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An analytical formulation for the second virial coefficie nt is given for a spherically symmetric 
potential function of a simple form which has been called a realis tic pair potential. This potential, given 
as an inverse relationship with r as a function of U, is capable of being much softer than a Lennard
Jones in the extreme of close approach. Differing forms of the result are given, including an expression 
by means of the generalized hypergeometric series. The result is also expressed in terms of the second 
virial coeffi cient for the (12,6) potential. 
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One of the uses of a pair potential function is for the 
representation or prediction of the second virial coeffi
cient contribution to the equation of state due to the 

:;" two molecules having the specified interaction poten
tial energy. Various potential functions have been used 
with some success, the most notable of which may 
be the Lennard-Jones (especially the 12, 6), the 
Morse function, and the exp-6. 

I In spite of the varied nature of the different func-
tions, it is sometimes pointed out that there is so much 

j similarity in second virial behavior for them that it 
I is difficult to select one in preference to another on 

the basis of second virials alone. Even if this be true, 
there still may be some interest in yet another poten
tial for which the second virial may be formulated 
explicitly, particularly since this formulation can be 
made in terms of already tabulated second virial co-

• efficients for the (12, 6) function. 
A potential function has been introduced earlier 

[IP in which the value of rlrm is given as a function 
of energy for the usual l/r6 type of London interaction 
according to the relatIon 

The quantity cP is relat~d to the energy U according to 
> the equation . 

(2) 
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The range of values of cP is fr-om zero for very large r 
where U is zero, through cP = 1 for r = rill where U has 
the value - e, and to very large values where U be
comes very large as r becomes very small, according 
to the expected pattern of behavior. 

The second viral coefficient may for the present 
simple case of a spherical potential function be 
written as 

B=No t" (l-exp (-UlkT). 27rr-dr (3) 

if the pair is composed of like molecules. Integration by 
parts transforms the integral to 

B= (27r/3) (NolkT) t" [r3] exp (-UlkT) dU, (4) 

where the quantity [r3] is a function of U and represents 
the simple r3 value in the positive energy region but 
represents the difference of ,a for the repulsion side 
of the potential valley minus ,-3 for the attractive side 
if the potential energy is negative. This double-valued 
character is removed if the variable cp is introduced, 
since the integral then is 

B = (27r/3)No(2elkT) 

to r3 exp [-( cp2_ 2cp) el kT] (cp -1) dcp (5) 

with cp advancing simply from zero to infinity and with 
r3 having its ordinary algebraic meaning. 

If we now introduce the present potential in the f~rm 
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(r/r",)3=1> - 1/2 exp (-a1>2-b1>+c) (6) 

where a= 3e2 , b = 3el -6e2, and c= 3el - 3e2, we have, 
with T* for kT/E, 

B= (21T/3)Nor~,(2/T*) L X> exp [c - (b-2/T*)1> 

-(a+l /T*)1>2](1>-I)1> - 1/2d1> (7) 

Expansion of the exponential involving the first power 
of 1> using f3 = b + 2/T* and a = a + I/T* gives 

B= (21T/3)Nor~n(2/T*) to exp [c-a1>2] 

B eC 

.,-=-----; (C I/4(T**)*v2{ (l/2+ia - I/2 T**1 /2) 
b", T 

B* (T**) + (2 + 4a- I/2T**1/2)Bt (T**) 
1 

+ 2a- 1/2T**1/2Bt (T* *)} 
(12) 

or as 

eC ~1 +aT* 
B/bm =- [2 -bT*)2 2 - bT* 

J 

{[4+ (3-2b) T*]B*(T**) 
+8[2+ (4-b)T*]Bt(T**) + 16T*m(T**)} (13) 

Another arrangement of the result can be arrived 
at in the following way. If the second sum in the ex-·· 4,. 

pression for B/bm is written out in detail through f f3:~n (1)-l)1>-1/2d1>. (8) several terms, it is possible to recognize that there is 
n= O . 

