0. 
Details are given in appendix I. 

3. Scaling Symmetries and Real Fluids 

3.1 . Antisymmetry of the Chemical Potential 

The scaling laws assume certain symmetries in the 
thermodynamic variables which are present in mag
neti c systems, in the Ising model, and therefore in 
the lattice gas, but cannot a priori be expected to hold 
in real fluids. In the magneti c case, the spontaneous 
magnetization is symmetric W.L t. the line M = 0, 
whereas the field is anti symmetric in M. For fluids on 
thermodynamic grounds alone, we have the option to 
use a p,V or a p"p analogy to the magnetic case. The 
lattice gas has a coexistence curve symmetric in the 
density whereas the chemical potential is antisym
me tric with respect to the critical isochore. For real 
gases, a consideration of the p,V and the p"p behavior 
at different te mperatures strongly favors the second 
option. 

In figures 1 to 3, we show the behavior of /lp = p(p , t) 
- P(Pe, t) versus Iv-vel and of 1/lp,1 versus l/lpl for 
the gases CO2 [6], Ar [7], and He4 [8] _ Above 
the critical temperature, the chemical potential 
shows a striking anti symmetry , evidenced by near
coincidence of the /lp,( + /lp) and /lp,( - /lp) curves 
over a range of densities up to nearly 50 perce nt 
from critical, and up to temperatures far above 
critical. (See fi gs . 1 and 2 for CO2 and AL) This anti
symmetry is absent in the p, V representation . Plotting 
/lp versus /lp , approximate antisymmetry is observed 
in a small density range only. Thus, above Te, the 
choice of variables is unambiguously the pair p" p 
from the point of view of symmetry. It may be noted 
that the practice of analyzing PVT data for c riti cal 
anomalies using pressure and density or volume as 
variables is still widespread; since the range of anti
symmetry in these variables is so limited, bias is 

readily introduced into the exponents derived in this I 

way. 
Below the critical te mperature , the situation is 

more involved. 
The phase boundary, along which both /lp and /lp, 

are zero , is symmetric around the "rectilinear diam
eter" p=(pD+pc)/2. Since p "" p'(;, we choose the 
variable p rather than pc for te mperatures below Te
With this variable , neither /lp, nor /lp is antisym
metric over an extended range, cf. figures 1 to 3; the 
p" p representation is still the better of the two, and 
far superior to p , V repre sentation . Of course, even 
for temperatures only slightly below Te , the entire 
range of antisymmetry observed above Tc (± 50% 
in density) is inside the two-phase region_ 

3.2. Analyticity of P,(Pe, t) 

If the chemical potential were fully antisymmetric, 
as it is in the 1attice gas, then assuming it is regular 
everywhere except perhaps on the phase boundary, 
P,(Pe, t) has to be regular in t everywhere on the crit
ical isochore. This is so because , due to the anti
sy mmetry, we can write 

p,(Pc, t) =Hp,( + /lp, t) + p,(- /lp, t)], 

the quantiti es in brackets being chosen in the one
phase region and therefore being regular at all t. Since 
the antisymmetry of /lp, is not complete in real gases , 
we cannot assume this regularity of p,(Pc, t) to hold 
strictly. We will examine the extent to which it is valid 
by considering the specific heat , whi ch by thermody- -
namics can be written as 

(3_1) ;., 

In the lattice gas and in the scaling law formulation, 
where p,(Pc, T) is regular, T(a 2p,/aT2)Pe gives no 
anomalous contribution to C v on the critical isochore , 
the divergence of C v being accounted for entirely 
by the divergence of T( a2p / aT2) P , as discussed in 
section 2. In real systems, howev~r, an anomaly of ,I 

(a 2p,/ap)pc may be expected [9]. In fact, even in " 
the simple case of a Van der Waals fluid , 20 percent 
of the jump in C v at the c riti cal point is caused by a 
jump in T(a 2p,/a p)pc' as was shown by Barieau [10]. 

From eq (3_1) it follows that in the two-phase region 
where p, and p are fun ctions of T only, pCv is linear in 
the density , with slope - T(d 2p,/dT2) and intercept -;
+ T(d 2p/dT2). Alternatively, Cv is linear in the volume 
with slope T(d 2p/dT2) and intercept - T(d 2p,/dP). \ 
Experime ntal e vidence on the density dependence of 
Cv in the two-phase region near Tc is unfortunately 
scarce. The best source is formed by the Cv data for 
He4 by Moldover [11]. Analyzing his raw data we find 
that - T(d 2p,/dT2) is fairly constant and equal to , 
3.5±0.2 in reduced units Pc/PeTe. The Cv data for Ar by 
Voronel [12J and for steam by Amirchanov [13J show "\ 
little or no dependence of-T(d1 p,/dT2) on temperature I 

and values of about 17.5 and 46, respec tively, f.or thi s 
quantity (fig. 4). Thus there is no experimental evide nce 
for rapid change or divergence of T(d 2p,/dT2) in the 
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ference /}.p (a) , compared with the pressure difference /}.p as a function of /}.p(b), 
and with /}.p as a function of the volum.e diJference /}. v(c), for three isotherms of 
CO, (re f. [6]). 
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lines to the high density side . 
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and with /}.p as a function of the volume difference /}.v(c), for two isotherms of 
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Open symbol s and dashe d lines correspond to the low dens ity side of the isot herms: c losed symbols and solid 
lines tu the high density side. 

two-phase region. In all these cases, on the contrary, 
rapid increase of T(d 2pldP) near Tc is clearly 
indicated (fig. 4). 

200r-------~------~--------~------_.------__. 

In the one-phase region, the quantities (a 2plap)p 
and (a 2/-Lla P) P in eq (3.1) are functions of density and 
temperature, thus this equation does not tell us any
thing about T(a 2/-LldP) Pc' The scaling laws, however, 
predict that also in the one-phase region there is only 
one contribution to pCv which is antisymmetric in the 
density (cf. eq (2.21)). This term is linear in p and its 
coefficient is - T(a 2/-Lla P) Pc' In the cases of He\ Ar 
and steam [13] , this linearity of the antisymmetric part 
of pCv seems to hold rather well in the one-phase 
region , and its slope varies little with temperature and 
is close to the value observed in the two-phase 
region_ Specifically, for He4 we find 3.5 for 

- T(a 2/-Lla T2)pc 
above T e from the linear antisymmetric part of 
Moldover's supercritical Cv data , and 3.9 ± .4 from Hill 
and Lounasmaa's Cv data somewhat further away from 
criti cal [14]. We conclude that the scant experimental 
evide nce presently available suggests that (a 2pjaP) pc 
depends on temperature muc h more s trongly than 
(a 2/-Lla P) p . Thus , the hypothes is that /-L (Pc, T) is 
regular at eTc is not contradicted by experim e ntal 
evidence; if very careful measurements of the specific 
heat near the critical point would show an anomaly 
in (J2/-Llap)pc ' th e n the basic hypothesis of the scaling 
laws, that both /-L and D./-L are analytic throughout the 
one -phase region , would be invalid and the scaling in 
terms of D./-L, D.p, t would only be an approximation. 
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FIGURE 4A. (pCv/T) II for steam (ref. [13]) is reduced units as a 
function of the reduced density differences !!.p . 

