JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 73A, No. 4, July-August 1969

The System SrO – "Chromium Oxide" in Air and Oxygen

Taki Negas and Robert S. Roth

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(April 25, 1969)

Phase relations in the system SrO-"chromium oxide" were determined in air and 1 atm O_2 (1 atm = 1.013×10^5 N/m²) and are shown as isobaric projections on the SrO—Cr₂O₃ pseudobinary. At both oxygen pressures, the system consists of three joins in the SrO—Cr₂O₃-oxygen ternary, (1) SrO—Sr₃Cr₂O₈, (2) Sr₃Cr₂O₈—SrCrO₄, and (3) SrCrO₄—Cr₂O₃. The former is binary from 1065 °C to liquidus temperatures in air and includes a eutectic near 79 mol percent SrO (in terms of SrO—Cr₂O₃ starting materials). Sr₃Cr₂O₈ melts congruently at 1453 °C. Below 1065 °C in air, phase relations are complicated by reactions with atmospheric water vapor resulting in the formation of Sr₁₀Cr₆O₂₄ (OH)₂ which decomposes to SrO and Sr₅Cr₂O₈ above 1065 °C. In air, below 775 °C, Sr₃Cr₂O₈ reacts with water vapor and oxygen to form Sr₁₀Cr₆O₂₄ (OH)₂ and SrCrO₄. Water vapor reactions are restricted in 1 atm O₂. The Sr₅Cr₂O₈—SrCrO₄ join contains a binary eutectic between 69–70 mol percent SrO but liquidus relations are ternary below 69 (air) and 68 (oxygen) mol percent SrO, as reduction of Cr⁶⁺ occurs. Likewise, the SrCrO₄—Cr₂O₃ join is not binary at solidus and liquidus temperatures. In air, SrCrO₄ melts at 1251 °C to Cr₂O₃ plus liquid with release of oxygen. In oxygen, the compound melts at 1283 °C with evolution of oxygen.

Key words: Chromium oxide; phase equilibria; strontium chromates; strontium-"chromium oxide" system, SrCrO₄, Sr₃Cr₂O₈.

1. Introduction

Investigation of phase relations in the system SrO-"chromium oxide" was initiated as part of a program of phase equilibrium studies involving the high temperature oxidation-reduction behavior of the first-row transition series metals. Although a number of mixed oxide compounds of strontium and chromium are reported in the literature [1-6], systematic attempts to deduce phase relations as a function of temperature and controlled oxygen pressure were not made. This paper presents two oxygen isobaric sections, air $(0.21 \text{ atm } O_2)$ and 1 atm O_2 (1 atm = 1.013) $\times 10^5$ N/m²), through the SrO-Cr₂O₃-oxygen ternary which is a subsystem of the Sr-Cr-oxygen ternary. X-ray diffraction and gravimetric data together with determinations of the melting points of compounds and of solidus and liquidus temperatures for various compositions in the system were used to construct the two isobaric sections. For convenience, phase relations in the ternary are depicted as projections on the $SrO-Cr_2O_3$ preudobinary but do not necessarily reflect equilibria for compositions confined to the pseudobinary. Although ternary in nature, the $SrO-Cr_2O_3$ pseudobinary may be interpreted in the normal binary manner because of the assignment of a fixed P_{0_9} .

2. Sample Preparation and Experimental Procedure

Strontium carbonate was used as the source for the alkaline earth metal and highly reactive Cr_2O_3 , prepared from $Cr(NO_3)_3 \cdot 9H_2O$ by gentle ignition, for chromium. Compositions were calculated to ± 0.01 percent and included a weight loss factor for $SrCO_3$. Starting materials in sufficient quantities to yield 3.0 g batches were weighed to the nearest 0.1 mg. Each batch was mixed in a mechanical shaker, dry mixed by hand, and pressed into a disk in a $\frac{5}{8}$ -in diam mold at 10,000 lb/in². The disks were fired, with periodic remixing and pressing, at 850 °C in air in a horizontal muffle furnace for 100 hr.

Melting point and subsolidus data were obtained by the quenching method from calcined samples equilibrated at constant temperature and pressure in open platinum tubes. In some cases, open gold envelopes or Vycor tubes were used. A vertical tube resistancetype furnace wound with 80 percent Pt-20 percent Rh wire was used for equilibrations in air. Specimens were equilibrated at 1 atm O₂ in a similar furnace modified for vacuum and gas flow capability with end-closures and "O"-ring seals. High purity oxygen was passed at a flow rate of 60 cm³/min through a kerosenesolid CO₂ cold trap into the furnace and out to the atmosphere through a second cold trap followed by a glass "bubbler" containing a 1-in water column.

¹ Figures in brackets indicate the literature references at the end of this paper.

The furnace was twice evacuated to 3×10^{-4} atm and flushed with oxygen before each experiment.

Temperatures were measured with Pt-Pt 10 percent Rh thermocouples calibrated against the melting points of NaCl (801 °C), Au (1063 °C), and Pd (1552 °C) [7]. The furnaces were controlled by an a-c Wheat-stone bridge controller capable of maintaining temperature to at least ± 2 °C.

Air-heated specimens were quenched onto a cold metal tray while those equilibrated in oxygen were quenched into a "dry ice" cooled brass cold-finger that constitutes the lower portion of the furnace. After quenching, specimens were examined under a binocular microscope for physical appearances of melting and x-ray powder patterns were made. Glazing accompanied by direct, but limited, specimen to Pt-containersurface contact was interpreted as the first experimental evidence for solidus temperatures. High chromium content specimens (>33 mol percent Cr2O3) also displayed small cavities indicative of gas release at solidus temperatures as well as minor changes in x-ray powder patterns. Liquidus temperatures were more difficult to deduce but were generally characterized by the development of a deeply concave meniscus indicative of a highly mobile material. Chromium-rich specimens were particularly difficult to retain in their containers as high fluidity was enhanced by gas release. The overall reproducibility of the temperature measurements for the experimental data points is within ± 2 °C and the overall accuracy of the reported temperatures is within ± 5 °C.

