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1. Introduction 

The classical path approximation which is used in 
most . line broadening theories, as well as many othe r 
atomIC and molecular proble ms, is not always clearl y 
understood because it is based on rather heuri sti c 
argume nts. Previous deriva tions have relied more on 

;> physical insight than mathematical analysis hence 
such features as the neglec t of " back reaction " and 

> the assumption that the density matrix is " diagonal in 
l wave packe t states" are not give n to concise mathe

matical state me nts. 
In this paper , sta ti stical methods are used in de 

flVlll g a precise mathe matical expression for the 
? "thermal average ." The approxim ati ons used will be 

give n as mathe matical s ta te me nts whi ch a re easily 
'r understood both physicall y and mathematically. It is 
l hoped .that thi s appr?ach will be of .some pedagogical 

r 
value III understandlllg the foundatIOns of the usual 
classical path methods . 

In the following paper [1] I , he nceforth referred to 
as II, thi s approach will be exte nded to show how the 
usual binary collision theories are obtained , and a 
sys te matic method for improving these theories is 
outlined. 

2 Construction of a Mathematical Model 

, The line broade nin g pro ble m for gases (or plas mas) 
is basicall y a stud y of the distribution of spectral radia

r tion emitted or a bsorbed by the gas. The emission (or 
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absorption) is usually produced by a s mall number of 
particles, and the spectral lines are s hifted and broad
e ned by the interac tion between these radiators and 
the remainder of the particles in the gas. Since the 
number of radiators is usually a very small fraction of 
the total number of particles in the gas, the average 
di s tance between radiators will be large e nough that 
any direct interactions between the m are negligible. 
W e will therefore regard the gas as bein g divided into 
a large numbe r of cells in s uch a way that each cell 
contains one radia tor and a large number of perturbing 
par ticles. We will assum e that the particles at the 
border betwee n adjacent cells are effec tively at infinity 
with respect to the radiators; that is, the interaction 
between a r adiator and a perturber at the edge of a 
cell is negligibly small. The di stribution of particles 
at the borde r between c~ll s will then be uniform (i. e. , 
not altered by th e presence of the radiators) and we 
may neglect all interac tions be tween cells provided 
that we maintain this uniform di s tribution near the 
edges of the cells. 

We have now re presented the gas by a collection of 
noninte racting cells. Eac h cell may be described by a 
Hamiltonian of the form 

(1 ) 

where Ha is an unperturbed Hamiltonian for the radia
tor, Hp is an unperturbed Hamiltonian for the re main
ing particles in the cell (henceforth called the perturb
ers), and V represents the interaction betwee n the 
radiator and these perturbers. 

The probability per unit time that a cell, initially in 
the state 1m >, will make a spontaneous dipole tran si
tion to another state, In>, is [2] 

(2) 
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where 1m> and In> are H eigenstates belonging to the 
eigenvalues Em and En , Wmn is the frequen cy difference 
(E",-En)jh, and d is the dipole moment of the cell. 
Since we are interested only in line spectra, we may 
exclude the continuum radiation produced by the 
perturbers (bremsstrahlung, e tc.) by excluding the 
dipole moment of the perturbers. That is, d will be 
the dipole moment operator for the radiator, thus ig· 
noring all tran sitions which do not involve a change in 
the dipole mom ent of the radiator. The power radiated 
when a cell makes a dipole transition from 1m> to 
In> is just hWI/I II P/1/II, and the contribution thi s males 
to the total power spectrum emitted by the gas is 
hWmIlP1/l1l0(W-WI/1II) or 

peW) = (4w4 j3c3)O(W-Wmn) l<mldln>12 (3) 

if we use delta functions as natural lines. If one wishes 
to use very narrow Lorentzian natural lines [3], it is 
necessary only to use a complex frequency variable 
in place of w; this is of little practical importance 
although it is a mathematical convenience for some 
problems. In P(w), negative values of W (or Wlnn) 
represent absorptive transitions. 

The total power spectrum emitted by the gas is 
obtained by adding the contributions, P (w), from each 
of the cells. Since all cells have the same spectrum of 
accessible states (H eigenstates), this will turn out to 
be a weighted sum of eq (3) over all possible initial and 
final states. If the total number of cells (total number of 
radiators in the gas) is NR and if the probability of 
finding a cell (one radiator plus its perturbers) in the 
initial state 1m> is pm, then the number of cells initially 
in the state 1m> is NRPm. Since Pmn , given by eq (2), 
is the probability that a cell initially in the state 1m> 
will make a dipole transition to the state In >, any 
given transition Im>~ In> will occur in NRp",Pmn of 
the cells in the gas. The power radiated by this group of 
cells is hWlIlllNlIp",Pmn and their contribution to the 
total power spectrum is hWmIlNllpmPlIIIIO(W-WI/lII)' We 
obtain the total power spectrum for the gas by summing 
this expression over all possible I m> ~ In > transi· 
tions. The total power radiated per unit frequency 
interval is thus given by 

P7'(w) = (4NRw4j3c3)kmnO(W - W",n) 1< mldln >12Pm. 

(4) 

This exp ression is equivalent to summing eq (3) 
over all 1m > ~ In> transitions, weighting each term 
by NIIPm, the number of cells initially in the state 
lin> . 

In most line broadening problems one is interested 
only in a small range of frequencies which pertains 
to a single broadened line. In such a case the factor 
w4 in eq (4) does not change appreciably, and most 
of the frequency depende nce of P (w) is contained 
in the sum over O(W-Wmn). We thus define a line 
shape function, l(w) , by 

(5) 

I(W)=kmnO(W-Wmn) 1 < mldln> 12Pm. (6) 

The evaluation of lew ) is the central problem of 
line broadening theories. Since eq (6) is not multi· < 
plied by Nil, we see that it is necessary to consider I 
only a single cell (with appropriate weighting of the .( 
initial states) when e valuating lew ). For this reason, 
most line broade ning theories start out with a mathe· '1 
matical model which contains a single radiator im· 
mersed in a gas of perturbing particles. We have I 
included this section merely to justify the use of such .~ 
a model, and in all following sections we will refer j 

to this model rather than the gas as a whole. 

3. The Weak Coupling Approximation 

./ 
\ 

Using the results of the previous section, it can I 

easily be shown [4, 5, 6] that the line shape for 
spectral radiation is given by 

lew ) = (217) - 1 f x,eiW1C(t)dt 

= 17 - 1 Re L" eiw1C¢)dt (7) 

where C(t) is a correlation function which has the 
property C*(t)=C(-t). For dipole radiation , C(t) 
is an autocorrelation function of the dipole operator d 
for the radiator. This function may be given by 

C(t) = Tr {d·T 1(t)dT(t)p} (8) 

" where T(t ) and P are the time development opera· 
tor [7] and density matrix for the system (a radiator < 
and its perturbers) and the trace is over all states 
of the system. 

The autocorrelation function C(t) may be given 
various physical interpretations. Some of these inter· 
pretations are discussed in detail in section 7. 

Following Fano [8, 9], we regard the system as 
being composed of two weakly coupling subsystems; <; 
subsystem "a" is the radiator (e.g., an atom, molecule, . 
etc.) while subsystem "p" is the gas of perturbers. 
The Hamiltonian, H, for the system has been given 
in eq (1) by (Ha+ Hp+ V) where Ha and Hp are Hamil· I 
tonians describing the radiator and perturber sub· j 

systems and V represents a coupling interaction ' 
between these subsystems [10]. \' 

We ass ume that the radiator and the gas of per· 
turbers are statistically independent ; that is, the state 
of the perturbers does not depend explicitly on the 
state of the radiator, and vice versa. This is the neglect 
of "back reaction" in the density matrix. A mathemat· ",I 

ical statement of this approximation has been given 
by Fano [9] in terms of the density matrix: 

(9) 

where p(a) and p(P) depend only on radiator and per
turber variables respectively. As a first approximation 
we assume that each subsystem is in equilibrium: \ 
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p(a)= p«l) (Ha ) 

p(p)= p(p)(Hp ). (10) 

( For a cano ni cal ensemble. p ex: exp {- H/kT} ; thi s 
, requires that exp { - V/kT} be replaced by unit y 
( leaving p 0: exp{-(H,,+Hp)/kT} which has the 
, form required by eqs (9) and (10). The interp re tation 

of thi s approximatio n is a matter of so me import ance 
and it will be discussed in detail in sec tion 8. 

> The assumption of statistical inde pe nde nce, eq (9), 
permits one to write the correlation function, eq (8), 

>- in the form 

CU) = Tra{ d·Trp{T t(t) dT(t )p(p)}p(a)} 

= Tra{ d· < T t (t)dT(t) > p(a)} (11) 

where the subscripts on the trace opera tions denote 
a trace over states of the indicated subsystem [9]. 

;> The bracket (. . .) represents an ensemble aver· 
age over the perturber subsystem. This average 
takes the place of the usual " thermal average." 