The substitution of x for 1>2 puts the result in the 
form 

B= (21T/3)Nor~n(ec/T*) f ~ 
n=O n. 

or 
co f3n 

B= (21T/3)Nor~n(ec/T*) L f 
n=O n. 

[a - n/2- 3/4r(n/2 + 3/4) - a- n/2- 1/4f(n/2 + 1/4)]. (10) 

This can be written as B = bm . (B/ bm ) with bm = (27T/3) 
Nor:;", and 

B/bm = (ec/ T*) [a - 3/4l:
0 

f(n/2 + 3/4) (4/T**)11/2/n ! 

-a- I/4 f f(n/2+ 1/4)(4/T**)11/2/n !] (11) 
n= O 

where T** is an abbreviation for 4a/ f32. 
Another formulation can be given by which the 

summations may be avoided by various relationships 
according to which the first summation is equal to 

- CV2) (T**)5/4[(3/8)B*(T**) +4Bt(T**) +2B2*(T**)] 

and the second is 

- ~ (T**)3/4[B*(T**) +4Bi(T**)], 

where B*, Bi, and B; are the usually tabulated second 
virial coefficients and dimensionless derivatives for 
the Lennard-Jones (12, 6) pote ntial function. 

Using these, (11) can be written 

a relation to the generalized hypergeometric function 
and the confluent hypergeometric function in particu
lar. With 7" representing (4/T**) 1/2 , the summation 
becomes 

f(I/4) [FI(I/4;1/2; -f-/4)] 

+ f(3/4)[IF I (3/4; 3/2;7"2/4)]. (14) 

which also has a relationship to Bessel functions 
[2] We further note that if the ordinary hypergeometric 
function F(a, f3; y; g) with g=YJ/f3 is considered and 
the limit taken as f3- 1 ~ 0, the result is found to be 
IFI(a; y; YJ). A function equivalent to the original ,' 
hypergeometric function . according to a standard 
relation is (1-g}y-a- 13F(y-a, y-f3;y;g). A similar 
use of g= YJ/f3 and a passing to the limit f3- 1 ~ 0 
produces an equivalent form e_T)lF l (y-a;y;-YJ). 
Then for the case with a = ty the equating of the two 
.expressions leads to 

'-
e-T)/2 1 Fdty; y; YJ) = eT)/21iFl~(ty; y; -'1]); (15) ' 

from which it is evident that both expressions, on 
either side of the equation, are even functions of YJ. 
It would appear plausible that a series involving even 
powers only would need half as many terms to attain ' I 
a given quality of approximation as a related one with 
both odd and even powers. Thus, we would presume 
that a more rapidly convergent form for the result · 
should exist and might be looked for. For this pur
pose we examine the differential equation [2] 

ay = (y - x)y' + xy" , (16) 

for which y= IFI (a; y; x) is known to be a solution. 
For the special case with a=iy, if we use z=e- X /2y 
or y= e X/2 z and substitu'te into the differential equation, 
we obtain 

xz"+yz'-ixz=O (17) 

Solution 1D series by the method of Frobenius gives 

4:2:2 



> 

'., 

r 

(18) 

or 

(19) 

where a = (l +y)/2, according to the notation [3] 
for the generalized hypergeometric series. 

In summary, the final series obtained may be sub
stituted into the earlier expressions with the result 
that the second virial coefficient may be obtained from 

(20) 

where 

YO(T) = [fO/4) oF I (3/4; T4 /256) 
+ f(3 /4 )T of. (5/4; ~/256) ] exp (T2/8) (21) 

with Y1( T) obtainable by differentiation according to 
Y1(T) =dYO(T)/dT, and with T= (4/T**)1 /2 • 

It may be seen that this particular hypergeometri c 
fun c tion has a simple rule for differentiation; namely, 

(22) 

Thus a procedure may be found to evaluate B/b,n 
and any of its derivatives which are of interest. 
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