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Franck-Condon factors have been calculated for vertical transitions of HoO and DO involving
both bond length and angle changes. It is shown that even in the harmonic oscillator approximation
different Franck-Condon factors are obtained for positive and negative angle changes. The results are
used to obtain the geometry of the ion ground state. Satisfactory agreement is obtained for the isotope
effect on the vibrational transition probabilities. The effects of anharmonicity are discussed semi-

quantitatively.
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1. Introduction

In recent years there has been growing interest in
the quantitative formulation and application of the
Franck-Condon principle to a variety of vertical tran-
sition processes in polyatomic molecules, including
electronic absorption spectra, photoionization and
photoelectron spectroscopy [1-11]." One of the major
objectives of these studies has been to determine
the structure of excited and ionized molecules from
experimentally determined vibrational transition
probabilities. In one case, the C('B;) Rydberg state
of water, the results obtained by this method were
in rather good accord with the geometry obtained
by rotational analysis [4]. All these studies have
in common the assumption of constant electronic
transition moment, thus reducing the problem to
an evaluation of vibrational overlap integrals, and a
further simplification of using harmonic oscillator
wave functions [12]. T'ree distinet approaches to
the problem have been employed. First, consideration
of only one progression of a totally symmetric vibra-
tion [1], second, consideration of all totally symmet-
ric vibrations combined with a simplified normal co-
ordinate transformation and an iterative procedure
[2] and last, use of the method of generating func-
tions [13] extended to n dimensions with considera-
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! Figures in brackets indicate the literature references at the end of this paper.

tion of all normal modes and including the possibility
of symmetry as well as geometry differences between
the initial and final states [9].

One application of the last method was an approxi-
mate determination of the water molecule-ion geometry
from experimental Franck-Condon factors (hereafter
called FCF) obtained from the staircase structure
observed near threshold in the photoionization yield
curve [11, 14]. The calculations reported in that study
were based on a simplified normal coordinate transfor-
mation and, in addition, the extent and accuracy of
the experimental data were limited to an unknown
degree by interference from autoionization near
threshold [11, 15]. Recently the FCF for both H,O
and D,O ions have been determined by Brundle and
Turner [16] with much greater accuracy and com-
pleteness by means of photoelectron spectroscopy.
We report here new and more complete calculations
based on their work, along with some new results con-
cerning sign ambiguities in geometry determination,
rough considerations concerning anharmonicity
effects, and a comparison of the ion geometry with
that of the C('B;) Rydberg state.

2. Method

The generating function method has already been
described in detail elsewhere [9-10]. The basic
problem in the polyatomic case is the determination
of the transformation relating the normal coordinates
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of the initial and final states. As first pointed out by
Duschinsky [17], this is in the most general case a
linear matrix transformation relating initial and final
state normal coordinate vectors Q and Q’. It has the
form

Q' =JQ+K

where J is a matrix and K a vector. From symmetry
considerations it follows that K has nonvanishing
componefits only for totally symmetric modes. As a
result, only totally symmetric vibrations are strongly
excited in the vertical transition [18-19]. In the
diatomic case there is an analogous transformation
in which / incorporates the effect of frequency changes
and K the effect of bond length change.

In the diatomic case, in the harmonic oscillator
approximation, one obtains the same FCF for bond
length changes of equal magnitude but opposite sign.
This follows directly from the symmetry properties
of the harmonic oscillator wave functions and the fact
that the FCF is the square of the vibrational overlap
integral. Consequently, one cannot directly determine
the sign of the bond length change by working back-
wards from observed vibrational intensities. This
ambiguity, of course, disappears when anharmonicity
is taken into account. In the polyatomic case, on the
other hand, this ambiguity disappears in the harmonic
approximation if there is more than one totally sym-
metric mode and if the transformation relating the
initial and final state totally symmetric modes involves
a rotation in normal coordinate space, i.e., if the J
matrix has off-diagonal elements. An illustration is
given below.

The detailed form of the normal coordinate trans-
formation given above is conveniently found starting
with internal symmetry coordinates S and S’ for the
two states. With the choice of a force field, such as a
simple valence force field, the normal coordinates are
obtained by solving the vibrational eigenvalue problem
from which one obtains matrices . and L' relating
the respective normal coordinates to the internal
symmetry coordinates

S=LQ and S'=L"'Q".