>-

4 . The Perturber Ensemble 

W e have ass umed that the radiator and the per-
turber subsystems are statistica ll y indepe nde nt. 
The de nsity operator, p()J ) , for the perturber s ubsys-

, te rn will therefore be the same as the de nsity operator 
for an isolated gas of N particles in a volume 'Y (the 
volume of a cell) maintained at a co nstant te mperature 
T. Given the restri c tions (N, 'Y , T) , there a re many 
possible configurations of pos itions, x = (Xl, X t . . • , 

XN) , and velocities, v = ( VI , V2, ... , v.v), for the par
ticles which are cons istent with these macrosco pi c 

;. co nstraints . Spe aking quantum mechanically , we say 
that the re are ma ny different state functions, cp(x, t), 
whi ch could des cribe such an isolated gas. We may 
index each of th ese possibilities with a superscript 
(i), and we imagjne a collection of perturber gases, 
called an e nsemble [11] . Each cp(i)(x , t) must be 
a solution of the Schriidinger equation, 

(12) 

)-

which is normalized to unity: 

(13) 

Due to its math e matical nature, the conce pt of 
an ensemble is not readily give n to simple physi cal 

,.. inte rpretations. H owever, in the following section it 
will be shown that , by neglecting the influence of 

t the radiator on the state of the perturbers which 
, surround it (i. e., " back reaction " effects in the wave 

functions) , a phys ical interpre tation of the ensemble 
is possible. In that case we may regard each of the 
cells discussed in section 2 as being a member of 

? the ensemble (provided that there are enough cells); 

that is, each cp(i) will then re prese nt one of t.h e pos
sible states for the perturbers in a cell and, for a given 
state of the radiator, the superscript i may then be 
used to index the cells . It must be e mphasized th at 
in this section we are not representing the wave fun c
tion for th e perturbers in the cells by cp( i). At this point 
we are simply cons tructing an approximate density 
operato r for these perturbers which is based on an 
isolated gas. In the following section we will use 
the cp(i) as basis functions in constructing wave func
tions for the perturbers in the cells , however, the 
treatme nt of th e wave functions in the following 
section is distinct from the discussion of the statistics 
in thi s section. 

For an isolated gas, e nergy wo uld be a constant 
of the motion hence each cp(i) will be a n eige nfun c
tion of H" [13]. If we defi ne a co mple te orthonormal 
set of H" eigenfunctions {ji,.(x)} by 

(14) 

f J.*(x)jj(x)dx = Ok,j, (15) 

the n , from eqs (12) and (13), it is obvious that 

cp(i)(x, t ) = Ji(x) exp (-itEW/Ii). (16) 

Us in g the notation 

ii,(x) = (x lk) 

cp(i)(x, t ) = ( x lcp(i); / ) 

Equation (16) may also be written in the form 

Icp(i); t > = Ii > exp (-itE}1)/Ii) . 

(17) 

(18) 

The probability of findin g th e gas of perturbe rs in 
a particular s tate cp(i) will be de noted by q(i) , a nd the 
q(i ) will be normalized so . that 

(19) 

The density operator, p(p) is the n de fin e d [9] by a 
sum over all possible states cp(i), weighting each by 
its probability of occurrence q(i): 

p(pb 2: Icp(i) ; t > q (i) < cp(i); t l 
i 

(20) 

For the mac roscopic constraints N, 'Y , and T, the sta
tistical weights are given by 

q(i)= exp {-EJi)/kT}/ ~ exp {-EW/kT} (2 1) 

where E~P are the Hp eigenvalues. Since the states 
cp(i) are Hp eigenfunctions, they are also eigenfunc
tions of the operator exp(-Hp/ kT)/Trp{ exp(-Hp/ kT)} 
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having the eigenvalues q(i) as given by eq (21). Using 
this property and a closure relation for the cp(i) we 
may combine eqs (20) and (21) to obtain a more 
familiar form for p(p). 

p(p) = exp (- Hp/kT) /Trp{exp (- Hp/kT)}' (22) 

It is obvious, from thi s equation, that the perturber 
density matrix is diagonal between eigenstat€s of 
H p. Since the states cpU) (x, t) are eigenfunctions of 
Hp , the density matrix will be diagonal between 
these states. In the following section it will be assumed 
that cp(i)(x, t) may, under certain conditions, be 
viewed as a product of wave packets for each of the 
perturbers. We will then be able to state that the 
density matrix is "diagonal in wave packet states." 

5. Approximate Wave Functions 

In this section, approximations will be made con· 
cerning the form of the wave functions for the system 
(radiator and perturbers). We will derive the wave 
functions used by Baranger [4], retaining the super· 
script (i) notation of the previous section in order 
to clarify the influence of the perturbers in these 
wave functions. 

The wave functions for the system must be solu· 
tions of the Schrodinger equation 

At some initial time, t = 0, we may require that the 
perturber gas be represented by one of the wave 
functions cp(i): 

'IT(R, x , 0) = XCi)(R, O)cp(i)(x, 0). (27) 
"\ 

That is, at some instant in time, the coupling inter- " 
action V will be sma]] and the perturbers will behave 
like an isolated gas at that instant. Equation (27) 
constitutes the boundary condition for 'IT. Substi
tuting eq (25) into the Schrodinger equation, eq (23), 
and using the orthogonality of the cp(h) , we obtain a 
set of coupLed equations for the coefficients X(k): 

where 

V(h')(t) = (cpeA'); tlVlcpeA'); t) 

VU , h')(t) = (cp(j); tlVlcp(h'); t)· 

(28) I 

(29) '[ 

(30) 

We will now assume that the state of the perturbers 
is not affected by the interaction V; that is, 

. a 
di at 'I'(R, x, t) = (H a + H/!+ V)'I'(R , x, t), (23) With this approximation the states cpU) may be regarded 

as approximate V eigenfunctions, 
where x is a 3N-vector (XI, X2, ... , XN), which de
notes the positions of the N perturbers, and R denotes 
the internal coordinates of the radiator (e.g., for an 
atom, R denotes the positions of the orbital elec
trons). 

We wish to expand the wave functions 'IT(R, 
x, t) in terms of some complete set of basis func
tions for the system. Since the functions fh'(x) , in
troduced in the previous section, form a complete 
set for the perturber subsystem and the Ha eigen
functions, which we shall call gj(R) , form a complete 
set for the radiator subsystem, we may expand 
'I'(R, x, t) in the following manner: 

'IT (R, X, t) =L ajl .. (t )gj(R)fdx) , (24) 
jk 

where the ajh·(t) are to be determined by using eq (23) 
and some boundary condition on 'IT. 

Using eq (16) we may rewrite eq (24) in the form 

"'V(R, x , t) = L X(k)(R, t)cp(k)(X, t) (25) 

" 
where the coefficients 

X(k)(R, t) = L ajdt)gj(R) exp (iE\F)t/li) (26) 
j 

must be determined by requiring that 'IT satisfy the 
Schrodinger equation, eq (23), as well as some bound
ary condition. 
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(32) 

as well as H /! eigenfunctions. This relation provides / 
a mathematical statement of the neglect of "back < 

reaction" in the wave functions. Since the state of 
the perturbers is now unaffected by the presence of 
the atom, the coupling term in eq (28) vanishes and, 
using the boundary condition given in eq (27), we 
readily obtain the approximate wave function 

'I'(I)(R, x , t) = X(i)(R, t)cp(i) (x, t) , (33) 

where X(i) satisfies the equation 

(34) 

.1 

Comparing eqs (12), (29), (33), and (34) with eqs (16), <'; 
(17), (21), and (22) of reference [4], we see that the 
approximate wave function 'I'(i) is identical with the 
approximate wave function introduced by Baranger. 
The superscript (~) now indicates the dependence of 
the total wave function, 'IT(i) , on the various possible .. 
perturber configurations in a cell (as mentioned in 
the previous section). Although this dependence is ~ I 
implied by Baranger, it is not illustrated by such a . 
parameter. 

It is obvious that a function 'I'Ui(R, x, t) having I 

the form given in eq (33) cannot rigorously satisfy the 
Schrodinger, equation, eq (23), because the latter 



is, in general, n ot separable equation. It would be 
possible to find solutions of tbe form X(I)(R , x , t) <p(i)(x , 
t ), but the " radiator wave fun ction ," Xli), would th en 

r de pe nd explicitly on the perturber coordin ates, x , 
I as well as Rand t . By neglecting " back reaction," 
> according to eq (32), we have obta in ecl a n app roxi
I ma te wave fun c ti on of the form X(i) <p (i) whe re Xli) 

does not de pend explicitly o n pe rturber coo rdin ates . 
The superscript (i) whic h a ppears on thi s " radi a tor 
wave fun c ti on" indi cates th at Xli) does de pend im
plicitly on the s ta te of the perturbe rs through the 
effective pote ntial VW(t) ; that is , we get different 

(' fun ctions V(iJ for each of the possible states <pl i)o 
A general procedure for approximating the solution 

~, of the Schrodinger equation (23) by a function '1'(;) 
ha ving the form stated in eq (33) would be an iterative 
one. The first approximation uses <p(i) and Xli) as given 

~It. by eqs (12) and (34). If we chose to, we could obtain 
the next approximation to <p(i ) by s ubstituting 'J!(i)= 
<p(i )X(i) into the Schrijdinge r equation (23), usin g eq 
(34) to re move some of the Xli) te rms. Multipl yin g by 
X(i) * and integrating over dR the n gi ves a diffe re ntial 
equation for <p(i) which is similar in form to eq (34). 
That is, in addition to the Hp whic h appears in eq (12) 

l> we' would have a pote ntial e nergy fun ction which is 
a ve raged over R. The <p(i) so lution of this ne w equation 
is presuma bly an improve me nt ove r the solution of eq 
(12) since the former contains some bac k reaction 
e ffects ; howeve r , the improved <pU) would no longer be 
an H p eigenfunction. Since it is desirable that qfi) be 
a n H p e igenfunction and thu s diagonalize p( p ), we will 
use the fir st approxim ation to <p(i) (i. e., the solution of 
eq (12)). If bac k reac tion effects are important , it is 
not sufficie nt to use thi s firs t approximation. If a higher 

;:, order approximation is used , the density matrix , p(p), 
will not be diagonal, as noted by Grie m [14]. [In sec. 8 
it will be s hown that whe n these back reaction e ffects 
beco me important, the classical path approximation is 
breaking down an yway.] In this case, it would be more 

l conve nient to use the HI) eigenfunctions as a basis set 
( in evaluating the trace over perturber coordinates 
, (i.e., the thermal ave rage as defin ed by eq (ll )). The 

pe rturber dens ity matrix would the n be diago nal, but 
, it would be necessary to make a fully quantum me 

c hanical calculation of the time develo pme nt operator 
(similar to that discussed by Baranger [4, 5)). Suc h a 

). procedure would not be a classical path calcula tion 
I and we will not consider thi s case an y furth er. 
i)- In keeping with the us ual classical pa th treatme nt , 

we next assume that each wave fun ction <p(i) (x, t) 
f may be expressed as a product of wave pac ket states 

<P)i)(xj, t) for e ach of the perturbers : 

l cp(i)( x, t ) = I1 <PY)(Xj, t). 
j 

(35) 

~ The wave pac kets, cpp , a re assumed to be sharply 
localize d during the times of interest in line broaden
in g_ Although one does not usually think of ene rgy 
eigenstates as being wave packets, it is nonetheless 
possible for a wave pac ke t state to be an approximate 

» eigenfunction of both H" and V (as required by eq (32)) 

ha ving eigenvalues EW and V(i )( t) whi ch a re class ical 
functions of perturber coordinates . The validity of thi s 
a pproximatio n is di scussed in section (8). 