Equilibrium was considered to have been attained when the x-ray diffraction patterns of specimens heated successively for longer times and/or at higher temperature did not change. X-ray powder patterns were made using a high-angle Geiger counter-diffractometer at $1/4^{\circ}$ $2\theta/\min$ scanning rate and nickel-filtered Cu radiation. Reported unit cell data are considered accurate to about ± 2 in the last decimal place given.

The air and 1 atm O_2 liquidus isobars were determined by weight regain measurements. One-half to $1\frac{1}{2}$ g specimens were equilibrated within 5 °C above their liquidus temperature and quenched. After weighing at room temperature they were reoxidized by heating at a subsolidus temperature in air where phase assemblage and bulk composition were known from previous experiments. These were reweighed at room temperature after sufficient heating to permit complete reversal. Weight gain at the subsolidus temperature, therefore, represented weight loss for an equivalent amount of specimen at the liquidus temperature.

3. Compounds

The system SrO-"chromium oxide" contains few compounds in air or 1 atm O₂. The phase $Sr_3Cr_2O_8$ has been reported [2,3,8,9,10,11] and is trigonal with s.g. (space group) R3m. It is isostructural with Ba₃P₂O₈ [12] and contains the unusual Cr⁵⁺ state. The hexagonal cell dimensions for the compound in this study,

a = 5.569 Å and c = 20.17 Å, are in accord with those of Scholder and Schwarz [2] and Wilhelmi and Jonsson [3].

Pistorius and Pistorius [1] reported SrCrO₄ (monoclinic, s.g. P2₁/n, a = 7.083 Å, b = 7.388 Å, c = 6.771 Å, $\beta = 103.43^{\circ}$) which is isostructural with PbCrO₄. Cell parameters for the SrCrO₄ in this study, a = 7.09Å, b = 7.40 Å, c = 6.74 Å, $\beta = 103.3^{\circ}$, are in good agreement with the above.

The compounds $SrCr_2O_7$ [4], $Sr_2Cr^{4+}O_4$ [5], and $SrCr^{4+}O_3$ [6] do not appear in the system at 0.21 and 1 atm O_2 . The former is probably a higher P_{0_2} -low temperature phase. Sr_2CrO_4 was prepared in this laboratory at 1215 °C (44 hr) and 2×10^{-5} atm and is, therefore, a low P_{0_2} phase with Cr^{4+} in tetrahedral coordination while $SrCrO_3$ is a high pressure cubic perovskite with Cr^{4+} in octahedral coordination.

Phase relations at low temperatures in air of compositions within the SrO-rich portion of the system are severely influenced by atmospheric water vapor. The compound Sr₁₀Cr₆O₂₄(OH)₂, a hydroxyapatite, readily develops and persists to elevated temperatures before decomposing with H₂O evolution at about 1065 °C to SrO and Sr₃Cr₂O₈. Scholder and Schwarz [2] and Banks and Jaunarajs [13] prepared a Sr-Cr hydroxyapatite (*hex*, s.g. P6₃/m, a = 10.009 Å, c = 7.435Å and a = 9.98 Å, c = 7.40 Å, respectively). According to Scholder and Suchy [14] magnetochemical analysis yielded data indicating that pentavalent Cr exists in the compound, as well as in Ba and Ca analogs, instead of a 2:4 disproportionation of Cr³⁺ and Cr⁶⁺. The apatite phase found in this study is hexagonal with a = 10.009 Å and c = 7.427 A. To investigate the possibility that this compound might be of the oxyapatitetype, $Sr_{10}Cr_6^{5+}O_{24}O$, rather than a hydroxyl phase which, more appropriately, belongs to the SrO- Cr_2O_3 — O_2 — H_2O quaternary, a qualitative analysis

FIGURE 1. Unit cell parameters of $Sr_{10}(CrO_4)_{2\times}(PO_4)_{6-2\times}(OH)_2$ solid solutions prepared at 900 °C in air. (SioCe=Sr_1oCreO24(OH)_2, S_1oP6 = Sr_1oP6O24(OH)_2

was made for protons on material made at 1000 °C on gold using broadline nuclear magnetic resonance. The analysis suggested a large concentration of protons. Furthermore, the possible reactions

(a)
$$3Sr_3Cr_2O_8 + SrO + H_2O \rightarrow Sr_{10}Cr_6O_{24}(OH)_2$$

(b) $3Sr_3Cr_2O_8 + SrO \rightarrow Sr_{10}Cr_6O_{24}O$

were tested gravimetrically by heating $Sr_3Cr_2O_8 + SrO$ at 850 °C in air. Equation (a) suggests a theoretical weight gain of 1.13 percent while (b) involves no weight change. A measured value of 1.08 percent suggested reaction (a). A specimen decomposed to $SrO + Sr_3Cr_2O_8$ at 1225 °C, sealed in a Pt tube, and reheated at 825 °C, did not reverse, also suggesting reaction (a). Additional evidence for the existence of a Cr^{5+} hydroxyapatite is the isotypism with $Sr_{10}P_6O_{24}$ (OH)₂ as demonstrated by the formation of ideal solid solutions, $Sr_{10}(CrO_4)_{2x}(PO_4)_{6-2x}(OH)_2$, at 900 °C in air (fig. 1).