The slope of the specific heat isotherms is (d2J-L ldT2) II and does not show any appreciable 
variations. The intercept of the isotherms at 6.p =- l equals (d 2pJdJl) II and increases 
by over a factor 2 from 300 to 373°C. 
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FIGURE 4B. (pCv/T)" for Argon (ref [1 2]) in redu.ced units 
as a function of the reduced density difference tJ.p in th.e 
two-phase region _ 

The slope of the spec ific heat isotherms is - (d ZP,ldT'l )n and does not show apprt:
c iable variation s. The int ercept al ilp=- i is (dtp/djl ) II and increases considerably. 
The isochore a t tlp = 1.006(p = 0.533 gJcm3 ) is thermodynamica ll y inconsis tent wit h 
the olhe rs. 

4. A Preliminary Check of the Scaling Property 

The proposed equation of state, eq (2_ 2) , implies an 
interesting scaling property which can be formulated 
in a variety of ways. For instance, if the che mical 
potential differe nce I t..j.L I is divided by I t I ilo, eq (2.2) 
predicts that the result is a universal function of the 
variable x only. 

(4.1) t where 

Using thi s re presentation we have shown [5] that thi s 
scaling property holds within certain bounds in the 
critical region of fluids. The scaled chemi cal potential 
differences of CO 2 [6], Xe [15] , SF6 [16] , N2 0 [17], and 
CClF3 [17] , obtained partially from classical PVT data , 

:L. partially from optical density versus height meas ure
ments, fall on two branches of a universal curve. The 

( representation (4.1) transforms the critical isotherm to 
infinity. This is a drawback which can be avoided by 

> considering other representations. In the present 

I paper we will instead scale 1t..J.t1 by It..pI 6, thus 
obtaining the universal fun ction h(x). With thi s re pre

,r sentation the critical isoth erm (x=o) is simply a point 
~ inside the range of definition of x . In the previous 

analysis the scatter around the c urve was appreciable 
for several reasons. First of all, one should expect 
deviations from correspo ndin g states betwee n these 
various substances. Secondly the choice of parameters 
f3 and 0 was not optimized and it was not investigated 

" whether these expone nts are indeed the same for all 
substances. Thirdly, it was not certain that for all the 

! points correction terms to the asymptotic form of the 
. equation of state at the criti cal point gave a negligible 
? contribution. In the case of th e van der Waals gas and 

in partic ular cases in the I sin g model, the form of the 
correction terms and the ran ge in which their contribu-

tion is negli gible are known; however, nothin g is know n 
a priori for real gases. Finally, the possibility of a 
sys tematic ex perim e ntal error in part of the data 
a nalyzed in refe re nce [5] is not excluded. In thi s paper 
we report the results of a detailed study of th e experi
me ntal behavior of fluids in the critical region in which 
we have given attention to all these questions. First 
we have not assumed corresponding states but rather 
studied the gases substance by substance. This 
seve rely limits the choices of gases: of the substances 
analyzed in reference [5] only for CO2 and Xe the data 
are sufficient for a detailed analysis, to which we 
can add the recent data on He4 by Roach [8]. 

By proposing, furthermore, an ex plicit expression 
for h (x) it was possible to tra nsform the scaling 
proble m into a linear least-sq uares problem. A good
ness of fit criterion co uld be es ta bli shed a nd the scaling 
optimized by varying the parameters 0 and Te. Finally, 
for so me of the substances, a tentative determination 
of th e ex te nsion of the ran ge of validity of the asymp
totic form of th e eq uation of s tate was made. 

5. Proposed Form for h(x) 

The seri es expansion for h (x) valid for large x, 
eq (2.6), co ntains terms of the form Xy - 2il". For real 
fluids the value of the exponents y and f3 are close to 
4/3 and 1/3 respectively. A closed form for h (x), 
havin g all the required properties , will not be found 
in a si mple real expression like the ratio of two poly
nomials [4]. The requirement that h(x) be zero at 
x = - Xo, will be satisfi ed if, follow in g the s ugges ti on 
of Widom [2], we write 

h(x) =x+x°<I>(x) . 
Xo 

(5 .1) 

The behavior of the ex perime ntal data, using reason
able values for f3 and 8, shows a linear dependence of 
h(x) on (x+xo) in an appreciable range of x includin g 
x=O, suggesting that <l>(x) may be considered as a 
correction term important for large values of x. Assume: 

[ (
X+XO)2il](O-l) /2- 1/2il 

<I>(x)=EI 1+E2 --
Xo 

[ ( X+XO)2 il ]b - IJ/2/3 
=EI I+E2 -

Xo 
(5.2) 

with Et, E2 constants. The corresponding expression 
for h(x): 

( x+xo) [ (X+XO)2il] (y-l) /2il h(x) =EI -- 1+E2 --
Xo Xo 

(5.3) 

satisfies the following requirements: 
(a) is analytical everywhere for - Xo < x < 00, 

(b) f3oh(x) > xh' (x): the isothermal compressibility 
is not negative, 

(c) hlf (x) ;?: 0: suffi cient for the positivity of the heat 
capacity, 

(d) atx=-xo, h(x) is nonanalytical but h'(-xo)=E 1 
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is hnite: the compressibility on the phase 
boundary is finite and behaves like (- t) - y, 

(e) on the critical isochore (x-H,c)), hex) has the 
series expansion: 

(5.4) 

The first term of this series expansion leads to the 
correc t behavior of the isothermal compressibility. 
The second series on the right-hand side of this equa
tion, however, gives spurious terms. Since experi
me ntally 2{3 < 1 but 4{3 > 1, the leading extra te rm 
x y - I is then the third in the large x expansion of hex). 

The equivale nt expansion of !J.f.-t in terms of !J.p at 
constant t > 0 is 

The first two terms 10(t)!J.p and I) (t)!J.p3 are of the 
correct form but the third term gl (t) I !J.p Il /f3 . !J.p will 
lead to a divergence of the fourth derivative of !J.f.-t with 
respect to !J.p at !J.p=O. Thus the function (5_3) fulfills 
most of the conditions im posed upon h (x) but does not 
give the correct behavior for density derivatives of 
!J.f.-t higher than the third on the critical isochore. 
However we do not co nsider this a serious drawback. 
Experi me ntal !J.f.-t data near the critical isochore are 
usually beset with so many uncertainties that deter
mination of these higher derivatives is impossible 
anyway. 

Expression (5.3) is a form for hex) with a small num
ber of adjustable parameters, namely , Xo, (3, 0, EI and 
E 2, which is suitable for a linear least-squares analysis 
of the experimental data. Defining 

g(x)= _0__ =[<l>(X)]2f3/(y- I) [
X h (x)] 2/3/(y-1) 

x+xo 
(5.7) 

the assumption (5 .2) for <l>(x) implies linear dependence 
of g(x) on [(x + xo) /xo)2f3 according to 

[ ( X+XO) 2f3] g(x) =Elf3/(y - I) 1 +E2 -----:;- . (5 .8) 

Explicit expression for the parameters !J., r, r I and the 
jump in specific heat across the phase boundary, in 
terms of the parameters which appear in the suggested 
form for hex), eq (5_3), can be derived"rom eq (2 .4) to 
(2.8 and 2.25) and are as follows; 

!J.=E) [1 + E 2 ] (y- I)/2f3 

r -I = xo yE) [E 2] (y- 1)/2f3 

(5.9) 

The values of the parameters A+, Ali and A)- can be 
evaluated numerically from (2.24) with the explicit 
form of h(x). (See appendix II for de tails .) 