We now note that the influence of the perturbe rs 
whic h is implic it in VU)( t ) may be specified by giv in g 
the loca tions, x)i), of the peaks of the pac kets <pp , as 
well as th ei r group veloc ities, v)i). We thus comple te 
the class ical pa th pi c ture by regarding the wave 
packe ts <p.li) as c lass ical particles described by their 
pos itions 

x~O) and velocities 

v(i)= (vIi) , vg) , . . . , vW). 

Since the wave packets <P)i) are assumed to be sharply 
localized , we may replace VU)(t) by a classical pote n
ti al function. That is, 

J <p(i)*(x, t)V<p(i)(x, t) dx = V(i )( R, x (i), v(iJ, t ) 

(36) 

where V(i)(R, x li) , v(i) , t) is a class ical potential fun c
tion of the 3N-vectors x li) and v(i), the o pera tor R, and 
the time t. 

6. The Thermal Average 

To obtain an expression for the "thermal average" 
in eq (ll ), we must first obtain an expression for the 
time development operator , T( t), for the total syste m. 
Since we are approximating the wave fun ction 
'I'(R , x , t) by 'I'(i)(R , x , t), we will need the cor
responding time developme nt operator T<ll(t) whic h is 
defin ed by 

'I'(i)(R, x , t) = T<i) ( t)'I'(i)(R , x , 0). (37) 

From eqs (33) and (34), we see th at thi s opera tor may 
be writte n in the form 

(38) 

where T<d)( t ) is the solutio n of 

with the boundary conditions T<d) (O) = 1. 
Since d (see eq (11)) is the dipole operator for the 

radiator, it will commute with the perturber Hamil
tonian Hp and we may write 

(40) 

Substituting this identity into the "thermal average" 
in eq (11), we obtain 

( ... ) = Trp{T<d) t (t)dT<d) (t)p(p)} 

2: (k lT<d) tdT<d)(t) lk') (k 'l p(J!llk), (41 ) 
kk' 
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where ik> denotes an arbitrary basis vector for the 
perturber subsystem. Since n;)( t) has no explicit 
dependence on perturber coordinates (i.e., it depends 
on perturbers implicitly through the coordinates 
x(i) , v(i) of the wave packets cp(i»), we have 

Substituting thi s identity into eq (41), we see that 
we need only the diagonal matrix elements of p(p) 
in the s tates Ik >. Using the matrix elements of p(p) 
as given by eq (20) and noting the normalization co n
dition of eq (16), we obtain 

< ... >= 2:q(i)7'9/( t )d7'i),(t ) . (43) 

To complete our evaluation of the " thermal aver
age ," we must express this weighted average in a form 
which is amenable to practical calculations. 

Since q(i) is a function of E(j], defined by eq (21), we 
may express q(i) as a fun ction of x(i) and v(i) by using 

< cp(i); tIHplcp(i); t >= EV(x(i), v(i») 

= 2: tmvJi) , + Vp(X(I)) , 

where Vp denotes the interaction between perturbers. 
If the radi ator is an ion in a plasma, we may add a 
Coulomb interaction , Vo(x(i)) , to Hp [10]. This ex
pression is co nsistent with the wave packet interpre
tation of cp(l) (x, t) . 

In the classical limit, the sum over (i) is replaced by 
an integral over x(i) and v(i). We may thus write 
q(i) in the form 

q(i)(x(i), v(l)) = exp {- E~:)(x(i), y(i») / kT} /Q, (45) 

where Q is the classical partition function 

Q = J J exp {- E\P(x(i), y(i») /kT}dx(i)dy(i). (46) 

We may now write the "thermal average" in the form 

< .. . >=Q- I J Jdx(i)dv(Oexp {-EW(x(i), y(i)) /kT} 

Tg) t (x(i), v(i), t)d7'~)(x(i) , y(l), t) (47) 

where the time development operator T1P(x(i), y(i), t) 
is obtained by solving eq (39) with the ciassical poten
tial V(i)(R, x(i) , y(i), t). This expression will be reduced 
to the more familiar averages over collision variables 
(velocity, impact parameter, etc.) in II. 

7. The Autocorrelation Function 

7 .1. The Influence of the Density Matrix and the 
Wave Functions 

Before discussing the validity of the approximations 
concerning the density matrix and the wave functions 

(sec. 8), it is useful to first conside r the roles they 
play in determining the line s hape. S ince the line 
shape has been given as a Fouri er transform of the 
autocorrelation function , eq (7), it is conve nient to ' 
study this function as well. 

The autocorrelation fun ction was defined in eq (8) ': 
by Crt) = Tr{d·d(t)p} where d(t) = T t (t)dT(t) ~~ 
and p is an equilibrium density matrix for a radiator 
and its perturbers. Since both p and T(t) are fun c
tions of H (see eq (1)), they will commute at all times 
(i.e., p is s tationary) and we may write 

Tr {d· d(t)p}=Tr{d(to)' d(t+to)p} (48) jo 

for any time to. This relation is characteristic of a ~ 
stationary random process and it indi cates that whe n 
we speak of an initial time, we are refe rring to any 
arbitrarily c hosen instant, not some time infinitel y .( 
far in the past. In writing C(t)=Tr{d'd(t)p} we 
have arbitrarily chosen t= 0 as our initial time. Auto· 
correlation functions [15] such as Crt) fall to zero 
as t increases; this represents the loss of correlation 
be tween the dipole moment at the time t = 0 and 
its value at some later time. 

We may regard the trace, in the defining relation 
for Crt), as a sum over all possible initial configura
tions of perturbers and initial states of the radiator; 
each term in this sum is weighted by the matrix 
element of p which gives the probability of finding 
the corresponding initial state. We may also interpret 
this trace as a sum over cells, with each initial state 
corres ponding to a given radiator-perturber con
figuration as discussed in section 2. For each initial 
state there will be a dipole moment , d, and at some 
time t later this moment will have c hanged to d (t). 
Once the initial state has been specified , the temporal 
change in d is determined solely by the time develop
ment operator T(t), and is not influenced by the 
statistics (density matrix) in any way. 

We may now think of the line shape as being ob
tained by taking the Fourier transform of the d . d(t ) 
contribution from each initial state, and then summing 
these Fourier transforms, weighting each term by '\ 
the appropriate density matrix element (the proba
bility of occurrence of a given configuration in a cell). 
It is thus apparent that the density matrix can influence 
the line shape only by its weighting of each d . d(t ) 
contribution; the wave functions influence lew) 
only by their effect on the calculation of each d . d(t) ./l 

term. The influence of the density matrix is quite 
distinct from the influence of the wave functions, 
and similarly, approximations relevant to the statistics 
(density matrix) are completely independent of the 
approximationsrele..vant to the dynamics (time develop-
me nt operator or wave functions). ~ 

7.2. Classical Correspondence 

a . Classical Theories 

In di sc ussing any quantum mechanical theory it is 
frequently bene ficial to have a classical correspond
ence available as an aid to understanding the physical 
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properti es underlying the mathematical description. 
In a class ical path description of line broade nin g, th e 
pe rturb ers are regarded as classical parti cles, and 

it the re is little difficulty in uI1derstanding th e phys ical 
I properties of this subsyste m. The radi ato r i treated 
>" qua ntu m mechanically however, and it is useful to 

deve lop its classical analog to clarify the influe nce of 
co lli sions on the spectral radiation. 

In class ical line broadening theories one co nsiders 
I a class ical oscillating dipole which e mits a continuou s 
(- wave train (referred to as the light train). The light 

train is described by the classical dipole moment 
(> d(t), and the line shape is given by a Fourier trans

form of th e dipole autocorrelation fun c tion 
C( t ) = < dd(t) > just as in eq (7); in thi s case < ... > 
de notes a classical average over colli sion s. In the 
Lore ntz interruption theory (see p. 571 of re f. [16]), 

). it is assumed that a colli sion terminates the unper 
turbed light tra in d(t) = d exp (- iwot) wh ere Wo is 
the unpe rturbed freq uency. The a utocorrelation fun c
tion is therefore give n by, C(t) = d 2 f P(to )U(t < to) 
exp (- iwot)dto, whe re P(to) is the probability that a 
colli sion will occur afte r a ti me to, and U (t < to) is a 
step function whi ch equals 1 before the colli sion occurs 
(i. e., whe n t < to) and eq uals zero after the collision. 
Although the line shape is not always given in thi s 
form (cf. eq (1.2) of ref. [16] notin g that P(to) = Ve 

exp (- veto», the res ults a re the sa me. In another 
classical theory Weisskopf, and later Lindholm , as
sum ed that colli sio ns can cha nge the phase of the 
light train [16 , 17]. The line shape is agai n give n by 
the Fourier transform of the light train autocorrelation 
fun ction (see also eq (1. 13a) of ref. [16] or eq (11.13) of 
ref. [17]) he nce a phase s hift decreases the ph ase 

> correlation there by broade nin g the Fourier spectrum 
(line shape). In these phase s hift theories , d(t) has th e 
form e xp [- iwot-i1](t)] where 1](t) represe nts th e 
phase s hifts produced by collisions . The autocorrela
tion function is C(t) = d 2 exp (-iwot) (exp [- i1](t)J) 
where < ... > denotes an average over phase shifts 
(thermal average). The Weisskopf theory assumed that 