4. Discussion of Phase Equilibria

Phase relations in air $(0.21 \text{ atm } O_2)$ and 1 atm O_2 are shown in figures 2, 3, 4, and 5. The data from which these diagrams were constructed are given in tables 1 and 2. The system is not truly binary in its entirety because of reactions with oxygen but consists of a number of ternary elements (figs. 2 and 4) which may be projected onto the SrO—Cr₂O₃ pseudobinary (figs. 3 and 5), or any other convenient compositional reference join, through lines of constant cationcation ratio but variable oxygen content (oxygen reaction lines).

FIGURE 2. Air and 1 atm O_2 subsolidus relations in the system $SrO-Cr_2O_3-O_2$.

4.1. Air Equilibria

a. The SrO—Sr₃Cr₂O₈ Join and Related Equilibria

The 0.21 atm isobar coincides at subsolidus temperatures (> 1065 °C) and liquidus temperatures with the SrO—Sr₃Cr₂O₈ join; the join is a true binary in air at all temperatures above 1065 °C to at least the liquidus. Apatite, Sr₁₀Cr₆O₂₄(OH)₂, does not belong to this join but lies in the SrO—Sr₃Cr₂O₈—H₂O subternary of the SrO—Cr₂O₃—O₂—H₂O quanternary but is nevertheless indicated, because of its influence on phase relations, as a projection onto the SrO—Sr₃Cr₂O₈ join in figure 2 and with dashed lines at the 10:3 SrO:Cr₂O₃ ratio in figure 3. Between 1065 and 775 °C phase relations for compositions between SrO and the 3:2 cation-cation ratio actually consist of:

(a) $SrO-Sr_{10}Cr_6O_{24}(OH)_2$: a tie line extending above the plane of the ternary toward a hypothetical H_2O apex and connecting SrO and the composition of apatite.

(b) $Sr_{10}Cr_6O_{24}(OH)_2$ — $Sr_3Cr_2O_8$; a tie line extending from the composition of apatite to that of $Sr_3Cr_2O_8$.

Above 1065 °C, the apatite phase decomposes to $Sr_3Cr_2O_8$ plus SrO with H_2O evolution thereby establishing the SrO— $Sr_3Cr_2O_8$ tie line. An unusual reaction not indicated in figures 2 and 3 but involving the apatite, occurs below approximately 635 °C. The reaction is very sluggish because of the low temperature. Dehydroxylation of apatite proceeds not because of instability due to high temperature but as a result of low temperature oxidation of Cr^{5+} to Cr^{6+} according to

$$Sr_{10}Cr_6^{5+}O_{24}(OH)_2 + 1\frac{1}{2}O_2 \rightarrow 6SrCr^{6+}O_4 + 4SrO + H_2O.$$

The available SrO reacts with CO_2 at low temperatures and is readily identified in x-ray powder patterns as $SrCO_3$.

 $Sr_3Cr_2O_8$ melts congruently at 1453 °C and a binary eutectic occurs between 79–80 mol percent SrO and 1365 °C. The liquidus curve delimiting the primary field of SrO shows a pronounced "flattening" which could not be followed using compositions more SrOrich than 85 mol percent. These tend to react with the platinum container to form Sr_4PtO_6 [15]. In fact, the "flattening" tendency and the magnitude of the solidus temperature are probably the result of traces of Sr_4PtO_6 . Materials more SrO-rich than $Sr_3Cr_2O_8$ could be prepared free of Sr_4PtO_6 only by heating multiple disks of specimens resting on two strands of fine Pt wire wrapped about an alumina dish. The disks were located at the open end of the dish to prevent contact with the alumina.

 $Sr_3Cr_2O_8$ has a "minimum" at approximately 775 °C below which it reacts with atmospheric oxygen and water vapor according to:

$$4Sr_3Cr_2O_8 + \frac{1}{2}O_2 + H_2O \rightarrow Sr_{10}Cr_6O_{24}(OH)_2 + 2SrCrO_4$$

FIGURE 3. Phase relations in the systemSrO-"chromium oxide," in air, projected on the SrO-Cr2O3 $(\bullet-solid; \bullet-partly melted; \bigcirc -liquid.)$ pseudobinary.

FIGURE 4. The air and 1 atm O_2 liquidus isobars in the $Sr_3Cr_2O_8$ — SrCrO₄—Cr₂O₃ subternary of the system SrO-"chromium oxide." (\bullet -air; \bigcirc -1 atm O_2 ; dashed straight lines with arrows are lines of constant Sr—Cr ratio; e_b is a binary eutectic; dashed curved lines with arrows are boundary curves; $S_3C_{=}$ Sr₃Cr₂O₈; SC=SrCrO₄.)