6. Analysis of the Experimental Data 

6.1. Evaluation of the Difference in Chemical Potential 
!J.f.-t from pv Isotherms 

The difference in chemical potential 

along isotherms for CO2 [6] , Xe [15] , and He4 [8] is 
obtained by graphical integration of the pressure 
volume experimental isotherms according to 

J /L(p, t) J p(p, I) 
!J.f.-t= df.-t = vdp. 

IJ-(~) p(pc,t) 

(6.1) 

In performing the integration the knowledge of the 
lower limits, the parameters pc and p (Pc, t) , is crucial. 
Experimentally, these parameters are known only to 
some degree of approximation and their uncertainty 
could introduce a systematic error in the analysis of 
the data. However , since !J.f.-t(p, t) is with good ac
curacy an antisymmetric function of !J.p this property 
can he used as a criterion to establish the position of 
the point [P c, p(Pc, t)] along an isotherm. That is, we 
will define pc and p (Pc, t) as the coordinates of the 
point with respect to which !J.f.-t is an antisymmetric 
function of !J.p in an appreciable range of tJ.p. Of course 
the values of pc must be the same for all isotherms_ At 
the same time, when the data extend over a large range 
of density, an estimate of the extension of the range of 
antisymmetry can be given_ Actually this has been 
possible only for CO2 and He 4; the range of anti
symmetry extends to about 50 percent in density for 
CO2 and to about 35 percent for He 4 for supercritical 
isotherms while it appears to be smaller in both cases i 

for T < Tc [for T < Tc !J.f.-t= f.-t(p , t)- f.-t(Pcoex. t) = f.-t(p, t) 
- f.-t(P c, t) l These are rough estimates which obvi
ously depend on the experimental error of the data. 
Since our aim is to inspect the validity of an asymptotic 
form of the equation-of-state !J.f.-t( !J.p, t) which is 
antisymmetric in !J.p, we will restrict the analysis 
to points which satisfy this symmetry requirement 
within experimental error. 

6.2. Gravity Effect 

For all three substances the experimental measure
me nts have been carried out in cells of finite height h. l' 

When the critical point is approached, there is a large 
density gradient in the cell; consequently, the average 
density will be different from the den sity at the level 
where the pressure is measured. To correct for thi s 
error , an a priori knowledge of the density profile, 
or equivalently, of the chemical potential as a fun ction 
of density, would be needed_ Since this is the quantity f 

to be determined in the first place, this knowledge is 
not available_ Thus the option left is to omit those data 
that are greatly beset with this error. The effect is 
most pronounced very near the critical point, and, in 
terms of pressure, the correction is at most Pcgh. If the 
difference between the measured pressure and the 
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TABLE 1. CO 2 , chemicaL potentiaL difference I:1JL = JL(p, t) - JL(Pc, t) at various densities I:1p = (p - Pc)/Pc and temperatures T for CO 2 

The 6p , !l.p. data are in reduced units, the fac tors used [or reducing the expe rim e nt al data of ref. [61 are pc = 236 .7 Amagat and Pc/Pc = 0. 3075 aim Am :- * 

T OC I(l'l:1p 10' I:1JL T OC 10' I:1p lO" I:1JL TOC 10' I:1p l(}' I:1JL 

29.929 28.34 8.2 31.185 4.76 1.3 32.054 3.86 6.2 
9.48 3.5 13.98 34.1 

15.03 10.8 22.32 87.5 
20.93 31.0 -5.11 -8.8 

-3.73 -0.8 -11.94 -24.0 
-6.99 -2.4 -19.05 -59.2 

- 10.57 -4.2 -24.65 -112.2 
-15.18 -10.4 - 29.21 -185.0 
- 21.00 -30.9 

30.409 23.82 6.0 31.320 4.72 1.7 34.720 9.76 81.6 
- 24.22 -7.7 9.61 5.3 21.41 235.1 

15.13 15.0 - 10.96 94.0 
20.96 37.7 - 19.95 - 207.2 

- 3.72 -1.7 -27.37 -364.2 
-6.93 - 3.6 

- 10.58 -6.7 
- 15.23 - 15.1 
- 20.97 -37.7 

31.013 13.02 3.1 31.523 9.50 8.3 40.087 .95 24.6 
15.20 6.1 14.67 19.1 11.34 276.1 
21.21 24.2 20.28 42.9 -6.98 -157.4 
27.14 70.6 -8.60 -7.6 

- 12.88 -2.8 - 15.02 - 20.1 
- 15. 50 - 6.1 -21.17 -49.4 
- 18.59 - 13.9 - 26.45 -101.5 
-21.79 -27.3 

pressure on th e criti cal isochore is less than three 
times thi s amount, we have rejected th e point. 

TABLE 2. Xe, chemicaL potentiaL difference 1:1/1- = /1-(p , t} - /1-(Pc, t) 
at variou.s densities I:1p = (p - Pc)/ Pc and temperatures T for Xe 
The 6.p . 6.p. d ata are in reduced unit s, the fac tors used for reducin g the experime nt al 

dat a of ref. [51 are pr = 1.110 g/c m!l and Ih /Pr = 5 1.84 ( cm 3/ ~) atm. 

7. The Data 

A criti cal exa mination of the internal co nsiste ncy of 
each set of data has been performed before proceeding 
to the analysis . This led to the followin g conclu sions. 

(a) CO2 data [6]. Th e internal consistency is good. 
Since the cell he ight was unspecified and varied from 
point to point , the gravity c utoff was arb itrarily take n 
at D.p = 0.006 bar. The data for D.j.L , D.p , T are li sted in 
table l. 

(b) Xe data [15]. The cell height being 1 cm, the 
gravity cutoff is at 0.003 bar. The data have been taken 
along isoth erms and along isochores. As shown in 
fi gure 5, there is a di scre pancy be tween the two sets 
of measure ments. The reason for th e discre pancy is 
not clear; howe ver in th e isochoric meas urements 
check points take n at the beginning and at the end 
of each run are in agreement, while in the isothermal 
measureme nts no c heck points are available. We will 
therefore ass ume that 'the isochoric measurements are 
more reliable . We will then analyze the D.j.L, D.p data 
evaluated from isotherm s constructed from the iso
c hori c data. This leaves us with a relatively small 
amount of data and the refore the result of the analysis 
will be of a somewhat qualita tive c haracter. The data 
are listed in table 2. 

571 

T OC 

16.790 

16.990 

17.190 

lO'l:1p 1041:1/1-

3.01 0.5 
6.14 1.5 

14.57 9.5 
-4.99 -1.0 
-9.16 -3.7 

-13.19 -7.4 
-13.47 -8.3 

3.01 1.5 
6.14 3.6 

14.57 15.5 
-4.99 -1.9 
-9.16 -6.1 

-13.19 -11.8 
-13.47 -13.1 

6.14 5.8 
14.57 20.6 

-4.99 -2.7 
-9.16 -8.6 

-13.19 -16.1 
- 13.47 - 17.7 

T OC 10' l:1p 104 Ll./1-

17.590 6.14 9.5 
14.57 31.5 

-0.95 -1.4 
-2.51 - 3.5 
-3.87 - 5.7 
-4.99 -7.1 
-9.16 -15.8 

- 13.19 -26.9 

17.990 6.14 14.1 
14.57 43.2 

-0.95 -2.2 
-2.51 - 5.3 
-2.79 -5.4 
-3.87 -8.3 
--4.99 -10.8 
-9.16 -23.1 

-13.19 -37.8 

18.390 3.01 9.0 
6.14 19.3 

-0.95 -2.7 
-3.87 -11.5 
-4.99 - 14.5 
-9.16 - 29 .6 

-13.19 -48.6 
-13.47 -50.5 
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FIG URE 5. Comparison between isothermal and isochoric 
measurements on Xe [/5]. 