> 

> 

7 

.. 

small phase shifts (less than unity) have no effe ct on 
C (t), whereas large phase shifts (greater than unity) 
destroy the phase correlation of the light train and 
cause e(t) to fall to zero. This effect is only apparent 
after one performs an average over a probability di s
tribution of phase shifts . To show thi s, we co nsider a 
collision which occurs in the time interval (t , t + ~t) 
and produ ces a phase shift 1]0. If the duration of thi s 
collision T is very short , T < ~t , the n we have C(t + ~t ) 
= C (t) (exp (- i1]o» (the two fac tors are independent 
and are averaged separately as in the impact approxi
mation; see sec. (11.3.2) of ref. [17]), where (exp 
(- i1]o» = f exp (-i1]o)P(1]o)d1]o and P(1]o) denotes the 
probability of finding a phase shift of magnitude 1]0. If 
P (1]0) does not vary rapidly, then the rapid oscillation 
of exp (- i1]o) for 1]0 > 1 will produce 

f' exp (- i1]o) P(1]o) dYJo ~ 1 

(the integral from - 00 to - 1 is also much less than 1) 

whereas th e integral from -1 to + 1 is on the order of 
unit y. Thu s, for 1]0 > 1, we have C (t + Llt ) = 0 a nd for 
1]0 < 1, C(i + Llt ) = C(t) . While the average over 1]0 

is given more accurately by later phase shift theori es 
(e.g. , Lind holm's theory), the qualitative results for th e 
li ne shape stated by Weisskopffor 1]0 > 1 are basica ll y 
unc hanged. It is in this sense that we will regard a 
la rge ph ase shift as a n effective termination of th e 
light train. 

b . Quantum Mechanical Theory 

In th e qua ntum mec ha nical proble m the radiators 
in a gas em it a se ri es of s pectral lines which are broad
ened due to the perturbation V. We are usually interes t
ed in just one of these broadened lines corresponding 
to some given unperturbed frequen cy woo The photons 
which contribute to this particular line are e mitted in 
radiative transitions between some parti c ular initial 
and final energy levels of the radiator (whi ch may be 
perturbed). In thi s case, the light train is the wave 
func tion for a photon emitted in s uc h a tra nsition; 
the amplitude of the light train gives the proba bility of 
findin g a photo n e mitted after some tim e t. Baranger 
has shown that the fun ction C(t) defin ed in eq (8) may 
be inte rpre ted as the au tocorrelation fun c tion for the 
light train amplitude (see p. 498 of ref. [4]). Thus the 
line shape is obtained from the F ourier transform of 
the light train autocorrela tion function jus t as in the 
classical theories. 

The effects of a colli sion may be roughly divided 
into two categories: adiabatic and nonadiabatic. W e 
will di scuss these separately although a single colli sion 
may have both effects. An adiabatic collision will 
simply s hift the energy levels there by produc ing a 
phase shift (which may be tim e de pe ndent) in the 
time developm ent operator T(t). Suc h colli sions will 
reduce the phase correlation between d (O) and d (t)= 
T t (t)dT(t) jus t as the collisions in the classical ph ase 
shift theori es. A nonadiabati c collision will i nd uce a 
radiationless transition out of th e initial state. This 
type of transition usually "terminates" the pro bability 
that the radiator will emit a photon with a fre quency 
near woo However, if there is another sta te whose e nergy 
is very close to that of the initial s tate, nonadiabatic 
colli sions may simply produce transitions back and 
forth be tween these two s tates without completely 
destro ying the probability of e mission near woo The 
latte r situation is usually referred to as the problem 
of overlapping lin es (although it is sometimes called 
a "phase-memory" e ffect) [18]. In a classical oscil
lator having more than one mode of oscillation, a non 
adiabatic collision simply changes the oscillation from 
one mode to another. The Lorentz interruption theory 
implicitly assumes that the mode whose frequen cy is 
Wo is the only mode of interest and a (non adiabatic) 
collision terminates this mode. However , if the re were 
another mode with a frequency very close to Wo, non 
adiabatic collisions could switch the oscillator back 
and forth between these two modes without des troy
ing the phase coherence of the light train (overlapping 
line case). For example, an oscillator in the mode Wo 
will have a phase wot at some time t (a part [rom an 
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arbitrary initial phase). If this oscillator is switched to 
the mode WI at some time t and, after a time to, is 
switched back to Wo, th e resulting phase shift in the 
natural oscillation is 1/ = [wo(t + to) - (wot+ WltO)) = 
(wo - WI) to. Estimating to by the mean free time (live) 
and noting that the colli s ion frequency Vc may be 
identified with the halfwidth tlWI /2, (in a Lorentz pic
ture), we have 1/ = (wo-wl)/tlWI /2. If (wo-wd > tlWI /2 
(isolated lines), we have 1/ > 1 and we may say that 
the light train is terminated by nonadiabatic collisions 
(as the Lorentz theory assumes). If (WO-WI) < tlWI/2 
(overlapping lines), we may say that the light train has 
retained a "memory of its initial phase." Thus we 
see that nonadiabatic collisions are analogous to those 
considered by the Lorentz interruption theory only in 
the case of isolated lines. In the case of overlapping 
lines, nonadiabatic collisions are not treated by any 
classical theories although the classical analog is 
obvious. We also note that a collision which produces 
both adiabatic and nonadiabatic effects cannot be 
conveniently treated by classical theories either. 

To make our discussion of the quantum mechanical 
C(t) more quantitative we will consider the case of a 
quantitative three-state radiator having a ground state 
with energy Eo and two excited states with energies EI 
and E2 • We will also assume that the ground state is not 
perturbed by the interaction Vet) and we use Voo= VOl 

= V02 =0 (as well as Vij= Vji). A generalization to more 
complicated cases may be achieved by means of an 
obvious extension of the following arguments. The time 
development operator for the radiator (see eq (39» will 
be written in an interaction representation defined by 

Ta(t)=exp (-itHalh)T'(t), (49) 

where 

T'(t)= {} exp [-(ilh) f V' (t')dt'J, 

V' (t) = exp (itHalh) Vet) exp (- itHalh) , (50) 

and {} is the time ordering operator [19]. Notice that 
VOj=Vjo=O implies that Tbo=l and Tbj=TJo=O for 
j =;f 0; this simplification is the reason for neglecting 
ground state interactions. 

If we are interested only in the line whose unper
turbed frequency is WIO = (EI - Eo)lh, we do not need 
all of the terms in the trace over states of the radiator 
(see eq (11». We need only consider the terms 

+ L djod02<T~)py") exp (- iW20t) , (51) 
j 

where pya) ex:: exp (- Ej kT). The natural oscillation exp 
(- iWlOt) in the first term may be regarded as an un
perturbed light train which causes the Fourier trans
form of this term (eq (7» to be large in the vicinity 
of WIO. Thus, when calculating the line WIO we need 

only consider those terms in eq (11) whose natural 
oscillation is close to WIO. The second term in eq (51) 
describes radiation near WZO; this term will be important 
(when calculating the WIO line) only if the lines WIO 

and W20 overlap (i.e., if their halfwidth s are on the 
order of (WIO - W 20». It will be shown later in this sec- '< 
tion that the phase of th e off-diagonal terms such as 
T;2 varies according to the line spacing W12; thus when ~ 
the average time be tween collisions (which is on the 
order of I/tlwl /2) is small compared with l/wl2, these 
off-diagonal term s will beco me important and phase 
memory effects (overlapping lines) will have to be 
considered. If WIO and W20 are isolated lines (i.e., their 
halfwidths are much smaller than W12), the second term 
in eq (51) (as well as the off-diagonal T' matrix elements) '" 
may be neglected. For some lines in the microwave 
region it may happen that the halfwidth of WIO is on the 
order of WIO; in this case it would be necessary to add / 
the "negative resonance" terms, exp (- iWOlt) , to 
eq (51). 

If we factor the natural oscillation out of C (t), 
we may write C(t) =exp (-iwlot)E(t) where E(t) 
is a decreasing function of t [15]. The li!}e shape (see 
eq (7» is proportional to f exp (ittlw)C(t)dt where 
tlw= (W-WIO) . Since exp (ittlw) oscillates rapidly 
for t > II tlw, the intensity at the point t::..w is deter
mined primarily by the part of G(t) for which 

O:S:; t :s:; II tlw. (52) 

For this reason, II tlw is frequently referred to as the 
time of interest in evaluating the intensity at the 
point tlw. 

If the duration of a collision is much longer than the < 
time of interest , the perturber may be regarded as 
stationary during this time. This quasi-static approxi
mation is frequently employed in the description 
of ions in a plasma [4, 6]. Such static perturbations 
simply add a constant to the oscillation frequencies I 
WIO , W2Q, etc. The influence of dynamic perturbations , .(1 

for which the collision time is less than or the order of 
the time of interest, is obtained by calculating < T;j) 
and <nj). 