			Heat	treatment	s ^a	Results			
Composition		Ini	tial	Final (air)		Fina	$l(O_2)^{b}$	Physical State	X-ray analysis ^c
SrO	Cr ₂ O ₃	Temp.	Time	Temp.	Time	Temp.	Time		
mol %	mol % 15	° <i>C</i> 850	hr 100	°C	hr	°C	hr		$S_{10}C_6 + SrCO_3$
				820 875	22 60				$\begin{array}{c} S_{10}C_6 + SrCO_3 \\ S_{10}C_6 + SrCO_3 \end{array}$
		1200	60		(ý-s				$S_3C_2 + S$
				900 1363 1367 1384 1394 1399 1404	$ \begin{array}{c} 60 \\ 1 \\ 1 \\ 1 \\ 0.75 \\ 1 \end{array} $	4 		No melting Partial melting Partial melting Partial melting Completely melted (?) Completely melted	$\begin{array}{c} S_{10}C_6+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ S_3C_2+S\\ \end{array}$
80	20	850	100						
		1. ^{1. 19}		900	60			· · ·	$S_{10}C_6 + SrCO_3$
						$1045 \\ 1100 \\ 1300$	20 20 5		$ \begin{array}{l} S_{3}C_{2}+S+tr\cdot S_{4}P\\ S_{3}C_{2}+S+tr\cdot S_{4}P\\ S_{3}C_{2}+S+tr\cdot S_{4}P \end{array} $
		1200	60	$ \begin{array}{r} 1175\\ 1351\\ 1357\\ 1361\\ 1364\\ 1366\\ 1367\\ 1371\\ 1375\\ 1391\\ 1410\\ \end{array} $	4 1 1 1 1 1 1 1 1 1 1			No melting No melting No melting Partial melting Completely melted Completely melted Completely melted Completely melted	$\begin{array}{c} S_{3}C_{2}+S\\ \end{array}$
76.92	13.08	850	100						S ₁₀ C ₆
				d 500 d 600 d 625 d 650 d 700 d 750 d 900 d 950 d 1000 d 1050 e 1075 e 1100 1175 1225	$\begin{array}{c} 48\\ 120\\ 96\\ 122\\ 100\\ 100\\ 60\\ 70\\ 70\\ 70\\ 70\\ 4\\ 25\\ 4\\ 19\end{array}$	^d 714 ^d 1032	120 120		$ \begin{array}{l} S_{10}C_6+SC+SrCO_3\\ S_{10}C_6+SC+SrCO_3\\ S_{10}C_6+SC+SrCO_3\\ S_{10}C_6\\ S_{10}$
		1200	60						$S_3C_2 + S_3$
				f 825 d900 d950 d1000 d1050 e 1075	65 60 70 70 70 4			2	$\begin{array}{l} S_{3}C_{2}+S\\ S_{10}C_{6}\\ S_{10}C_{6}+tr\cdot S_{3}C_{2}\\ S_{10}C_{6}+tr\cdot S_{3}C_{2}\\ S_{10}C_{6}+tr\cdot S_{3}C_{2}\\ S_{10}C_{6}+tr\cdot S_{3}C_{2}\\ S_{3}C_{2}+S \end{array}$

TABLE 1. Experimental data for the system SrO-"chromium oxide"

			Heat	treatments	a	Results			
Composition		Ini	tial	Fina	l (air)	Final	(O ₂) ^b	_ Physical State	X-ray analysis ^c
SrO	Cr ₂ O ₃	Temp.	Time	Temp.	Time	Temp.	Time		
mol %	mol %	°C	hr	°C e 1100	hr 25	°C	hr	•	$S_{a}C_{a} + S_{a}$
				$1300 \\ 1363 \\ 1367 \\ 1413 \\ 1419 \\ 1425 \\ 1430 \\ 1435 \\ 1442$				No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting Completely melted Completely melted	$S_{3}C_{2} + S$ $S_{3}C_{2} + S$
75	25	850	100			^d 714 ^d 815 ^d 906 ^d 1032 1045 1100 1300	$ \begin{array}{r} 120 \\ 70 \\ 120 \\ 120 \\ 20 \\ 20 \\ 5 \end{array} $		$\begin{array}{c} S_{3}C_{2}+S\\ S_{3}C_{2}+S\\ S_{3}C_{2}+S\\ S_{3}C_{2}+S\\ S_{3}C_{2}+S+S\\ S_{3}C_{2}+S+tr\cdot S_{4}P\\ S_{3}C_{2}+S+tr\cdot S_{4}P\\ S_{3}C_{2}+S+tr\cdot S_{4}P \end{array}$
		750	100	750 765 785 800 825 850 875 900 980 1000	24 65 40 90 25 18 18 18 16 18 18 18	4714	120		$\begin{array}{l} S_{10}C_6 + SC \\ S_{10}C_6 + SC \\ S_{10}C_6 + S_3C_2 + SC \\ S_3C_2 + tr \cdot S_{10}C_6 + tr \cdot SC \\ S_3C_2 + tr \cdot S_{10}C_6 + tr \cdot SC \\ S_3C_2 + tr \cdot S_{10}C_6 + tr \cdot SC \\ S_3C_2 + tr \cdot S_{10}C_6 + tr \cdot SC \\ S_3C_2 \\$
						^a 815 1045 1100 1138 1200 1205 1300 1320	70 20 20 70 4 49 5 72		$\begin{array}{c} S_{3}S_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}+tr\cdot S_{4}P\\ S_{3}C_{2}+tr\cdot S_{4}P\\ S_{3}C_{2}+tr\cdot S_{4}P\\ S_{3}C_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}\\ S_{3}C_{2}\\ \end{array}$
		1200	60						S_3C_2
				$\begin{array}{c} 750\\ 765\\ 785\\ 800\\ 900\\ 1250\\ 1370\\ 1390\\ 1400\\ 1404\\ 1409\\ 1425\\ 1432\\ 1449\\ 14452\\ 1455\\ 1455\\ 1455\\ 1459\\ 1471\end{array}$	$ \begin{array}{c} 24\\ 65\\ 40\\ 90\\ 16\\ 15\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$			No melting No melting No melting No melting No melting No melting No melting No melting Partial melting (?) Completely melted Completely melted	$\begin{array}{c} S_{10}C_6+S_3C_2+SC\\ S_{10}C_6+S_3C_2+SC\\ S_3C_2\\ S_3C_$
	-	, ,				1032 1175	$\begin{array}{c} 120 \\ 120 \end{array}$		$egin{array}{c} \mathbf{S}_3\mathbf{C}_2\\ \mathbf{S}_3\mathbf{C}_2\end{array}$