Full symbols and the solid lines s how the isothermal measure ment s. Open svmbols 
show the position of point s obtained in isochoric measurements; for the data at T = 16.590 °C 
these are direct experimental data, for the other isot herms they are obtained by linear 
interpolation of the P. t isochores in a range of 0.0] 0c. 

(c) He4 [8]. In this experiment the dielectric constant 
of a very thin laye r of He4 (0.025 em) between two con
denser plates was measured as a function of tempera
ture and pressure. There are three sources of sys
tematic error to be discussed. The first is the gravity 
effect. Although density gradients between the 
condenser plates are negligible , the pressure was 
measured at a level above the cryostat. Even if the 
head correction to the top of the cell could be ac
curately estimated, an unknown head approximately 
2.5 e m above the level of the condenser from the top of 
the cell, is present. This gives a gravity cutoff of 
0.0003 bar. The second source of error lies in the con
version of dielec tric constant to density using a 
Clausius-Mosotti relation with constant molar polar
izability a= 0.1230 cm3/mol. However , if a depends on 
the density as observed for He3 rI8] , 

a(cm3/mol) = 0.1234 -1.11 X 1O- 4 p/ pc, 

then the first order correction to a density difference 
D.p calculated assuming constant a would be 
1.11 X 10- 4 (l/a + D.p)D.p. This correction is different 
at the low- and at the high-density side, and would , 
at D.p ~ 30 percent, amount to 2.6 X 10- 4 in D.p on the 
vapor side and 2.8 X 10- 4 on the liquid side, respec
tively. Since the uncertainty in D.p is about 3 X 10- 4 , 

this is a borderline correction; however , if applied, it 
would slightly improve the antisymmetry of th e 
D./L , D.p data. 

The third source of error is more elusive and is 
related to the use of the T 58 He4 vapor pressure scale 
[19] near the critical point of He4 • This scale relates 
the vapor pressure to the temperature by an equation 
which is analytic at the critical point. This is contrary 
to the current ideas about critical point anomalies. 

According to the scaling laws, the divergence of the 
specific heat imples a similar divergence in d 2Pv/dP . 
Moldover [11] estimates from his s pecific heat measure
ments that vapor pressures near the critical have to be 
assigned temperatures up to 0.0007 K below those on 
T 58 . One can avoid this diffic ulty by calibrating the 
thermometer independent of the T 58 scale , or by cali
brating it on this scale in a te mperature range not too 
close to Te (say below 5 K). 

In the present experiment it appears that a germani
um thermometer has been calibrated on the T58 scale 
in the range from 5 K to the critical point, and, more
over, that this calibration was extrapolated to tempera
tures above critical. From Moldover's estimate of the 
size of the correction below Te , and assuming that all 
temperatures are measured relative to critical, it 
seems corrections to Te - T will be below 0.5 mK. 
For T > Te , where extrapolation is involved, the 
correction may well in crease; we will assume that for 
isotherms further from critical the temperature is not 
known to better than 1 mK. 

The D./L, D.p , T data for He4 are listed in table 3. Other 
data on He4 are available in the work of Edwards [20]. 
These data are restricted to the region T < Te and yield 
information on the phase boundary and the behavior 
of the compressibility for t < O. We have chosen to 
check the scaling properties on Roach's data because 
in this case also the region above the critical tempera
ture has been explored. We will compare the results 
with the results of Edwards only qualitatively because 
a direct comparison of the coexistence curves in the 
pT plane by the two authors shows some as yet 
unresolved discrepancies. 

8. The Analysis of the ~11-, 4p, t Data 

Using conventional linear least-squares techniques, 
we fitted g(x), defined by eq (5.8), as a function of 
[(x+xo) /xo )21l and obtained estimates for E" E2 and 
their errors. The computations were performed 
using the general purpose program OMNITAB [21]. 
The experimental values of D./L , D.p, and T (tables 1-3) \1 
were used to evaluate x and g(x) by using suitable t 

values for pc, {3, 8, Xo, and Te. We took {3 and Xo from 
a preliminary analysis of coexistence curves. A more " 
refined analysis, to be published [22], yields values for I 
{3 and Xo which are only slightly different from the ones 
we used (see table 4). The fit of the D./L, D.p, t data is 
repeated for different values of 8 and Te until a min
imum in the standard deviation of the fit is reached. 
The value for Te corresponding to the minimum agrees 
with the critical temperature obtained from fittin g the 
coexistence curve r221 (table 4). 

Weights were assigned to D./-L , D.p , and t in the fol
lowing way. Th e precision of the experimental pres- J 
sure, temperature and density was estimated from the 
description of the respective experimental methods. A 

From the pressure error (Tp , the error in D./L was esti
mated as (TIL = 2(Tp/Pc' The estimated errors in the -
reduced quantities D./L, D.p, t are listed in table 5. 
The fit was performed assuming that the variable 
[(x + xO)/XO]21l is free of error and that the variable g(x) 
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TABLE 3. He" chemical potential difference d!J. = !J. (p , I. ) - !J. (p., I.) at various densities dp = (p- pol/p, and temperatllres Tlor He" 
The '.6.p, tJ.J.A. data are in redu ced unit s. the fa ctors used for reducing the ex perimental dalu of re f . [81 afC Pr= O.069 g/cm3 and p,:/ pc= 2.475 10" lorr cm3/g. 

TK 102L\p 103L\/L TK 102L\p 1O"Ll./L TK 102L\p 10"L\j.t TK 10 2 L\p 1O'ILl./L 

5.1097 33.58 2.68 5.1793 -20. 28 - 1.33 5. 1929 13.67 0.84 5.221 8.04 1.29 
35.38 6.71 - 21.99 - 2.29 17.78 2.10 10.99 2.30 

-25.30 -5 .08 21.28 4.15 16.65 4.66 
-28.68 - 9.74 25.10 7.89 21.54 8.69 

28.35 12.91 25.74 14.38 
5.1406 29.86 3.77 31.23 18.93 30.22 23.47 

32.14 7.74 34.71 28.95 -8.55 -1.40 
34.15 12.36 5.1795 18.64 0.95 -16.46 -1.33 -14.14 -3.05 

-29.99 -3.51 19.64 1.13 -20.46 -3. 12 -20.16 -6.86 
-33.33 - 10.25 21.68 2.40 -24.03 - 6.11 -25.14 -12.88 
-36.01 - 17.57 23.25 3.64 -28.06 - 11.93 -30.32 -23.71 

31.61 15.63 - 31.77 -20.26 
-35.83 -33.83 

5.1666 22.75 1.25 
25 .73 3.79 5. 1822 19.99 1.74 5. 201 12.91 1.10 
27.64 6.14 21.71 2.90 17.45 2.62 
29.78 9.53 23.23 4.09 21.20 5.11 5.264 1.55 0.69 