Weare interested in the classical correspondence 
for the quantum mechanical C(t) primarily as an aid 
in establishing a criterion for the so-called strong col
lisions (this will be done in sec. 7.3). When a single 
collision is capable of reducing C( t) to zero, it is re
ferred to as a strong collision. To study this effect < 
we need only consider the influence of a single col
lision on C (t). We will consider some particular 
type of collision (e.g., given values of impact parameter, 
velocity, etc.) which is described by the interaction 
potential Vet). We will assume that this is the first 
collision to occur after some arbitrarily chosen start
ing time t=O (if a collision does not reduce C(t) " 
to zero, it is "weak," and to find a strong collision 
criterion we may neglect the effects of all previous 
"weak" collisions). The collision will begin at some 
time to ~ 0, and we define a collision time T such that 
V(t)=O unless to:S:;t:S:;to+T. From eq (50) we see 
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that T' (t)=l when t < to; when t >( to+7) , we 
chan ge the variable of integration to tl/= (t ' - to) 
and obtain 

T'(t)=exp (itoHa/ fi)S exp (-itoH,,/fi) , 

r wheee S i, the S'mal,ix fo' lhe colli , ion, 

(53) 

>- S= 1- (i/fi) f V(t)dt 

- O/fi) 2 (T [tV(t)V(tl)dt'dt+. 
Jo lo · (54) 

and 

~ V(t) =exp (itHa/h)V(t+to) exp (-itHa/fi). (55) 

l The contribution to C(t) from thi s colli sion will be 
called C (V(t), t); thi s fun ction will have the same 
form as C(t) in eq (51) exce pt that there will be no 
average < ... > over collisions. To obtain C(t) 
we would simply average C(V(t), t) over the colli sion 
parameters for the firs t colli sion (and all successive 
colli sions if th e firs t colli sion is not strong). 

c. Isolated Lines 

If the lines WIO and W20 are isolated, C(V(t), t) 
is given by kjdjodolT;i p~,,) exp (-iWlOt). In this 
seri es T;o = 0 (no ground s tate interaction) and T;2 
is unimportant (for isolated lines only). As mentioned 
earli er, to show that T!2 is unimportant it is necessary 

> to average over to. This has been done for the line 
wings in eq (19) of ref. [20] and the second term in this 

> equation, which con tains the off-diagonal elements of 
the time development operator, is negligible in the 
case of isolated lines (see also the following section 
on overlapping lines). Using this fact we have 

> 

Since the complex func tion T;I (t) can always be writ
ten in the classical form exp [-i1)(t) - dt)] , the 
classical correspondence for C(V(t), t) becomes ob-

i" vious. Collisions for which E = 0 are equivale nt to the 
collision s in the classical phase shift theories and those 

" for which E 2: 1 are equivale nt to the non adiabatic col
/ 

li sions in the Lorentz theory. To illustrate the func-
tional form of Yf and E, we will evaluate T; I (t), for 
t > (to+7), to lowest order in V(t). We will use 
VII = V22 = 0 since V has no diagonal matrix elements 

? in most problems (i.e., V usually has non vanishing 
matrix elements only between states with different 

.~ angular momenta). Using eqs (53), (54), and (55) we 
obtain 

T;I(t)=1-h-2 !oT J: VI2(t+tO)V21(t'+tO) 

exp {iAE21 (t ' - t)/fi}dt' dt 

where !:J.E21 = (E2 - Ed and V21 denotes the average 
value of V21 (t) during the collision. For fast collisions 
(!:J.E217/h) ~ 1, we Ilave 

(58) 

For slower colli sions (!:J.Ez'7/h) ~ 1, we replace 7 by 
00 whe n integrating the exponential in eq (57). We 
the n replace !:J.Ez, by (!:J.E21 + io), perform the integral, 
and the n take the limit 0 ~ O. The justification for this 
procedure is the " radiation damping" which produces 
the natural line width (see sec. l3.A of ref. [3]). In 
this manner we obtain 

These res ults may be summarized by 

where 

and 

( !:J.E217/h) ~ 1 

(!:J.E217/h) ~ 1 

(!:J.E217/h) ~ 1 

(!:J.E217/h) ~ 1. 

(59) 

(60) 

(61) 

(62) 

Notice that if the pert'!.rbation is not strong enough to 
mix adjacent levels , V21 ~ AE21 , then E ~ 1 and we 
ha ve only a phase shift. That is, all colli sions are 
adiabatic if V21 ~ !:J.E21. If adjace nt levels are mixed, 
we will have phase shifts produced by slow (adiabatic) 
colli sions and inelastic tran sition s produced by fast 
(nonadiabatic) colli sions. 

For a series of collisions which do not overlap in 
time (or for which thi s overlap is negligible) the classi
cal form is preserved and the net result is a phase s hift 
1) and a damping E which are obtained by adding up 
th e phase shifts and damping constants from each of 
th e colli sions. When two colli s ions overla p, quantum 
mechani cal mixing effects occur and the classical 
form is destroyed. 

d. Overlapping Lines 

If the lines WIO and Wzo are not isolated we must 
consider all terms in eq (51): 

C(V(t), t) a: [PldrOT;, +pzdzodo,T;z] exp (-iwlot) 

+ [pzd~oT~z + PI dlOdozT~I] exp (- iwzot) . (63) 

The PI T; I term gives the probability that a radiator 
initially in the state EI will remain in that state after a 
time t; the P2T;Z term gives the probability that a radia-
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tor initially in the state E2 will make a radiationless 
transition to E, during the time t; together these two 
terms describe the probability , at the time t, that a 
rildiator will emit a photon with a frequency near WIO. 

The remaining terms in eq (63) describe the probability 
of emission near W 20 (we must consider these terms 
when the lin es WIO and W 20 overlap). 

When t < to, the radiator is unperturbed he nce 
T; I = T~2 = 1 and T;2 = T~, "= 0; in this case, C (V( t), t) 
ex: [p I dio exp (- iWlOt) + p2d~0 ex p (- iWlOt)]. When the 
colli s ion occurs, we get a probability for switching 
between the modes WIO and W20 as discussed earlier; 
that is, T; 2 and T~, increase in amplitude while T; I and 
T~2 decrease. To show this effect, we will calculate the 
T ' matrix elements for t > (to + T). 

The condition for overlapping lines is (tlE2t!h) 
::s tlWI /2; since we may identify tlWI /2 with Ve where 
(I/ve) is the mean free time between collisions and 
since T is usually much less than I/ve (at least for 
strong collisions), we must have (tlE2 IT/h)~ 1. Noting 
the results of eqs (57) and (58), we see that when 
(M2I T/h) ~ 1, the 5 matrix elements may easily be 
evaluated to all orders with the following res ults: 

5 11 =522 = cos (V2IT/h) 

5 12 =521 =-i sin (V2IT/h). (64) 

Using eqs (55), (63), and (64) we may give_an explicit 
expression for C(V(t), t) in terms of (V2IT/h). To 
simplify the following discussion we will use C(V(t), t) 
=CI(V(t) , t)+C2(V(t), t), where 

C I (V(t), t) ex: PI [dio exp (- iw,ot) cos (f/12T/h) 

-id~0(d'O/d20) exp (-iW20t+iw2ItO) sin (V2IT/h)], 

(65) 

and C2(V(t), t) contains the two P2 terms in eq (63). 
(C2 may be obtained by interchanging the indices 2 
and 1 in C I .) We will discuss only C I since the inter· 
pretation of C2 is obviously identical. 

C I (V(t), t) describes the behavior of a radiator 
which was initially in the state E,. Before the collision 

and after the collision, t > to + T, C I is given by eq (65) . 
cos 2 (V2IT/h) gives the probability that the radiator 
will be in the state E, after the collision, and sin2 

(V2IT/fi) gives the probability that the collision will 
induce a radiationless transition to the state E2 • If 
(f/12T/fi) = (71"/2), the collision will definitely cause a 
transition to E2 and we would have 

C 1(V(t), t) ex: PI d~o (dlO/d20) exp (- iW20t + iW21 to) 
(67) 

after the collision. Equation (67) describes a light 
train for the line W20 with a phase shift W21 to jus t 
as in the classical oscillator discussed earlier (the 
factor dlO/ d20 represents the arbitrary initial phase 

difference between the two modes as well as an ampli· 
tude difference if one should exist). This result is 
identical with the result for a two mode classical oscil
lator because, when (f/12T/h j eq uals some odd multiple 
of (71"/2), there is 9.efinitely a chan ge of mode; for 
other values of (V12 T/fi ), the quantum mechanical "i 
expression, eq (65), shows only a probability for this J 
mode switching effect. Notice that the mode switching 
or phase-memory effects are described by the off
diagonal T' matrix elements. These off·diagonal 
elements were not needed in the description of iso
lated lines because the average phase shift W21 to 
is greater than unity (recall that the average value 
of to is the mean free time (1/ ve) which is estimated 
by I/tlw, /2) and these ele me nts vanish after the to 
average. 

In the case of overlapping lines, C(V(t), t) does 
not have the simple classical form which was obtained 
for isolated lines. In this case we would average 
C(V(t), t) over collision parameters by defining a 
quantity E = (V12T/fi) and a function peE) which gives 
the probability that the collision will produce a 
(VI2T/fi) whose magnitude is E. The average over 
C(V(t), t) contains terms like 

f peE) cos EdE and f peE) s in EdE. 

If peE) does not vary rapidly then we may say that 
collisions for which E > 1 effectively terminate the 
wave train (this argument is analogous to the treat
ment of large phase shifts in the classical theories). 

l 

7.3. Strong Collisions ) 

In discussing the approximations relevant to the 
density matrix and the wave functions, our general 
procedure will be to show that each approximation 
breaks down only durin g a "strong collision." It 
is thus convenient at dthis dPoint to clarfjify °hurdmeaning )1 
of strong collisions an to iscuss brie y t e ynamics 
of certain types of collisions. 

In the previous section it was shown that each col
lision produces a phase shift and changes the ampli
tude of the light train. In this manner, a series of 
collisions will eventually destroy the correlation 
between d(t) and d(O) and reduce C(t) to zero. It 
may happen that a single collision is capable of 
reducing C(t) to zero; such an event is defined to be 
a strong collision. From the results of the previous 
section we see that a strong collision is one which 
produces a large phase shift, 'I) > 1, or a large decrease 
in amplitude, E > 1. Such collisions terminate the 
light train and therefore satisfy the hypotheses of 
the Lore ntz interruption theory when E > 1, or Weiss
kopfs phase shift theory when 'I) > 1. The general 
program of classical path theories is to describe all "'.'1 

but the strong collisions assuming that these will 
be treated by some other method such as a Lorentz- I 
Weisskopf approximation [2IJ. 