The most general transformation relating the internal
symmetry coordinates of the two states is again of the
form

S'=ZS+R
from which it follows that
J=L'"1ZL and K=L'-'R

Using conventional stretching and bending internal
symmetry coordinates, the relation between these
coordinates for two states of bond angles 283 and 28’
and bond length r and r', respectively, is readily
written down. (It is often convenient to work this out
via cartesian displacement coordinates.)

S
V2
sin (B—B') S+ V2 (r cos (B—B')—r")

$z%§gnw—3y&+§

Si=cos (B—pB')-S,—

cos (B—R')- Sz+%_!r sin (B—p')
S,:sin B

& sin 3 -

where the subscripts 1, 2, and 3 refer (throughout)
to the symmetric stretching, symmetric bending and
antisymmetric stretching coordinate. It is seen from
this transformation that the off-diagonal elements of
the Z matrix will have different sign depending on the
sign of the bond angle change. Further, inspection of
the L' matrix elements also shows an unsymmetric
behavior with respect to positive or negative bond
angle differences compared to the other state. Con-
sequently, a bond angle difference between the initial
and final state will lead to somewhat different FCF
depending on the sign of the difference. The L and
L' matrices depend, of course, on the normal co-
ordinates which, in turn depend on the assumed force
field. However, these remarks are qualitatively correct.

A second effect of the mixing to stretching and bend-
ing normal modes in the transformation is that the
FCF of the stretching mode is somewhat dependent
on the angle change and, conversely, the FCF of
the bending mode is dependent also on the bond
length change.

3. Results and Discussion

3.1. Ambiguity of Sign

In order to illustrate the unsymmetric behavior with
respect to geometry changes as discussed above,
calculations were carried out for an idealized case.
FCF were calculated for a transition of the water mole-
cule in which the upper state had geometry but not
frequency changes with respect to the lower state.
For the initial state parameters, the geometry and the
totally symmetric mode frequencies of the ground state
water molecule were used. A simple valence force
field was used to determine the antisymmetric stretch-
ing frequency and the normal modes. In table 1 are
shown the FCF calculated at various geometries
corresponding to all combinations of up to two incre-
ments of =0.0400 A and =5.00 deg geometry change
with respect to the initial state. The sum of the FCF
for any given geometry may not equal unity because
of contributions from higher overtone and combination
transitions which are not tabulated. It is seen that when
there is only a bond length change the sign ambiguity
is still present, i.e., one obtains exactly the same
transition probabilities. However, when angle changes
occur one obtains numerically different values depend-
ing on the sign of both the angle and bond length
change. Further, the dependence of stretching excita-
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TABLE 1. Franck-Condon Factors for Positive and
Negative Geometry Changes in H,O 2

TABLE 2a. Experimental Franck-Condon Factors for
the ionization of HyO and D>O from photoelectron
spectroscopy ®