25.45 9.76 7.22 3.27 
5.1663 - 23.65 - 1.50 5.1835 - 18.13 - 1.18 29.19 16.08 12.90 6.61 

- 26.65 - 4.39 -20.30 -2. 19 33. 13 26.18 20.14 13.69 
-30.1 7 - 10.02 -12.03 -0.98 27.84 28.12 
-33.71 - 18.75 -15.41 - 1.98 -3.68 - 1.55 
-35.78 -25.61 5.1862 18.96 1.86 -19.86 -4.17 -8.83 -3.97 

21.19 3.27 -23.35 -7.37 - 14.59 -7 .67 
23 .65 5.41 -27.03 -12.35 -20.04 -13.24 

- 17.61 -1.16 -31.01 -20.89 - 26.10 - 23.87 
- 19.78 - 2.17 -35.09 -33.85 

5.315 5.97 4.93 
4.54 3.34 

-9.90 -8.04 
-11.12 -9.66 

TABLE 4. Critical parameters for CO2 , Xe, and He4 • 

In most cases the Cff(l r bars denote standard e rrors obt a ined by the least squares analys is. The ones marked by aste ri s ks have been e stab li sbed by observing Ihal systenHuic devia tions 

from the fitt ed equatiu n are present if the parameter is varied by this amount or more. 

CO2 Xe He' 

,B} values used in the fit.. ...... . . .. .. .. ..... . ... . .. . ..... . ..... .... {0.35 0.35 0.359 

x~ 
0.135 0.186 0.36 

pc from anti symm elry ......... . .... .. ........ . ... .. . . .... .. .. ....... 236 .7 Amagat l.1l0 g/c m3 0.0693 g/cm3 

T'l 
r96± O.04 "C' 16.58 ± 0.03 °C' 5.1884 ± 0.0008 K* 

~, from fit of the L\p , L\/L , t data .... ...... .... ... .. . . . .. .. 4.6 ± 0.1 * 4.6±0.1 * 4.45± 0.10* 
. . .. 

2.36±0.02 2.96±0.07 2. 78 ± 0.03 
£, 0.30 ± 0.02 0.37 ± 0.03 0.48 ± 0.03 

~}.o," fi, of ,~,;"e"., .om, [22]. .... .. ... . ..... . ......... 
l 0.347 

0.351 0.355 
0.139 0.189 0. 366 

pc 236.8 Am 1.107 g/cm3 0.0690 g/cm3 

Tc, 30.96 °C 16.59 °C 5.1887 K 

contaills all ex perime ntal un certa inties 0"1" O"p, 0"/. 

Using propagation of errors the weight to be attributed 
to g(x) is found to be 

TABLE 5 . Estimated experimental errors in the reduced density 
difference (T p), reduced chemical potential difference (T ,,) and in. 
the reduced temperature (Ttl 

[Y- l]2 {(0")2 (0") 2 [ X J2 
W = 2i3 6.; + 6.~ 0 - {3(x + xo) 

(Tp (Tp. (T, 

+(~r C~xJ} - J[g(X) ] _2. 
CO2 .•...•.• ••••••••• • •• 3.3 X 10 - 4 6.5 X 10- 5 2.0 x 10- ' 

Xe . ..... .... ...... . .... . 2.0 X 10 - 4 3.5 X 10- ' 3.4 X 10- (; 

In order to ob tain re li able valu es for the criti cal ex po· He' .. . . . ..... ... . ...... . 3.3 X 10 - 4 1.2 X 10- 4 5.0 x 10 ":5 
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nents and coefficients, we h&ve to make sure that 
contributions from possible corrections to the asymp
totic form of the equation of state are negligible in 
the range of data considered, Correction terms which 
do not possess the anti symmetry property are readily 
excluded by restricting the analysis to the range of 
antisymmetry_ Because the form of antisymmetric 
correction terms is unknown , their contributions can
not be evaluated. However, such terms will scale in 
a way different from the asymptotic term; therefore, 
points for which their contribution is important will 
show systematic deviations from the fit. For one sub
stance, namely CO2 , for which many data are available 
on isotherms substantially higher than critical, the 
effect of points outside the range of validity on the 
values of the parameters may be observed and an 
estimate of the range derived. 

Actually, for CO2 , omitting points within the range 
of antisymmetry for the isotherms between 29.929 and 
34.720 °C does not affect the results of the fit while 
including points with /1p > 11 percent at 40°C and 
/1p > 1.4 percent at 50°C (next point at 15%) introduces 
systematic deviations and an apparent lowering of the 
value of o. 

For Xe the temperature range of the data is quite 
small and no appreciable effect was observed omitting 
points at large densities on any isotherms. For He4 

omitting points within the range of antisymmetry for 
the isotherms between 5.109 K and 5.202 K does not 
affect the results while the inclusion in the analysis 
of the pOInts with /1p > 30 percent at T= 5.221 K, 
/1p > 28 percent at T = 5.264 K and with /1p > 11 per
cent at T= 5.313 K introduces systematic deviations 
which again apparently lower the value of o. 

In table 4, the values of the parameters obtained by 
fitting the /1jJ- , /1p, t data are listed. The value of pc is 
that with respect to which /1/-t is antisymmetric. The 
parameters EJ, E2 are least-squares estimates, as 
explained before; the errors listed are standard de
viations. The parameters 0 and Tc were varied step
wise. The values given minimize the standard deviation 
of the fit. The errors in 0 and Tc are estimates obtained 
by observing that syste matic deviations from the fitted 
equation arise if the parameters are varied by this 
amount or more. They do not take into account the 
effect of small variations in {3 and Xo. For the three 
substances , the values found for the exponents (3 and 
o are the same within the error bounds. To decide if 
the small observed differences are significant, more 
accurate determinations of the exponents are needed. 
Of the other parameters describing the critical point 
behavior, E1 and E2 do not show large variations either; 
the only parameter varying greatly from substance to 
substance is Xo. 

In figures 6A to 8A the optimized function hex) 
is compared with the experimental data for the 
three substances in a log log plot. It is seen that the 

.log h (x) is a smooth and nearly linear function of 
log (x + xo). Deviations from linearity are important 
only for quite large value of x. The point at x = 0 (critical 
isotherm) behaves like any other point at finite x. 
The agreement with the experimental points is best 

seen from the deviations plots shown in figures 6B 
to 8B where the relative difference between the 
experimental and the calculated value of hex) is plotted 
versus log [(x+xo)/~]. No evidence of systematic 
deviations is found. 

Figure 8B indicates that for He4 the error limits 
are somewhat too narrow. Some of the errors in table 5 
must have been underestimated. An adjustment of 
the estimated error in the pressure could remedy this 
problem. In view of the arbitrariness of this procedure, 
we have not done this. Moreover, statisticar estimates 
for param eters and their standard deviations are 
usually not very sensitive to the exact weighing 
procedure used. 

From the values of (3 , 0 , E I and E 2, and using the 
equalities 

y={3($-l) 

2-0'={3(0+l) 

(8.2) 

and definitions of /1, f, f' . . . , eq (5.9), we have 
determined the parameters listed in table 6. If {3 and 0 
are constant from substance to substance, obviously 
the same would be true for the exponents y and 0'. 
Of the other parameters also /1 and the ratio f/f' 
seem to be remarkably steady. Therefore the critical 
isotherms of the three gases should approximately 
coincide; our previous study, implicitly assuming 
this coincidence, yielded a value of 0 slightly higher 
than the one found presently. This must be due to the 
inclusion in the previous analysis of other data not 
studied here. The compressibility ratio f /f' is sub
stantially smaller than our previous estimate obtained 
by graphical determination of slopes of isotherm 
(see below). Our new value agrees reasonably well 
with the value obtained for Xe by Wilcox and Balzarini 
[23] using optical interferometry, namely liT' = 4.9. 