From the results of the previous section, we see that I 
a strong collision will occur when 
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(68) 

unless the lev~l s pac ing is gr~ater than V (cf eq. (61) 
using 11£21 > V2l ). If ~E2 1 > V21 we must replace th e 
V in eq (68) by Vcrr = ~1/11£21; in thi s case, Veff i the 

~ actual perturbati on of the radiator since we have used 
I V I I = O. It is in thi s sense that we use eq (68) as a work

ing definition of strong collisions. It should be noted 
that our definition of a strong collision as one which 
terminates the light train is basically equivale nt to 
the strong collisions in the impact th eory [21] which 
are said to occur when the terms in the S-matrix 

( expansion (see e q (54» are on the order of unity or 
larger. 

I 

! 
( 

Most classical potential fun ctions are inve rsely 
proportional to some power of the perturber position 

ret) = Po + Lv( t') dt', where Po is the radiator-per

turber separation at the time of closest approach 
and vet) is the in stantaneous perturber velocity. 
The maximum value of the potential where Ir(t) 1 

is smallest, namely when reO) = Po. The half maximum 

occurs when Ir (T) 1 = IPo+ J:v(t')dt'l = 2po (which 

may be taken as a definition of the collision time T). 
If v( t) c hanges very little during a collision we may use 
VeT) = v(O) = Vo or Ir(T) 1 = IPo+TVol = 2po. Since 
Po· Vo = 0, the collision time is on the order of 

(69) T = po/vo 

I where vo is the velocity at the ti me of closes t approach. 
~ It can be shown by a rather le ngthy analysis of hyper
l bolic trajectories, that thi s estimate is valid even when 
i the radiator is an ion which accelerates a charged 

perturber. 
If the radiator is electrically neutral, we may esti-

mate Vo by the thermal velocity Vav = Y3kT/ nl. If both 
radiator and perturber are charged particles , we may 
estimate Vo by 

(70) 

where Z,. and Z" denote the charge of the radiator and 
perturbe r respectively. 

8. Validity Criteria 

8.1. General 

An expression for the " thermal average" has been 
derived, eq (47), using a classical path treatment. 
This expression, or one like it, is the starting point 

? for most of the modern se miclassical line broadening 
theories and it may be regarded as the end result of 

.. the classical path approximation. It is therefore worth
while to examine the validity criteria for this expression. 

It has been shown that the classical path approxi
mation, as it is used in line broadening theories, 
actually embodies several types of approximations. 

>- As we have stated them , they may be roughly divided 

into three classes; (1) the representation of the ga by 
a collec tion of noninteracting cells, (2) sim pl i fi cat ions 
of the density matrix , and (3) a classical treatm e nt of 
the perturber wave functions. 

In order to justify the mathematical model whi c h 
is used by most line broadening theories, we have 
assumed that the average spacing between radiators 
is large e nou gh that all direct and indirect interactions 
be twee n radiators are ~egli gibl e. (By indirect inter
actions we mean that one radiator may influence a 
perturber which is interacting with another radiator.) 
It is probably poss ible to justify the mathematical 
model with more relaxed assumptions, however, 
sin ce our assumptions are sati s fi ed for virtually all 
problems of interest , thi s may not be necessary. For 
reso nan ce broadening in ne utral gases, this approxi
mation may have to be reconsidered. 

It should b e noted that th e radiator Hamiltonian 
H" s hould describe translati onal motion of the radiators 
as well as their inte rnal stru cture (i. e., bound states). 
In practice, however, one us uall y neglec ts thi s trans
lational motion and calculates only the discrete spec· 
trum. This procedure neglec ts Doppler shifts which 
also broade n a given line. The Dopple r broadening 
may be reinstated , in an approximate manner , by 
means of convolution integral s [6]. This folding pro
cedure should be valid if the radiators trajectory , 
during the time of interest, is not appreciably altered 
by collisions with other particles. For most plasma 
line broadening problems this criterion is well satisfied 
however, for some foreign gas broadening problems 
one may have to treat Doppler effects more carefully. 

8.2. Density Matrix 

The approximations relevant to the de nsity matrix 
are for the purpose of achieving a product form, eq 
(8), whic h permits us to factor the trace operations, 
as in eq (11), and thereby perform the average over 
perturber states without affecting the s um over states 
of the radiator. In this weak coupling approximation, 
the subsystems are statistically indepe nde nt and this 
is what is meant by the neglect of back reaction as it 
applies to the statistics (density matrix). This approxi
mation has been made by r eplacing the term exp 
{- V/kT} in the Boltzmann fac tor by unity; that is, 
we have assumed that all V matrix elements (or at 
least those which pertain to the s pectral line of in
terest) will satisfy V ~ kT. It should be noted that in 
obtaining this inequality we have tacitly assumed that 
the radiators and perturbers are in thermal equilibrium 
at a temperature T. For many line broadening experi
ments, however, the radiators and perturbers have 
different temperatures. Nonetheless, if the perturbers 
are in thermal equilibrium at a temperature T,,, the 
weak coupling approximation will still be valid for 
V ~ kTp and the perturber statistics will be described 
by a Boltzmann factor as in eq (47). In such a case, 
the statistical weights for the atomic states (matrix 
elements of pta)~ would be determined from the rate 
equations which describe the population and depopu
lation of atomic levels. We will henceforth take 
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v ~ kT, where T is the perturber temperature, as 
the validity criterion for the weak coupling approxi
mation_ It is obvious that this inequality will be vio
lated for some interactions, however, it will be shown 
that the errors made by this approximation are impor
tant only in the far wings of a line where h!::.w 2: kT_ 

If the perturbation V 2: kT is produced by a static 
ion (one which does not move appreciably during the 
time of interest, see eq (52)) in a plasma, the Stark 
splitting is on the order of kT, and it is immediately 
obvious that this will influence only the far wings, 
!::.w > kT/h, of a line_ 

When the perturbation V> kT is produced during 
a collision with a dynamic perturber (we will con
sider electrons as representatives of dynamic per
turbers), the radiator-Qerturber separation must be 
on the order of 1I. av =hlV 3mkT (the thermal wave
length, or average de Broglie wavelength, for the 
perturber) or smaller [22]_ Using V= kT, PO=--Xav 
and Vo = Vav in eq (68), we see that, for neutral radia
tors, V 2: kT can occur only during a strong collision 
(for most neutral radiators the energy spacing between 
adjacent states is less than kT and it is not necessary 
to consider Verr as discussed in sec_ 7_3)_ If a charged 
perturber collides with an oppositely charged radiating 
ion, it will be accelerated by the Coulomb attraction 
Vo, hence vo>vav . Using V=kT, po=1\a:;, and 
Vo = vav(volvav) in eq (68), we find that (V Tlh) is on 
the order of (vavlvo), which is less than L Thus, 
in this case, V 2: kT need not correspond to a strong 
collision. In a collision involving a radiating ion and 
a charged perturber of like sign, the perturber will 
be decelerated, and it is unlikely that it will come 
close enough to the radiator to produce V 2: kT. 
To show this, we note that" the smallest value of po 
given by eq (70) is (2e 21 mpo) = v~v or po = X,av(2e2Ih) 
V m/3kT; in order that po be on the order of 'Xav, it 
is necessary that T be larger than 108 deg K. 

Regarding C(t) as a weighted sum of d·d(t) terms 
as discussed in section 7.1, it is clear that the approxi
mate density matrix p(a)p(p) will incorrectly weight 
only those d· d(t) terms which correspond to a 
radiator initially undergoing a V 2: kT collision (i.e., 
the density matrix weights each term according to the 
state at t = 0). This does not preclude the possibility 
that V 2: kT collisions may occur at later times, t> 0, 
in the remaining, correctly weighted, d -d (t) terms. 
Such events will indeed occur, however, they are 
determined by the dynamics of the system and this 
has no connection with the statistical weighting (den
sity matrix) of the corresponding initial states. If we 
define a collision frequency IIkT for the V 2: kT collisions 
then the probability that such a collision will occur 
within a time T of t=O is Vk'rr. The number of incor
rectly weighted d· d (t) terms will therefore be vk'/'TNT, 
where NT is the total number of terms. The number of 
correctly weighted terms will be (1- VkTT)NT, and the 
error resulting from the use of the weak coupling den
sity matrix will be on the order of vk'/'TI (1- V/,'/T). 
Since the duration, T, of a V 2: kT collision will be 
much smaller than the time between such collisions, 
we may replace (1- Vk'l'T) by 1 and the error estimate 

becomes VkTT. The error will be largest when all col
lisions produce V 2: kT; in this case we may estimate 
the collision frequency by !::.Wl /Z, the halfwidth of the 
observed line. The largest value of T= polvo for a 
V 2: kT collision occurs for po = Xav and Vo = Vav (de
celerated perturbers, Vo < Vav , are not likely to pro- ~ 
d uce V 2: kT). The largest value of T is hI kT hence J 
the largest error is on the order of h!::.Wl /zlkT. Since 
h!::.Wl /Z is much less than kT for virtually all lines of 
interest, this error is negligible. A more detailed 
analysis of the incorrectly weighted terms shows that .: 
this error estimate breaks down when !::.w ~ !::.Wl /2. In 
this case the time of interest is less than the average 
time between collisions (recall that !::.Wl/z == VkT for j 
the worst case), and some of the correctly weighted 'I 
d ·d(t) terms will not suffer a collision during the 
time of interest. These "unperturbed" terms will have 
little influence on the line shape in the region !::.W > !::.Wl/2 ' 
(their dominant influence is in the line center when 
Aw < AWI/Z). We must therefore compare the number 
of incorrectly weighted terms with (VkTIAw) (l-vkTT)NT 
(the number of correctly weighted terms which have 
undergone a collision during the time of interest, 11 !::.w). 
In this case the error estimate becomes hAwl kT which 
is small if !::.w ~ kTlh. It must be emphasized that these 
error estimates are only an upper bound for the true 
error which, in most cases, is much less than 
(hAwl/zlkT) or (h!::.wlkT)_ 