			Heat	treatments	; a]	Results
Comp	osition	Init	ial	Fina	l (air)	Final	$l (O_2)^b$	Physical State	X-ray analysis ^c
SrO	Cr ₂ O ₃	Temp.	Time	Temp.	Time	Temp.	Time		,
mol %	mol %	°C	hr	°C	hr	°C	hr		
72	28	850	100						
				750	100	$1032 \\ 1175 \\ 1200$	$\begin{array}{c}120\\3\\4\end{array}$		$\begin{array}{c} S_{10}C_6 + SC \\ S_3C_2 + SC \\ S_3C_2 + SC \\ S_3C_2 + SC \\ S_3C_2 + SC \end{array}$
		1125	60						$S_3C_2 + SC$
				$\begin{array}{c} 1202 \\ 1215 \\ 1227 \\ 1232 \\ 1299 \\ 1326 \\ 1349 \\ 1351 \\ 1362 \\ 1369 \end{array}$	2 2 1 1 1 1 1 1 1 1 1			No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting Completely melted Completely melted	$\begin{array}{c} S_{3}C_{2}+SC\\ \end{array}$
70	30	850	100						
				750 785 800 850	100 40 90 18		-		$\begin{array}{l} SC + S_{10}C_6 \\ SC + S_3C_2 + tr \cdot S_{10}C_6 \\ SC + S_3C_2 + tr \cdot S_{10}C_6 \\ SC + S_3C_2 + tr \cdot S_{10}C_6 \end{array}$
						714 815 906	120 70 120		$SC + S_3C_2$ $SC + S_3C_2$ $SC + S_3C_2$
		1150	48						$SC + S_3C_2$
				750 785 800 900 1202 1225 1228 1232 1236 1240 1249 1257 1273	24 40 90 16 2 1 1 1 1 1 1 1 1 1			No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting (?) Completely melted Completely melted	$\begin{array}{l} SC + S_{10}C_6 + tr \cdot S_3C_2 \\ SC + S$
69	31	820 1150	20 50						$SC + S_2C_2$
				$1228 \\ 1233 \\ 1240 \\ 1247$	1 1 1 1			No melting Partial melting Completely melted (?) Completely melted	$\begin{array}{c} SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \end{array}$
68	32	850	100	750	24				$SC + S_{10}C_6 + tr \cdot S_3C_2$
		1125	60						$SC + S_3C_2$
				1227 1232 1239	1 1 1			No melting Partial melting Partial melting	$\begin{array}{l} SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \end{array}$

TABLE 1. Experimental data for the system SrO-"chromium oxide" - Continued

7

4

+

.

+

			Heat	treatments	5 ^a	Results				
Composition		Ini	tial	Final (air)		Fina	l (O ₂) ^b	Physical State	X-ray analysis ^c	
Sr0	Cr ₂ O ₃	Temp.	Time	Temp.	Time	Temp.	Time		A Tuy unuiyois	
mol %	mol %	°C	hr	°C 1246 1256 1263	hr 1 1 1	°C	hr	Partial melting Completely melted Completely melted	$SC + S_3C_2$ $SC + S_3C_2$ $SC + S_3C_2$ $SC + S_3C_2$	
						1228 1234 1252 1262 1266	5 5 5 16 5	No melting Partial melting Partial melting Completely melted Completely melted	$\begin{array}{c} SC + S_{3}C_{2} \\ SC + S_{3}C_{2} \end{array}$	
66.67	33.33	850	100							
				$\begin{array}{c} 750\\ 1125\\ 1162\\ 1186\\ 1204\\ 1227\\ 1238\\ 1243\\ 1245\\ 1249\\ 1255\\ 1263\\ 1269\\ 1274\\ 1282\\ 1292\\ 1301\\ \end{array}$	$ \begin{array}{c} 100 \\ 60 \\ 16 \\ 15 \\ 1 \\ 1 \\ 16 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			No melting No melting No melting No melting No melting No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting Completely melted Completely melted Completely melted	$\begin{array}{c} SC \\ SC $	
						906 1125 1200 1260 1270 1281 1285 1294 1296	$ \begin{array}{c} 120 \\ 70 \\ 4 \\ 2 \\ 2 \\ 1 \\ 1.25 \\ 1 \end{array} $	No melting No melting No melting No melting No melting Completely melted Completely melted Completely melted	$\begin{array}{c} SC\\ SC\\ SC\\ SC\\ SC\\ SC\\ SC\\ SC\\ SC+tr\cdot S_3C_2\\ SC+tr\cdot S_3C_2\\ SC+tr\cdot S_3C_2 \end{array}$	
65	35	850	100							
50	10	950	100	1125 1225 1247 1253 1257 1261 1266 1274 1284 1288	60 15 1 1 1 1 1 1 1 1 1	1200 1278 1285 1290 1297	3 1.25 1.25 1.25 1.25 1.25	No melting No melting Partial melting Partial melting Partial melting Partial melting Completely melted Completely melted No melting Partial melting Partial melting Completely melted Completely melted Completely melted	$SC + C$ $SC + C$ $SC + C + tr \cdot S_3C_2$	
0	40	850	100	1125 1225 1248 1253 1257	60 15 1 1 1			No melting No melting Partial melting Partial melting	$\begin{array}{c} SC+C\\ SC+C\\ SC+C\\ SC+C\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2 \end{array}$	

TABLE 1. Experimental data for the system SrO-"chromium oxide" - Continued

H

×

A

TABLE 1. Experimenta	l data	for th	e system	SrO-'	"chromium	oxide'	'-Continued
----------------------	--------	--------	----------	-------	-----------	--------	-------------