For each substance, internal consistency checks 
have been made by comparing experimental critical 
isotherm and compressibility data with values pre
dicted by our equation. 

An example is figure 9 for CO2 , where the inverse 
compressibility (9A) on the critical isochore above Tc 
and along the phase boundary below Tc is shown; 
moreover , the critical isotherm is plotted (9B). For 
the latter, it is seen that the experimental data agree 
quite well with the calculated curve. This is also the 
case for the compressibility above Te- However, below 
Tc , the experimental points show systematically lower 
compressibilities than our equation predicts. These 
points have been obtained by graphical determination 
of the slope of isotherms near the phase boundary, 
and by assuming linearity of p versus /1p in an appre
ciable range. The optical measurements [17] indicate 
strong curvature of these isotherms, suggesting that 
sTopes taken from PVT data tend to underestimate the 
limiting compressibility. The function (5.3) predicts 
a very small range of linearity; the discrepancy is then 
explained by the fact that the experimental points do 
not define the true limiting behavior. The refractive 
index measurements of Edwards [20] in He4 permit 
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another estimate of the range in which P is linear in 
dp and also in this case important deviations from 
linearity set in at reduced densities only a few percent 
away from the phase boundary. The values of y' = 1.26 
and r ' = 3.8 X 10- 2. determined by Edwards are in good 
agreement with our values for He4 shown in table 6. 

TAB LE 6. The critical exponents y and a and the calculated paramo 
eters which describe the behavior along the preferred curves: 
critical isochore (f and f') and critical isotherm (6.); also the 
parameters describing the specific heat along the critical isochore 
[A + , Ail, 6.pC v (-t)al. 

y ........ ............... . 
a ...... . ......... ·· ······· 
f ........................ . 
f' ....... .... .... ....... . 
f/f' .......... ......... . 
6. .. . .... ..... .. . ... . .. .. . 
A+ ..................... . 
Aii······················ 
6.pC v • ( - t)a ... .... . . 

CO2 

1.26±0.02 
0.04 
5.26 X 10- 2 

1.19 X 10- 2 

4.4 
2.6 
4.24 
5.80 

39 

Xe 

1.26±0.06 
0.04 
5.9 x-lO- ' 
1.43 X 10- 2 

4.1 
3.3 
3.70 
4.80 

28 

He4 

1.24± .04 
0.05 
1.30 X 10- 1 

3.59 X 10- 2 

3.6 
3.2 
1.06 
1.42 
7.3 

We note that the values 0.76 and 0.56 reported for d in ref. [5] actually were the values 
of log d. We note also that the values for 6.pCv ( - t)n reported in ref. [28\ correspond to the 
actual values multiplied by cr. 

1~3~~~~~ __ ~~L-LJ~ ___ 
IO- ~ 10- 2 lerl 

t~ IT-Te liTe 

FIGURE 9. Comparison between the experimental results and the 
prediction of the fit for the compressibility on the critical isochore 
above T c, the compressibility on the phase boundary below T e 

(9A) and the critical isotherm (9B). 
Tht! experim~ntal r.e sult~ for the co~pres sibility are obtained assuming I~at the fL. P 

isotherms are linear III p m an appreciable range aro,und pr: (T > T.c) o.r ncar the phase 
boundary (T < Tc ), The soiicl iines represent the prediction from the fit of the dj..L , dp , 
t data. 

8. Consistency Checks: Vapor Pressure and 
Specific Heat 

In section 2 it was shown that the scaled equation 
of state predicts the nonanalytic behavior of the free 
energy a(p, t) and therefore of the pressure and of 

the specific heat at constant volume. Thus external 
consistency checks of the scaling of the dp" dp, t data 
are obtained by comparing the anomalies implied for 
pressure and specific heat with an independent 
analysis of the directly measured values of p and Cv. 

B.l. Vapor Pressure and Pressure Along the Critical 
Isochore at T > T e 

The prediction of the scaling law for these quantities 
has been given in eq (2.19). If the analytic part A o(T) 
were known, a direct analysis of the pressure would 
yield information on the terms with 1 t 12 - a and on the 
value of the exponent a itself. In a relatively small 
range of t we can assume that a polynomial in t gives 
an accurate representation of the function A 0 (T). 
With a given set of experimental data one can then 
observe the difference in the fit obtained with a 
polynomial in t of degree n (perfectly analytic behavior) 
or with a polynomial of degree (n-1) plus a term 
DltI2-a. However, the indications are that a is small 
(= 0.1); thus unless very accurate determinations of 
the vapor pressure over a not too limited range of 
temperatures are available , the values of a and D 
will have large uncertainty, even if the nonanalytic 
expression gives an improved fit to the data. The 
product Da is expected to be approximately constant 
and perhaps somewhat better determined. Vapor 
pressure data and pressure on the critical isochore 
above T e should be independently fitted and compared 
to see whether the analytic part and the values of a are 
the same. For Xe a reasonable amount of information 
is available at T < T c in the data of Michels et al. 
[24], namely, eleven data points between 247.2 K and 
289.2 K. We have fitted these data with a 3d degree 
polynomial and with the nonanalytic expression 

Although the two functions have the same number of 
adjustable constants, the nonanalytic expression 
has a standard deviation of a factor 4 smaller for 
any a between 0.04 and 0.08. Due to the fact that 
there are no points very close to Te, small variations 
in T e (and Pc) do not affect the results. Values of the 
constants a, b, au ( - xo)xff- 2 are given in table 7. 
Because of the scarcity of data we did not study the 
dependence of the parameters on the range. 

Xe 

CO, 

TABLE 7. Constants of the vapor pressure equation: 
6.p/Pe = at + bt 2 - aa(- XO)X~- 2(- t )2 - a, 

for Xe ref [241 and CO 2 ref [25J 

a a -b - aa( - Xo) ·x8- 2 - aaa( - Xo)x8 - 2 

0.04 6.02± .01 76±2 82±2 3.28±0.08 
0.06 6.02 47 S3 3.l!l 
0.08 6.02 32 38 3.04 

0.04 6.980±.002 85.1 ±.8 93.8±.7 3.75±.3 
0.06 6.984 51.1 ±.4 60.1 ±.5 3.60± .3 
0.08 6.988 134.2± .3 43.4± .4 3.46± .3 
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TABLE 8. Parameters describing the behavior of the specific hea.t along the critical isochore: cOfT'oarison between values derived (a)fromfit 
of the dp, D./-< , t data, (b) from fit of vapor pressure data , (c) from direct measurement ofC y , (d) our analysis of the experimental C y data 

of ref [11 J 
In the table blank s paces indica te that a numerical value for the para me te r co uld be de ri ved by th e meas ure me nt but is not available a t present. A dash (- ) indicates tha t in formatio n 

on the pa ramete r cannot be derived from the correspond ing a nal ys is. 

a Aii A+ Co 
T d"p.(Pc,t) T d'A o(t) D.pCv • ( - t) a 

dt' dt 2 

CO2 . .. . . • .... • . • ...• (a) 0.04 5.8 4.3 - - - 39 
(b) 0.04 7.06 - - 170 -