28 -
= 94.52° 99.52° 04.52° 9.52° 1522
- 4.52 52 104.52 109.52 114.52 Transition H,0 D,0
P (000-000) 000000 0.757 ¢ 0.005 0.702 % 0.005
100-000 .143+= .005 .148 = .005
200-000 .018=+ .002 .025+ .002
0.8772A| 0.37639 | 0.47072| 0.51071 | 0.48097 0.39331 300-000 D (08 s e e By
9172 .62016 .78023 -.84537 .78929 .63530 010-000 .069+ .005 .087 +0.005
9572 NS212 92512 1.00000 .92530 73326 110-000 .013=  .002 .034+ .002
9972 | 61925 | 78468| 084537 | .77494| 60477 210-000 > 002 004+ 002
1.0372 .37529 47610 .51071 46364 .35643
a Turner and Brundle, ref. [16].
® Detection limi%; not obs_ervved. ) oy o e
B (100-000) Ol vl i o ol - et ot
0.8772 | 0.23236 | 0.30657| 0.34243 | 0.32415|  0.26006 f“}’lm the ph‘ﬁoe.lecé“fm Speﬁ"”.sc”?y data along with
9172 08916 12400 14170 13347 10363 Ot er.ratl()s obtained ifrom photolonization experlm_ents
.9572 .00055 .00009 | .00000 .00000 .00002 by Dibeler [11] and Brehm [15] and, for comparison,
-9972 11662 (13713 | .14170 | .12914 10398 the results for the Rydberg C and D states determined
10372 26512 | .32515| .34243 | .31019 24196 gpectroscopically by Bell [4]. It is seen that the photo-
ionization data are in only moderate agreement with
P (010-000) the photoelectron results. Both photoionization experi-
ments show clear indication of autoionization struc-
0.8772 | 0.14774 | 0.05205| 0.00075 | 0.03155 | 0.11911 tﬁr e just above the (100-000) step, and it is probable
9172 91706 | 07276 | 00031 105627 ‘19417 that there is interference from' autoionization near
.9572 122690 | .07161|  .00000 | .07146 .22618 threshold as well. In table 3 are listed the frequencies
-9972 -16861 049471 .00031 -06463 18826 for the ground state, ion state, and the C and D Ryd-
1.0372 08897 02387 -00075 -04163 A197  herg states determined by various workers. There is
P (110-000) a very close correspondence between the ion fre-
quencies and those of the Rydberg C state for both
isotopic species. This, of course, leads to the expecta-
0.8772 0.07781 | 0.02928 0.00050 | 0.01758 |  0.06590  jon of very similar geometries for both states.
9172 .02162 .00824 .00005 .00649 .02177
95792 00204 | 00043 00000 100032 100124 The FCF were calculated for both molecules as a
9972 .04317 .01205 | .00005 .01454 .04392  function of both bond distance and angle, using the
1.0372 -07493 | .01982| .00050 | .03237 -08909  Rydberg C state frequencies for the upper state.

@ Ground state r=0.9572A 28=104.52°, G. Herzberg, Electronic Spectra of Polyatomic
Molecules (D. Van Nostrand, New York, 1966).

v;—Symmetric stretching mode.
v, —Symmetric bending mode.
v3— Antisymmetric stretching mode.

tion on angle change and vice versa is clearly
demonstrated by inspecting rows and columns. The
results of including frequency differences as well
as geometry differences are not very much different.
For upper state frequencies corresponding to the
Rydberg state of the ion (see table 3) there is a slight
distortion of the FCF surfaces.

From a practical standpoint, this asymmetry effect
is too small to be of use in this range of geometry
variation. However, for still larger angle changes the
effect will be quite pronounced. An extreme case of
this type is the pyramidal planar-transition of NH3 [20].

3.2. Franck-Condon Factors for lonization

In table 2a are shown the experimental FCF for
H;O and DO determined by Brundle and Turner [16]
by photoelectron spectroscopy. In table 2b are listed
the FCF relative to the zero-zero transition computed

Calculations were carried out for both a simple valence
force field and for one with a potential interaction
constant between the stretching and bending coordi-
nate. The two gave essentially identical results. The
ground state geometry is given in table 4. In figures 1
and 2 are shown the results in the region of interest cor-
responding to an increase in both angle and length.
The curves may be visualized as cuts through the
Franck-Condon surfaces at three different values
of the bond length, and the tenfold difference in or
dinate scale for both 000 and 100 -should be kept in
mind. Also shown are the experimental points for all
transitions measured by Brundle and Turner [16].
The measure of agreement is whether all points lie
on the same vertical line. It is clear that the agree-
ment is only moderately good, with some deviation
for 110 and 210. Noteworthy is the fact that the results
for both ions lie at almost exactly the same geometry,
that the significant deviations from ideal are in the
same direction for the same transitions and, most
important, that there is a major discrepancy in both
cases for the 200-000 transition, with the experi-
mental values several times as large as the calculated
values. Also, inspection of the cuts at 0.99 and
1.01 A shows that the disagreement cannot be resolved
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TABLE 2b. Ratio of experimental Franck-Condon factors by different methods relative to the 000—000
transition
Photo- Photoionization #
electron Rydberg Rydberg
spectros- C State [4] | D State [4]
copy [16] ref. 11 ref. 15
H.O | 100-000 0.189 0.20+0.03
H.O | 010-000 .091 | 0.18+0.03 14+ .03
D,O | 100-000 .222 18+ .03 0.6+0.2 0.60+0.15
D,O | 010-000 124 14+ .03 2= 45+ .15

“ The values given are estimated from the published curves. Both sets of photoionization values are subject to error due to autoionization.

TABLE 3. Frequencies for various states of H,O and D,O, in cm ™!