For neutral radiators V 2: kT occurs only during 
a strong collision. Since a strong collision completely 
disrupts the light train, the weighted sum of all 
d ·d(t) terms which correspond to a strong collision 
at t = 0 will have fallen to zero by the time these colli
sions are completed. That is, the halfwidth for the 

-sum of all incorrectly weighted d ~ d (t) terms will j 
be on the order of T= hi kT or smaller. The corre- • 
s"pon-dingFouriertransform will thus be a constant for 

h.!::.w < kT. Since the incorrectly weighted terms 
add only a constant to I(w) for h!::.w < kT, the approxi
mate density matrix will not affect the shape of 
I( w) for neutral radiators. Since most V 2: kT collisions I 

are strong collisions even when the radiator is an ion, 
the above argument may be loosely applied to ion ", 
lines as well. We may therefore give the condition j 
for validity of the weak coupling density matrix as I 

h!::.w~ kT. (71) 

This condition was also obtained by Baranger [5,23] 
within the framework of a quantum mechanical impact < 
theory. We note, in passing, that the region of validity 
for the impact approximation is given ToAw ~ 1 
where TO is some representative collision time (see 
sec_ 5.1 of ref. [4]). Since To2:'hlkT, 'we may state 
that when the impact approximation is valid the weak 
coupling density matrix may be used; the converse 
of this statement is not necessarily true. -:1 

8.3. Wave Functions 

The dynamics of the system are needed only to 
calculate d(t) from d(O) for each given initial state; 
this requires a knowledge of T(t) but not 'I'(R, x, t). 

400 



Th a t is, in ce we are working with a trace, eq (8) , 
it is not necessary to know the wave fun c tions 
'II(R, x, t) for the system (although it is necessary 
to de fin e a set of basis functions). Semiclassi cal 
ap proximations have been made in the wave fun c tions 

/ simply to permit the use of a class ical pote ntial 
fun ction , VU)(R, xli), y(i), t), in the tim e de ve lop ment 

• operator. These semiclassical approximations, which 
are the hallmark of the classical path approximation, 
permit a s imple physical interpretation of th e dynamics 
of the sys tem. More powerful quantum mechani cal 
trea tm ents are available [3,4]; howe ver , in ma ny 

~ cases, the results of these theories differ only slightly 
from the classical path- treatment and the physical in
s ight afforded by the latter is frequently advantageous. 

The wave packet assumption was used to obtain 
the relation 

VCR, x)CP (i)(x , t)= VU)(R, x (i), y (i), t)cp(i)(x, t), (72) 

where VIi) is a classical fun c tion of the classical 
position and ve loc ity coordin ates x U) and y (i). VCR, x ) 

can be ex pressed as a sum of interactions VCR, Xj) 
between the radiator and each perturber (recall that 
x = (XI , X z, ..• X N )), th us we need only require that 

whe n VCR, Xj) .,e 0 in order to obtain eq (72). Mes
siah [24] has shown that eq (73) is obtained if the 
perturber is represented by a classical wave packet 
[25, 26] and if the pote nti al fi eld seen by the per
turber does not vary appreciably (as compared with 

::, the perturbers kin eti c e nergy) over the width of the 
wave packet. 

The conditions for validity of eq (73) are di scussed 
in de tail by Messiah and we shall only outline thi s 
discussion as it applies to our proble m. W e must 
show; (1) that it is possible to construct a wave packe t 
which does not overlap with the wave fun c tions for 

). the other particles, (2) that thi s wave packet does not 
spread appreciably durin g a colli sion (i. e_, when 
VC R , x j) is nonzero) , and (3) that the potential see n 
by the perturber does not vary appreciably over the 
width of a wave packet. The potential see n by the 
perturbers may be obtained by iterating the Schro
dinger eq uations for Xli) and cp(i) to the nex t higher 

;.. order as di scussed in sec tion 5. This potential will 
be the matrix elements of VC R , x) between atomic 
s tates or , in so me cases, it will be Verr as discussed 
in section 7-3, (or some other type of optical potential) 
[27l The mome ntum of a perturber moving in the 

potential VCR, x) is given by p=v'2m(E-V) , 
where E denotes the perturber energy. From this 
expression we see that IIp=mIlV/p, where IIp 
and Il V denote the variation in p and V over the width 
of a wave packet. The condition that IlV «i p2/2m 
is thus equivalent to 

(74) 

whic h is the usual condition for validity of WKB calcu
lations (see eq (7.13) of ref. [28] noting that 'A (dp/dx) 
may be replaced by IIp). We will assume for the mo
me nt that thi s inequality can be satisfied, and it will 
be s how n that the other validity conditions are easily 
me l. 

We wish to represent those perturbers which are 
not interactin g with the radiator by Gaussian wave
packets of width Ilxg and momentum spread Ilpg «i Pay 
at some in stant of time_ For this wave packet construc
tion we mu st require that Ilxy be much less than the 
average pa rticle spacing n- 1I3 (n is the perturber 
density) so that the wave packe ts do not overlap. 
Using Ilxgllpg = h (for a Gaussian wave packet), we see 
that the condition Ilpy «i Pay also requires Il x y ~ h /Pav 
= ;(av- We must therefore be a ble to sati sfy. 

(75) 

For virtually all proble ms of interest we have 'i\av «i 
n- 1I3 , hence it will be possible to construct Gaussian 
wave packets for the overwhelming majorit y of per
turbers at some instant of time. 

Since static perturbers (e.g_, ions in a pl as ma) are 
regarded as stationary during the time of interest, 
it is only necessary that they be represe nted by wave 
packets at some instant of time. As discussed above, 
thi s will be possible for the overwhelming majority 
of perturbers if 1\av «i n- l/3. The treatme nt of stati c 
pe rturbers will be disc ussed further in II and for th e 
remainder of this section we will consider only dynami c 
pe rturbers. 

During a collision a wave packe t will ge ne rally in
crease both its width, Ilx, and its mome ntum spread , 
IIp. If IIp «i P (or IlV < V/2m, which will be verified 
shortly) , the inc rease in momentum spread will be 
negligible, and for a colli sion of duration T= PO/VO, 
the wave packet will increase its width to a maXllTIUm 
of Ilx,= (llx+Tllp/m). To pre vent overlap with the 
radiators wave function during the colli sion Ilx, 
should sati sfy (Il x, + Ro) < Po, where Ro de notes the 
effective "extent" of the perturber wave function_ 
Using T= po/vo and I1p «i p, we see thal (Tilp /m) «i po 
hence we need onlv require (Ilx + Ro ) < po. 

For a colli SIOn involving a ne utral radiator the 
pe rturber mome ntum may be taken to be Pay, hence 
we may use Ilx = Ilxg and IIp = Ilpy (whic h will then 
sati sfy IIp «i p). Since tl.x may be within an order of 
magnitude of i\dv (and still satisfy Ilx ~ "Xav), we may 
obtain an order of magnitude estimate of the overlap 
condition , (Ilx + Ro) < po, by considering (i\av + Ro) < po
If Ro :S 1(av, the wave functions will overlap only whe n 
po 'S. "Xav , and for neutral radiators , this produces a 
strong collision (see sec_ 8.2). If Ro ~ 1\av, a more 
detailed analysis of the perturbation potential is 
required; as an example we will consider the Stark 
broadening interaction, V = e2Ro/p~ , for whi c h 
(Vr/h) = (Ro/po)(ez/hv av ). Since (e 2/hv av ) 2: 1 for 
temperatures of 1()6 K or less (for elec tron perturbe rs), 
we see that the overlap condition , Ro > po, is violated 
only during a strong colli s ion. Thus, for ne utral radia-
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tors, the wave functions will overlap only during a strong 
collision. In the case where a radiating ion accelerates a 
charged perturber the deBroglie wavelength of the 
perturber is decreased, 'Xo = h/ mvo < J\av' If Vo is not 
much larger than V av , there is essentially no difference 
between this case and the neutral radiator discussed 
above. If Vo ~ Vav the situation is somewhat different. 
In this case the perturber will come very close to the 
radiator and it is necessary to construct the initial 
wave packet with a width ~x much smaller than J\av. 
Since 1\.0 ~ J\av, we construct the wave packet so that 
~x > Xo which, using ~x~p 2: h, implies that ~p < po. 
Such a wave packet will not hold together very long, 
however, it will hold together for a time on the order 
of T= po/vo which is all that is required by eq (73). 
In this case we will have 1\0 ~ Ro and the wave func· 
tions will overlap when po :S Ro. The perturbation 
potential will be 

we do not need to consider a Veff as discussed in 
section 7.3 because when po :S Ro, V is comparable to 
the ionization energy for ions [29]. If UJ ~ Vav then , 
from eq (70), we have UJ = (2Ze2 / mpo) 1/2 and 

(VT/h) = [(Z/2) (R5/pollo)] 1/2 

where ao = h2 /me2 is the Bohr radius (we have chosen m 
as the electron mass; for an ion perturber (VT/Ii) 
would be even larger). Since Ro is larger than ao, we 
see that the overlap of wave functions again produces 
a strong collision. 

It is interesting to note that, for Stark broadening 
in plasmas we have (VT/Ii) = (Ze2Ro/lipovok (ZRo/anl), 
where 1 = mpovo/Ii is the angular momentum of the 
perturber. Since Ro > an, we will have strong colli· 
sions when l ::;; 1. Other interaction potentials may be 
treated in a similar manner with the same general 
results. In any case , the wave functions will not overlap 
if Xo < po; using 1\.0 = Ii/mvo and 1 = mpovo/Ii, we find 
that the radiator and perturber will be distinct (i.e., 
their wave functions do not overlap) when 

l > 1. (76) 

It is also interesting to note that the perturbers will 
look like classical particles as they pass the radiator 
only if ~x ~ x and ~p ~ p; using ~x~p = Ii, we again 
obtain the inequality h < mpovo or l> 1. We note 
further that ~l = ± 1 in a dipole transition, thus ~l < l 
and it is in this sense that the angular momentum of a 
perturber is conserved during a colli sion, as it must be 
if we are to use classical mechanics to describe the 
perturbers. 