Xe ................... (a) 0.04 4.8 3.7 - - - 28 
(b) .04 6.2 - - 150 -

.06 5.8 - - 94 -
(e) .065 4.4 2.9 -44 

He .... .. ........... (a) .05 1.4 1.1 - - - 7.3 
(d) .04 to. ll - 1.3 - .9 - 20to-6 - 3.5± 0.2 23.5 to 9.5 8.0 

For CO 2 , pI'ecise vapor press ure data have been 
recently measured [25], with 29 points be tween -5°C 
and 31 0c. Here, the data we re fitt ed to a 3d degree 
polynomial and a nonanalyti c ex press ion analogous 
to (9.1). Use of the nonanalyti c ex press ion decreases 
the standard d eviation of the fit by a factor 7. Te , 0' 

and the ran ge were varied and an optimum fit was 
obtained for 0' between 0.04 and 0.10 for the ran ge 
4 to 31 °C. From the coefficient of the nonanalytic 
term , and using the scaling laws eq (2.19) and (2.24), 
values for Au/a are derived and compared with those 
obtained from scaling the 6.J-t , 6.p isotherms of Xe 
and CO2 in table 8. In view of the large un cert ainty 
in th e value of 0' and the correlation between 0' and 
Au we feel th e agreement is reasonable. In the same 
table , values for Ali/a from direct meas ure me nts of 
the specifi c heat are also presented. W e will di scuss 
the agreeme nt below. 

The constant b in the vapor pressure equation yields 
an estimate of -Td2AoCt)/dt2, which is also given 
in table 8. 

8.2. Specific Hea t 

From the scaling law eq (2.21) it is seen that in the 
one phase region 

that is , the quantity on th e left-hand side is a function 
of the variable x only; its properties are related to 
the properti es of hex ). If functional forms of a~(x) and 
d2Ao 
dt2 could be postulated this relation could be used 

to check th e scaling of data measured at various 
densities and te mperatures. The situation would the n 
be analogous to th e scaling of the 6.J-t , 6.p data , but 
while in th e latter case only one function hex) had to 

be c hosen, here we have two unkn own fun ctions 

d2Ao d "() I d 'd k ' dd" I dt 2 an aa x. n or er to avO! rna IIlg a ItlOna 

ass umption s, we decided to analyze only those specifi c 
heat data that are close to the critical isochore. For 
these the scaling laws predict the following behavior: 

Cv= Co+ (A +/(i) Tt - a 

Cv= Co+ (AIT/O')TI-tl - a 

with 

t > 0 On e-phase region 
(9.3) 

t < 0 Two-phase region 

assumed to be constant in a s mall range of t. If thi s 
asymptotic form is assumed valid over a comparab le 
range of t above and below T e , one can determine the 
values of the parameters 0', Co, A+, All by fittin g 
expressions (9.3) to the experimental data; systematic 
deviations should appear at the same values of It I on 
both branc hes. 

Experim ental data are available for He 4 in the 
measure me nts of Moldover [11] a nd for Xe in the 
measurements of Edwards, Lipa and Buckingham [26]. 
We made an analysis of the raw data on helium and 
obtained the range of values given in table 8. As an 
example, a plot of (Cv-Co)T- 1 with Co=-0.7 J/cm 3 K 
or 15.5 reduced units is given in figure 10. The data at 
T < Tc are on a straight line of slope 0' = 0.06 and the 
same value of 0' is compatible with the data at T > Tc; 
in the latter case the points with t < 10- 3 may be 
slightly affected by gravity. From the values of Co and 
the known value of Td 2J-t(pe, t)/dt 2 values for d 2AO/dt 2 
are derived. (Table 8.) The Cv data for Xe have been 
analyzed by th e authors [26] according to eq (9.3) with 
T assumed constant and eq ual to Te. They co nclude 
that any value of 0' betwee n 0 and .12 gives a reason-
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FIG URE 10. Log- log plot 0/ the experimental data on the specific 
heat 0/ He" reI [ill. 

In thi s plot C!,. Co are in Jjcm;l K. Co has been assu med constant and equal to-0.7 J /cm:l 
K. and T(=5. 1889 K. The solid lines are lines of slope a = a '= O.06. Similar plots are 
obtained with Co in the range - 0.3 to - 0.9 J/c m3 K. The corresponding values of 0' wi1l 
range from a=O.04 to a=0. 11. 

able fit to the data; their values for the parameters are 
also listed in table 8. 

The co mpari so n with the values of the same param
eters as obtained from the analysis of the !1{J- , !1p, t 
data is quite good. It should however be mentioned 
that in the case of helium our value of a does not seem 
to agree with the value given recently by Moldover by 
a scaling-law analysis of his data. In appendix I we 
discuss Moldover's procedure and the possible reason 
for th e disagree ment. 

In conclusion, there are presently no indications of 
serious inconsiste ncies between the scaling-law 
approach of the equation of state, and the behavior of 
vapor pressure and specific heat of CO2 , Xe and He4 • 

9. Conclusions 

In applying the scaling laws in their present formula
tion to the critical region of fluids, the antisymmetry 
of the chemical potential with respect to the critical 
density is a prerequisite. We observed this antisym
metry in the experimental data in the critical region 
of a number of fluids in an appreciable range of density 
and temperature_ As we have pointed out (sec. 3), a 
corollary of the antisymmetry is the analyticity of 
{J-(Pe, T) at Te. This analyticity has been found not to 
be contradicted by the scarce experimental Cv data 
presently available. Scaling of th e experimental !1{J- , 
!1p, t data for He4, CO2 and Xe has been shown to be 
possible within experimental precision in a density 
range of about ± 30 percent from critical and for tem
peratures within - 1 percent to + 3 percent from criti
cal. A form we propose for the scaling function h(x) 
fits the data for these three fluids and predicts reason
able values for the anomalous part of Cv and of the 
vapor pressure_ The values of the critical exponents 
determined by the use of the function vary only slightly 
from substance to substance. There is hardly if any 
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dependence on the quantum parameter A * [27]. The 
coefficient El and E2 in our equation do not vary ap
preciably either from substance to substance; thus the 
deviations from corresponding states are almost com
pletely described by th e param eter Xo, or B, alone, 
which parameter varies con siderably from substance 
to substance. 

The present analysis has made it clear that new 
experiments are needed; in fact, several of the above 
conclusions are tentative because of lack of sufficiently 
precise and extensive experimental information. In 
particular, the fundamental question of the antisym
metry of !1{J- should be further investigated. Most useful 
would be studies of the density profile in the gravity 
field both above and below Te , since this is a direct 
probe of the {J-, p relation. Particular care should be 
given to avoid vertical temperature gradients. At the 
same time, the behavior of d 2{J-(Pe, t)/dt 2 should be 
elucidated by precise Cv ve rsus p measurements in 
the two-phase region approaching the critical tem
perature as closely as possible. Cv measurements in 
the one-phase region, particularly at Te and along the 
two-phase boundary below Te , will, in addition, provide 
better information about the exponents a and a' . The 
specific heat measurements should be supplemented 
with measurements of the pressure on the critical 
isochore both above and below Te to check whether 
the divergence of Cv is indeed fully explained by the 
divergence of (a 2p/at2). Finally, precise PVT data are 
needed, in particular near the two-phase boundary. 
The most useful approach would be to obtain as many 
of these properties as possible for the same substance. 