			Heat 1	reatments	a	Results			
Composition		Initial		Final (air)		Final (O ₂) ^b		Physical State	X-ray analysis ^c
SrO	Cr ₂ O ₃	Temp.	Time	Temp.	Time	Temp.	Time		
mol %	mol %	°C	hr	°C 1268 1287 1298 1306	hr 1 1 1 1	°C 1200 1259 1273	hr 3 1.25 1.25	Partial melting Partial melting Completely melted Completely melted No melting No melting	$\begin{array}{c} SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C\\ SC+C\\ SC+C\\ SC+C\\ SC+C\\ SC+C\\ \end{array}$
						$ \begin{array}{r} 1217\\ 1277\\ 1290\\ 1300\\ 1321\\ 1325 \end{array} $	$ \begin{array}{c} 1.25 \\ 1$	Partial melting Partial melting Partial melting Completely melted Completely melted	$\begin{array}{c} SC+C\\ SC+C\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ SC+C+tr\cdot S_3C_2\\ \end{array}$
55	45	850	100	$1225 \\ 1298 \\ 1328 \\ 1341 \\ 1351 \\ 1355$	15 1 1 1 1 1			No melting Partial melting Partial melting Partial melting (?) Completely melted Completely melted	$\begin{array}{c} SC + C \\ SC + C + tr \cdot S_3C_2 \end{array}$
50	50	850	100	$1225 \\ 1247 \\ 1254 \\ 1258 \\ 1267 \\ 1307 \\ 1330 \\ 1374 \\ 1405 \\ 1455 \\ 1550 \\ 1500 \\ 1500 \\ 100$	15 1 1 1 1 1 1 1 1 1 1	710 1200 1259 1273 1277 1281	$46 \\ 3 \\ 1.25 \\ 1.25 \\ 1.25 \\ 1$	No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting Partial melting Partial melting Partial melting Partial melting No melting No melting Partial melting Partial melting Partial melting Partial melting Partial melting Partial melting	$\begin{array}{c} SC + C \\ SC + C \\ SC + C \\ SC + C + tr \cdot S_3C_2 \\ SC + C \\ SC \\ S$

^a After the initial heat treatment(s) all specimens were reheated in open Pt tubes, unless otherwise indicated.
^b 1 atmosphere.

^c Phases identified are given in the order of amount present at room temperature. They are not necessarily those present at the temperature at which the specimen was heated.

This reaction is represented in figure 3 by the 775 °C horizontal. For compositions between apatite and SrCrO₄ the apatite-SrCrO₄ tie line, therefore, exists below 775 °C.

b. Sr₃Cr₂O₈—SrCrO₄—Cr₂O₃ Equilibria

Above 775 °C, to liquidus temperatures, compositions between $Sr_3Cr_2O_8$ and $SrCrO_4$ behave in a binary fashion at least to about 70 mol percent SrO. The $Sr_3Cr_2O_8$ — $SrCrO_4$ tie line in figure 2 suggests binary behavior in the subsolidus. The invariant point between ^e Open Vycor tube. ^f Sealed Pt tube.

^d Open gold envelope.

 $\begin{array}{l} (2)-interpretation \quad uncertain. \quad S=SrO \quad S_3C_2=Sr_3Cr_2O_8 \quad S_{10}C_6=Sr_{10}Cr_6\bar{O}_{24}(\bar{O}H)_2 \\ SC=SrCrO_4 \ C=Cr_2O_3 \ S_4P=Sr_4PtO_6, \ formed \ by \ reaction \ with \ Pt \ tube \end{array}$

70-69 mol percent SrO at 1230 °C is a true binary eutectic. Compositions more Cr-rich than SrCrO₄ behave in a binary manner only below the 1251 °C solidus as suggested by the SrCrO₄—Cr₂O₃ tie line in figure 2. The 0.21 atm O₂ liquidus isobar coincides only with a portion of the Sr₃Cr₂O₈—SrCrO₄ join and lies entirely off the SrCrO₄—Cr₂O₃ tie line within the Sr₃Cr₂O₈—SrCrO₄—Cr₂O₃ subternary (fig. 4.). This situation is created by the "incongruent" melting behavior of SrCrO₄ at 1251 °C. The compound melts to Cr₂O₃ plus liquid with evolution of oxygen as the result of reduction of Cr⁶⁺ to Cr³⁺ and Cr⁵⁺. The

		Initial comp	osition]	Heat trea	tments a				
					Ai	ir	Oxygen				
SrO	Cr ₂ O ₃	Suk	osolidus phases		Temp.	Time	Temp.	Time	Liquidus composition ^b		
^{mol %} 72	mol % 28	$\substack{Bulk\\Sr_{16}Cr_{13}O_{52}}$	S_3C_2 SC	mol % 30 70	℃ 1360	hr 5	°C	hr	<i>Bulk</i> ^c no cha	Ternary phases ^d nge	mol %
70	30	$Sr_{14}Cr_{12}O_{48}$	${s_3C_2} {SC}$	20 80	1256	5			no cha		
69	31	${\rm Sr}_{69}{\rm Cr}_{62}{\rm O}_{248}$	${ S_3 C_2 \atop SC }$	$12.73 \\ 87.27$	1242	5			Sr ₆₉ Cr ₆₂ O _{246.25}	S ₃ C ₂ SC	14.27 85.08
68	32	$Sr_{85}Cr_{80}O_{320}$	${s_3C_2} {SC}$	6.67 93.33	1255	5			${ m Sr_{85}Cr_{80}O_{312}}$	C S_3C_2 SC C	0.65 11.76 85.92 2.32
							1262	16	no change		
66.67	33.33	SrCrO ₄	SC	100	1275	6			SrCrO _{3.8}	S_3C_2 SC	9.10 86.36
							1284	5	SrCrO _{3.97}	C S_3C_2 SC C	1.36 97.96 0.68
65	35	Sr ₂₆ Cr ₂₈ O ₁₀₇	SC C	96.29 3.71	1283	5			Sr ₂₆ Cr ₂₈ O _{101.84}	S_3C_2 SC	8.57 82.97
							1290	4	Sr ₂₆ Cr ₂₈ O _{106.29}	C S_3C_2 SC C	8.50 1.05 94.66 4.29
60	40	$\mathrm{Sr}_6\mathrm{Cr}_8\mathrm{O}_{27}$	SC C	85.71 14.29	1297	5			$Sr_{6}Cr_{8}O_{25.60}$	S_3C_2 SC	8 72 20
				1 ₄₀ 4.0			1320	5.	${\rm Sr_6Cr_8O_{26.84}}$	S_3C_2 SC C	1 84 15

TABLE 2. Summary of gravimetric experiments for the location of the air and 1 atm O_2 liquidus isobars in the $Sr_3Cr_2O_8$ — $SrCrO_4$ — Cr_2O_3 subternary

^a Melted within 5 °C above liquidus temperature.