We have now shown that the validity criteria for 
the use of classical wavepackets are all easily satisfied 
if ~p ~ p , or equivalently, ~V ~ p2/2m. That is, the 
essential validity criterion for the classical wave· 
packets is the same as the condition for validity of a 
WKB calculation. This was also noted by Baranger [4] 
who found that the results of a quantum mechanical 

impact theory reduce to the classical path results 
when a WKB treatment of the wave functions is 
employed. 

To show that th e condition ~V < p2/2m is satisfied 
we note that V increases monotonically as the radiator· 
perturber separation is decreased , thus ~V ,;;; V and it 
is sufficient to show that V < p2/2 m. Again V may be 
replaced by Veff if V is not strong e nough to mix 
adjacent states. Using p2/2m= mvU2 , T = po/vo, and 
l = mpovo/Ii, we obtain 

(VT/hL) < 1. (77) 

Noting eqs (68) and (76), it is clear that this inequality 
can be violated only during a strong collision (recall 
that l ::;; 1 produces a strong collision). 

Equation (73) requires that a perturber be repre· 
sented by a wave packet when it collides with the 
radiator. If we let <p~~)P. (xJ denote a Gaussian wave 
packet for the jth particle then the wave function 
<pU)(xj, t) = Tit)<p(i)(xj, 0), where Tj is the time devel
opment operator for this particle, will be a Gaussian 
packet at some time tj if we construct <p(i)(Xj, 0) such 
that 

In this manner we can arrange the wave function 
<p(i)(x, t) = I1j<p (i)(xj, t) in such a way that all particles 
which collide with the radiator during the time of 
interest are represented by Gaussian wavepackets 
at the time of their collision. In general these particles 
will not be represented by wavepackets before or 
after their collisions, but this does not matter as far 
as eq (73) is concerned. 

We have now shown that it is possible to represent 
the perturbers by. classical wavepackets as required 
by eq (73) unless a strong collision occurs (in which 
case we do not use wavepackets). It is interesting to 
note that it may be possible to treat some strong col
lisions by classical path methods. That is, eq (77) could 
be satisfied when (VT/Ii) 2: 1 if l is sufficien tly large. 
If one wished to do this , it would be necessary to 
reexamine the validity criteria in more detail. For the 
purposes of this paper, however, it is su fficient to 
state that the use of classical wave packets is justified 
for all collisions which are not strong collisions. 

8.4. An Approximate Classical Potential 

Although we have justified the use of a classical 
potential as given by eq (73), we have not yet specified 
its functional form. If back reaction effects in <p(i) 

are negligible, the potential V(i) will result from 
a perturber passing by the radiator on a straight 
line trajectory (or a hyperbola if both radiator and 
perturber are charged particles). If back reaction 
effects are important, the trajectory will be a rather 
complicated function of velocity, acceleration, etc. 
A wavepacket formed by WKB calculation s (the 
iterative procedure discussed in sec. 5) may be 
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abl e to account for the tru e classical trajectory, how
eve r, the perturber wave function cpr;) would no 
longer be an Hp e ige nfunc tion. While this may not 
matter for some sca tte ring problems, it makes a 
great deal of di ffe re nce in line broadening. 

In sec tion 6 we used the fact that cp(i ) is an Hp 
eigenfunctio n to obtain the classical energy expression 
E)}J(x(i ), v (i)) in eq (44). If the perturber wave fun c tion 
were not an energy eigenfunction, the perturber 
de nsity matrix would not be "diagonal in wave packe t 
states" and the average over perturber states, e q (41), 
would be intractable in a wave packe t represe ntation. 
W e must therefore show: (1) that cp(i) may be an 
Hp eigenfunction (i.e., back reaction effects in cp(i) 
are negligible), and (2) that the e ne rgy e ige nvalues 
may be represented by E(~) (xU), v( i)) as s tated in 
eq (44)_ 

Since energy eigenvalues are not time depende nt , 
we need on ly show that E\jl re prese nts the Hp e igen
value at so me instant of time. This problem is essen
tially the same as eq (73) except that all perturbers 
mus t be represented by classical wave packe ts at 
some in s tant. S ince we have a large number of per
turbers in our sys tem (a cell), there will always be 
some wave func tions which overlap; however, for 
virtually al l problems of interes t we have -Kav ~ 11 - 1/3 

and it is possible to co nstruc t wa~e packets for th e 
overwhelming majority of perturbers at so me instant 
of time (cf. eq (75)) . It is in this sense that eq (44) 
is satisfied. 

To show that back reaction effects in cp(i) are negli
gible, we consider the perturbation 0iJ (x(O, v (i), t) 
which results when a perturber moves past a neutral 
radiator on a straight line trajectory (the trajectory 
will be a hyperbola if both perturber and radiator are 
charged particles). Th e true perturber trajec tory 
will deviate from a straight line (or hyperbola) because 
of accelerations (back reaction) resulting from the 
potential V seen by the perturbers (thi s potential 
may be Veff as discussed in sec. 7.3). The approximate 
trajectory will be valid if this deviation does not appre
c iably alter the potential V(i) seen by the radiator 
during .the collision (i. e. , during the time T = po/vo, 
orthe tIme of interest l/llw, if thi s should be shorte r). 
~(I) is influenced by the perturber trajectory through 
Its dependence on r (t), the position of the pe rturber 
a t the time t. If the deviation, Ilr-(t) , produce d by 
the perturbation is small e nough that r et) + Ilr(t) = r (t), 
the approxi mate trajectory will provide a good estimate 
of the true perturbation potential (whether the radiator 
is a n ion or a neutral). 

For a time on the order of T, the magnitude of 
the deviation may be es timated by Ilr = IF I T2 /2 111 
=I VYI12/m where F=- VV is the back reaction 
force whic h causes the pel'·turber to deviate from the 
approxim a te trajec tory. Since V is inversely propor
tional to some powe r of ret) we have IVVI = V/ r(t). 
Using ret) ~ po we have 

Ilr VT2 VT VT 
-~--<-~-
r 2 mp~ hl h 

(78) 

where T= pol Vo, l = mpovo/ h, and l > 1. Thi s res ult 
s hows that (Ilr/ r) ~ 1 unless a strong collision occurs. 

The above argument shows that the approxima te 
trajec tory is valid (unless a strong collision occ ur ) 
for elastic collisions. If an inelastic collision s hould 
occur, the radiator and perturber will exchange an 
amount of e nergy 1lE. This will produce a sudden 
c han ge in the perturber velocity, IlE = mvllv which 
will.give rise to a deviation Ilr ~ Tllv in the trajec tory. 
Agalll uSln g To = po/vo, l=mvopo/h , and l> 1, we obtain 

Ilr Il v IlE TilE TilE 
-~-=-I-.)=-< -. (79) 

r Vo 2m Vii fil h 

~n sec tion 7.2 it was s hown that the probability for 
Inelas t ic tran s iti o ns is esse nti a lly zero unless 
(TilE/h) :S 1 (for a more de tailed treatment see ref. 
[30]) .• Thus the approximate trajectory is valid for both 
e lasti c and inelastic colli s io ns. 

It is in~e re~ tin g to note, that the c hange in the per
turbers klll e ti c ene rgy during the co lli sion is a s mall 
fraction of its total kine ti c e ne rgy. 

9 . Summary and Comments 

It has been found that if th e approximations whi c h 
are used in th e class ica l path treatment of lin e broade n
ing break down , the n a s trong colli sion, de fin ed by eq 
(68), is occuring. It s hould be noted that the conver se 
of thi s s tate ment is not necessarily true ; that is, it 
may be poss ible to extend the c lass ical path treat
ment of some problems into the region where (VT/h) = 1. 
In thi s case the validity co nditions mus t be considered 
in more de tail. 

In the a ppli cation of c lassical pa th met hods, st rong 
colli sions are us ually treated by inte rruption approxi
~ ation s based on the Lorentz-Weisskopf theory; the 
lI1f1u e nce of all other colli s ions is evaluate d by means 
of the time de velopment operator n,o(t) as discussed 
in sec tion 6. 

In section 8.4 it was shown that back reaction effects 
on the. penurber trajectory are negligibl e whenever 
a classical path calculation is justifie d. That is, the 
validity criteria for the use of classical wave pac kets 
break down at the same time as (o r in so me cases 
before) th e validity conditions for the use of unper
turbed trajectories. 

It was noted that our defi ni ti on of s trong collisions 
eq (68), is esse ntially the same as the result obtained 
by se tting the lead te rms in an S-matrix expansion to 
unity. However, using this S-matrix expansion until 
the lead te rm s are on the order of unity may be a very 
poo~· ap proximation of the S-matrix; indeed, most errors 
attribu te d to strong collisions s te m from thi s series 
approximation. To avoid possible confusion, we wish 
to emphasize that this approximation concerning the 
~-matrix is not part of the classical path approxima
tIOn and any errors res ulting from it have no bearino
on the validity of classical path methods. It is therefo r~ 
qUit.e. possible to improve upon these so-called s tron g 
collIsIOn problems within the fram ework of the c lass i
cal path approach. The series approximation has been 
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improved for Lyman alpha lines [31], by s umming 
terms in the series and, for hydrogen lines in genera) 
[32] , by an approximate treatme nt of the expo nential 
definition of the S-matrix. 

The region of validity for the weak coupling density 
matrix has been given as Llw < kT/h. We wish to e m
phasize once again that the approximations relevant 
to thi s density matrix are not influe nced by the semi
classical treatme nt of the wave functions which is a 
part of the classical path approximation. The weak 
coupling density matrix may be (and has been [3, 4]) 
used in more rigorous quantum mechanical theories. 
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