At the present level of experimental precision the 
scaling idea, including the assumption of antisymmetry 
of !1{J-, and the equation we propose, seem to hold 
satisfactorily. If, from more refined data, systematic 
deviations from our function were fOLnd but scaling 
is still observed, other closed-form expressions for the 
function h(x) could be considered. For instance, a 
modification of our function, which could give a better 
agreement close to the phase boundary, and at the 
same time move the nonanalyticity at x = -.xQ to a 
point x = - Xl (Xl> xo) inside the two-phase region, is 

readily obtained by replacing (x ~ xo) 213 in eq (5 .3) by 

( + )213 ° 
X xoXI • More precise data co uld also reveal devia-

tions from scaling in the present den sity-temperature 
range. This might lead to a refinement of the defini
tion of the asymptotic range without necessitating 
fundamental changes in the scaling ideas. 

However, should it be found that the property of 
antisymmetry is not fulfilled , then basic changes in the 
scaling formulation are needed, for instance by choos
ing new variables such as a combination of pressure 
and chemical potential. Within the framework of the 
scaling laws as presently used, the most significant 
need, from a phenomenological point of view, is the 
formulation of the free energy as a function of density 
and temperature, since the knowledge of the !1{J-, !1p, 
t equation of state by itself yields only a partial descrip
tion of the critical region. 



10. Appendix I 

Wh e n a = O, eq (2.16) and (2.17) must be used to 
derive expressions for the equation of state in terms 
of the variables p, p , t and for the specifi c heat. 

For the pressure one obtains 

p = ~pl~pI6- 1h(x) + l~pI6+ 1 [h(x) - ao(x)] 

- h2t2}n l~pl- Ao(T) 

which gives on the critical isochore: 

P (Pc. t) =-Ao(T) - f3Gt 2 - f3h 2t2 In t 

Pv(T) = - Ao(T) - t2 [ao( - XO)X02 - f3h21n xo] 

-f3h2t21n It I 

(ALl) 

(AL2) 

where G is an undetermined co nstant and a( - xo) 
may be e valuated from the express ion for ao(x ) valid 
near x = 0: 

1 
ao(x) = /3 {2ho + h1x+ Fx2 

-x2 for [h(y) -ho-hly - h2y2] ly l-3 dy} (AI.3) 

where F is a cons tant related to G by 

F=G+fOO dy [h(Y) -ho-h1y -~]. (AI.4) 
Y y2 1+y 

o 

The non analytic part is then composed of two parts , 
a t 2 In t term with th e same coeffi cie nt above and below 
Tc , and a t 2 term with differe nt coe ffici ent for t > 0 
or t < O. 

For the s pecific heat on e obtains for t > 0 

On the criti cal isochore : 

(AL6) 

in the two·phase region: 

_pCv =d2Ao + d2f1-(Pc, t) +2f3h I It I 
T dP P dt2 2 n 

- 2f3h2 In Xo + 3f3h2 + 2 ao( ~ xo) (AL8) 

Therefore the asymptoti c expressions for the specific 
heat on th e criti cal isochore are 

Cv =Alnt+B+ t > O 

with 

Cv =A In t+B_ 

A= 2f3h2= f3h"(O) 

B+ = 3f3h2 + 2f3G 

t < ° 

FL = 3{3h2 - 2f3h2 In Xo + 2ao ( - XO)xO - 2 

(ALl 0) 

Except for B+, which contains the undetermined 
constant G, these coe fficients can be numerically 
evaluated from the properties of h (x). 

The expression for th e jump in the specific heat 
across the phase boundary is 

~pC v = (f3/xo) hi (- xo) . (ALl 1) 

In contrast to th e case a > 0 or a < 0, thi s di sco nti· 
nuity is indepe ndent of th e te mpe rature. 

Since the equa tion for the di scontinuity in pC v 

wh en crossin g th e phase boundary does not involve 
any unknown con sta nt , the expe rim e ntal de te rmin a
tion of this jump would provide the mos t direc t 
information about a ' . 

11. Appendix II 

Numerical evaluation of the coefficient for the 
specific heat. 

A +/a- This coefficient is given by the integral 

(AIU) 

where h"(y )y> :- I diverges near y= O. 
Assumin g E s mall but di ffere nt from 0 th e integral 

be tween E and infinity is e valuated by s ta ndard 
numerical integration. For th e interval 0- E, h" (y ) 
is given by 

(AII.2) 

then 

(AII.3) 

For E sufficiently small, E ~ O.lxu, evaluating the first 
two terms only is sufficient. 

AIi/a- The calculation of this coefficients involves 
the evaluation of a,,( - xo), which from 2.13 depends 
on the integral 

(AII.4) 

or 

(AL9) 
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(AII.S) 



which is of the same form as the integral involved 
in the evaluation of A +/a . The same procedure is then 
chosen , the integration between 0 and E is performed 
using the series expansion and gives a contribution 

(AII.6) 

whereas the integral between E and Xo is evaluated 
by standard numerical integration techniques. 

12. Appendix III 

Moldover's analysis of his Het specific heat data 
on 7 isochores is based on the assumptions that 
T(d2f..1.,/dP) pc is a constant (independent of T) and 
that the de nsity independent part of the specific heat 
possesses a weak te mperature dependence: 

The singular part of the specific heat in the one· 
phase region , the term - T I tlp I-al f3 a " (x) in eq (2.21), 
is c hosen as 

- TI tlpl - alll a"(x) =A I tlpl - alf3 [l + xlxlY-l] - aIN. (AIII.2) 

The complete expressions for the specific heat that 
are used to fit the experimental data are as follows: 

pCv = Dtlp+a+ bt + A Itlpl - alf3 [l + xlxlN- l] - aIN, 

one-phase region 

pCv = Dtlp+ a' + bt+ A' (- t) - a' , 

two-phase region (AIII.3) 

D, a, a' , a, a', b, N, A , and A' are constants to be 
determined by the fit. 

The assumption AIII.2, allows to analyze simul
taneously all Cv isochores, which is a very attractive 
procedure. However as Moldover points out, the as
sumed functional dependence of x is not in complete 
agreement with the scalin g ideas; the most serious 
problem (in our opinion) being that it does not have 
a power series expansion around x = O. 

With eq (AIlI.3) the specific heat data on all iso
chores scale nicely. The numerical value of the con
stant D[=-T(d2f.L /dP) pcJ determined by the fit is in 
agreement with our value (see III). However, the 
con stants a and a' are found to be different (a ' is 
positive and a is negative) which implies that although 
the singularity in Cv is ass um ed to be described by 
th e term I tlpi - allla" (x) in the one ph ase region and 
by a term A' (- t) - a' in th e two phase region, an 
additional jump in Cv is present on the phase boundary. 

The values of 0" derived by thi s analysis , 0" = 0.16, 
is in disagreement with the value a '= 0 re ported in 
his thesis and also with the value a I - 0.05 that we 
find fitting the data in the two-phase region using 
(ABI.3) with b = O. 

The additional jump in Cv and the high value of 
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a, 0" are not III agreement with our scaling analysis 
of PVT data on He 4• Further investigations of the 
properties of the function (ABI.2), its range of validity 
and the sensitivity of the values of the parameters 
to variation in the form of the function are needed. 
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