^bCompositions melted in air and oxygen were reversed by reheating at 1125 °C in air. ^c Calculated from the weight gains of melted specimens when reversed to their initial bulk composition (phase assemblage) at 1125 °C in air.

composition of the liquid lies at point a (fig. 4) which is within the $Sr_3Cr_2O_8$ — $SrCrO_4$ — Cr_2O_3 subternary and is represented by the "peritectic" between 68-67 mol percent SrO in figure 3. The "peritectic" is not binary but is merely the projection of point a which is the intersection of the 0.21 atm liquidus isobar and the boundary curve delimiting the primary fields of SrCrO₄ and Cr₂O₃ in the Sr₃Cr₂O₈—SrCrO₄—Cr₂O₃ subternary as shown in figure 4. Triangle $SrCrO_4$ —*a*— Cr_2O_3 represents the univariant equilibria among SrCrO₄, liquid, Cr₂O₃, and O₂ at 1251 °C and is represented by the 1251 °C "peritectic" horizontal in figure 3. As liquid a is not binary, specimens between SrCrO₄ and Cr₂O₃, quenched from solidus temperatures and above, show Sr₃Cr₂O₈ in their x-ray powder patterns. This manifestation of reduction was of particular importance in the determination of the 1251 °C solidus. The compound PbCrO₄, isostruc d Liquidus bulk compositions recalculated on the basis of mol percent $\mathrm{Sr_3Cr_2O_8},\mathrm{SrCrO_4},$ and $\mathrm{Cr_2O_8}.$

 $S_3C_2 = Sr_3Cr_2O_8$ $SC = SrCrO_4$ $C = Cr_2O_3$.

tural with $SrCrO_4$, decomposes in the solid state at low temperatures in air to Pb_2CrO_5 plus Cr_2O_3 with O_2 evolution without intervention of melting [16]. Hexavalent Cr in the presence of Sr is thus more stable, requiring temperatures to 1251 °C before reduction proceeds.

The 0.21 atm liquidus isobar is shown in figure 4. Commencing at the 1453 °C melting point of $Sr_3Cr_2O_8$, it follows the $Sr_3Cr_2O_8$ — $SrCrO_4$ join through the eutectic (e_b). This portion of the system is strictly binary. Between the eutectic and 69 mol percent SrO, it migrates into the subternary across the primary field of $SrCrO_4$ to the $SrCrO_4$ — Cr_2O_3 boundary curve (point a) from where it crosses the primary field of Cr_2O_3 . Assuming that Cr_2O_3 melts congruently without oxygen loss in air at elevated temperatures, it terminates at the sesquioxide apex. It is, therefore, obvious that in figure 3, the liquidus curves (< 69 mol % SrO) shown represent the described isobar in projection but only indicate the temperature at which a given phase assemblage melts. Compositions corresponding to each liquidus temperature can be deduced only with aid of the ternary.

Interpretation of figure 4 may be facilitated by two appropriate examples.

(a) Starting with a raw compositon of 68-32 mol percent SrO and Cr₂O₃, respectively, and heating in air at subsolidus temperatures results in the oxidation of available Cr³⁺ and the formation of a two phase mixture, $Sr_3Cr_2O_8 + SrCrO_4$, whose bulk composition lies on the Sr₃Cr₂O₈-SrCrO₄ tie line. At 1230 °C, initial melting occurs. Phases present are Sr₃Cr₂O₈, SrCrO₄, and binary eutectic liquid. As temperature is raised Sr₃Cr₂O₈ dissolves in the liquid and the phase assemblage consists of SrCrO₄+binary liquid. Further elevation of temperature results in increased solubility of SrCrO₄ in the liquid which begins to evolve O_2 (reduce). As this occurs, the composition of the liquid follows the isobar into the ternary while bulk composition follows the 68 mol percent SrO oxygen reaction line. At about 1247 °C complete melting occurs in the primary field of SrCrO₄ and liquid composition and bulk composition (intersection of the isobar and the pertinent oxygen reaction line) coincide.

(b) Starting with a 2:1 mixture of SrO and Cr₂O₃ and heating in the subsolidus results in the complete oxidation of Cr^{3+} to Cr^{6+} and the formation of $SrCrO_4$. At 1251 °C, $SrCrO_4$ melts "incongruently" with O_2 evolution to Cr_2O_3 + liquid. Composition of the liquid is at point a in figure 4 while the bulk composition is located in the $SrCrO_4$ —a— Cr_2O_3 triangle on the SrCrO₄ oxygen reaction line. The exact position has not been determined but at maximum heat content point b is representative. As temperature is raised, reduction in the liquid proceeds and its composition follows the air isobar as bulk composition continues along the oxygen reaction line. The equilibrium assemblage is Cr_2O_3 + liquid during this process. At about 1292 °C complete melting occurs and liquid and bulk composition coincide, again at the intersection of the air isobar and the pertinent oxygen reaction line.

4.2. 1 Atm O₂ Equilibria

Phase relations at 1 atm O_2 shown in figure 5, are not signifigantly different from those in air. Decrease of $P_{H_{2}O}$, inherent in the oxygen experiments, prevents the formation of apatite. Initially, it was anticipated that $Sr_3Cr_2O_8$ would show a low temperature minimum indicative of the possible oxidation reaction:

$$Sr_3Cr_2O_8 + \frac{1}{2}O_2 \rightarrow SrO + 2SrCrO_4$$

The compound, however, is stable to at least 715 °C in oxygen. The 775 °C minimum in air, therefore, is apparently due solely to the influence of water vapor. Melting relations in the SrO-rich portion of the system were not determined as they are expected to be identical to those in air. Confirmation of the 1230 °C

solidus in air between $Sr_3Cr_2O_8$ and $SrCrO_4$ was made using the 68 mol percent SrO composition. The binary nature of the solidus is further validated, as this temperature does not increase in oxygen.

The 1 atm O_2 liquidus isobar (fig. 4) between $Sr_3Cr_2O_8$ and $SrCrO_4$ coincides with that join beyond 69 and 68 mol percent SrO. The join is, therefore, almost entirely binary in oxygen. $SrCrO_4$ melts sharply at 1283 °C but some reduction at the melting point was indicated by small amounts of $Sr_3Cr_2O_8$ found in diffraction patterns. Gravimetric experiments confirmed this observation. The compound melts in a "congruent" manner although melting is accompanied by O_2 evolution from the liquid. This indicates that the 1 atm O_2 isobar and the $SrCrO_4$ oxygen reaction line intersect in the primary field of $SrCrO_4$. Figure 6 schematically demonstrates the influence of oxygen pressure on the melting behavior of $SrCrO_4$.

FIGURE 6. Schematic representation of the melting behavior of $SrCrO_4$ between 0.21 and 1 atm O_2 .

Compositions of liquids are not indicated.

From a value of 1251 °C in air, the solidus temperature between $SrCrO_4$ and Cr_2O_3 is raised to 1275 °C and a "eutectic" appears to exist between 65 and 66 mol percent SrO. As $SrCrO_4$ and the 65 and 60 mol percent SrO compositions evolve O_2 at liquidus temperatures, the two segments of the 1 atm O_2 isobar may be extrapolated to an intersection on an oxygen reaction line pertinent to a composition initially between 65 to 66 mol percent SrO but within the ternary. This intersection delimits to within at least 1 mol percent the location (point c) of the $SrCrO_4$ — Cr_2O_3 boundary curve at 1 atm O_2 . In projection (fig. 5) point c is the "eutectic" between 65 to 66 mol percent SrO. The 1 atm O_2 liquidus isobar coincides with the Sr₃Cr₂O₈—SrCrO₄ join to at least 68 mol percent SrO. Between this composition and SrCrO₄ it must migrate into the ternary (it cannot coincide with SrCrO₄ since the phase melts with O₂ loss), cross the primary field of SrCrO₄ to the boundary curve, and eventually terminate at Cr₂O₃.

The approximate position of the SrCrO₄—Cr₂O₃ boundary curve in figure 4 may be extrapolated toward the $Sr_3Cr_2O_8$ apex beyond point a. Similarly, the binary eutectic on the Sr₃Cr₂O₈—SrCrO₄ join must be a temperature maximum on that join (Alkemade theorum) and can, therefore, be extrapolated into the ternary. The resulting line, the Sr₃Cr₂O₈—SrCrO₄ boundary curve, where it intersects the SrCrO₄-Cr₂O₃ boundary curve, approximates the position of the Sr₃Cr₂O₈-SrCrO₄—Cr₂O₃ ternary eutectic. Another boundary curve, that between Sr₃Cr₂O₈ and Cr₂O₃, must, of course, converge at this point. A possible position is, therefore, indicated. It should be emphasized that the ternary invariant point is an integral portion of the system but is experimentally realized only at a fixed P_{0_2} and temperature. Similarly, for every P_{0_2} , a corresponding liquidus isobar exists within the ternary (as long as new phases do not appear). It is, therefore, obvious that every point on a boundary curve is characterized by a specific temperature and

 P_{O_2} . Having determined two such points (a, c) for the SrCrO₄—Cr₂O₃ boundary curve and the 1230 °C maximum on the Sr₃Cr₂O₈—SrCrO₄ boundary (e_b) , values of < 0.1 atm O₂ and about 1210 to 1220 °C are not too improbable for the position of the ternary eutectic.

5. References

- Pistorius, C. W. F. T., and Pistorius, M. C., Zeit. Krist. 117, 259 (1962).
- [2] Scholder, V. B., and Schwarz, H., Z. anorg. allgem. Chem. 326, 11 (1963).
- [3] Wilhelmi, K. A., and Jonsson, O., Acta Chem. Scand. 19, 177 (1965).
- [4] Wilhelmi, K. A., Arkiv für Kemi 26, 149 (1966).
- [5] Wilhelmi, K. A., Arkiv für Kemi 26, 157 (1966).
- [6] Chamberland, B. L., Solid State Communications 5, 663 (1967).
 [7] Stimson, H. F., J. Res. NBS 65A (Phys. and Chem.) No. 3,
- 139 (1961). [8] Klemm, W., Angew. Chem. **63**, 396 (1951).
- [9] Scholder, R., Angew. Chem. 65, 340 (1951).
 [9] Scholder, R., Angew. Chem. 65, 240 (1953).
- [10] Scholder, R., Angew. Chem. **70**, 583 (1953).
- [11] Scholder, R. and Klemm, W., Angew. Chem. **66**, 461 (1954).
- [12] Zachariasen, W. H., Acta Cryst. **1**, 263 (1946).
- [13] Banks, E. and Jaunarajs, K. L., Inorg. Chem. 4, 78 (1965).
- [14] Scholder, R. and Suchy, E., Z. anorg. allgem. Chem. 308, 295 (1961).
- [15] Randall, Jr., J. J. and Katz, L., Acta Cryst. 12, 519 (1959).
- [16] Negas, T., J. Am. Ceram. Soc., December (1968).

(Paper 73A4–562)