Ground C Rydberg State D Rydberg Ton Ground State
State State
*) ref. 4
ref. 4 ref. 22 P. I. ref. 15 P.E.S. ref. 16
H,Ov, 3652 3179 3170 3268 3190+ 50 3200+ 50
H,Owv, 1595 1407 b (1422) 1636 1420+ 50 1380+ 50
H,Ov; 3756 (3238) (3224)
D,Ov, 2666 2338 (2290) 2381 2280+ 50 2310+50
D,Ov, 1179 1041 1038 1223 1050+ 50 980+ 50
D,Ovy 2784 (2427) (2365) (2483)

4 G. Herzberg, Infrared and Raman Spectra, New York (1945).
In the FCF calculations a value of v;=3699 was used. This has no effect on the results.
b All quantities in brackets have been calculated from simple valence force fields.

TABLE 4. Geometry of various water states

Ground C State C State D State Ton Ion SCF
state [19] rotational FCF [4] FCF [4] FCF 2 cale. [23]
analysis [22]
r 0.9512A 1.013 1.022 +0.01 1.024 +0.01 | 0.995=+0.005
2 104.52° 106.7 109.7+1.8 113.0+1.8 b <109 119

@ This work.
®The value 110°is obtained for a harmonic oscillator calculation. The consideration of anharmonicity would decrease this value by perhaps several degrees, see text.
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FIGURE 1. Franck Condon factors for H,O as a function of bond FIGURE 2. Franck-Condon factors for D,O as a function of bond

angle at three bond distances for the ion state.

Experimental points with error bars are the photoelectron spectroscopy results of Brundle
and Turner [16].

by a slight geometry change. Thus, at first sight
one has established a geometry estimate of 1.00
and 110 deg. with astoundingly good precision. The
large deviations are due to anharmonicity, and the
precision is a little deceptive.

3.3. Anharmonicity Effects

Before considering anharmonicity, one other factor
has to be considered. In the H,O and D.O molecules
and ions the frequencies of the antisymmetric stretch-
ing mode are quite close to the symmetric stretching
frequencies. For the ions this is based purely on simple
valence force field calculations which, as seen from
table 3 give reasonably good results for the C Rydberg
state. Comparing the values with those of the molecule
ground state one has a decrease of about 500 and 300

angle at three bond distances for the ion state.

Experimental points with error bars are the photoelectron spectroscopy results of Brundle
and Turner [16].

em~! for the H,O and D,O ions, respectively. This
is sufficient to produce a small excitation of the even
overtones of the antisymmetric stretching modes,
and it is very probable that the results of Brundle
and Turner for the 200-000 transition include contribu-
tions from 002-000 as well. The calculated transition
probability is about 0.001 for both H,O and D,O.
Another possible interference is the (120-100) transi-
tion which would lie only several hundred wave num-
bers away from the (200-000) transition. The FCF
for this transition depends on the geometry but, in
this range has a value of about 0.003 to 0.004 for H,O
and 0.001 for D>O. Thus the difference between the
calculated and measured FCF is quite real, although
the experimental value might be somewhat lower
than stated.

There is no direct indication of the magnitude of
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the anharmonicity in the water ions. Again, the results
of Bell on the Rydberg C state are suggestive since
they show first differences in both the stretching and
bending progression [4]. However, they are far too
fragmentary for a determination of anharmonicity.
In view of this we have carried out only the very sim-
plest one dimensional perturbed harmonic oscillator
calculation corresponding to a cubic term in the po-
tential for both the symmetric stretching and bending
mode. For this model perturbation theory yields for
the wave function

VX,
3V30
+F9 1P +[(n+3)n+2)n+ DI}

n+3

=5+ == { = [nln— 1 — 225, — In2y°

where x. is the anharmonicity constant and n is the
vibrational quantum number. In the absence of better
information we note the remark of Bates [21] that in
many diatomic molecules x. has values of the order of
magnitude 102, Using the perturbed wave functions
for the stretching normal mode it is a straightforward
matter to recalculate the FCF using the overlap inte-
grals previously calculated for that geometry. The
results are shown in figure 3. The dashed lines show
the anharmonic FCF as a function of x}?. They are
shown for a geometry of 1.00 A and 110 deg. The
000-000 transition probability decreases somewhat
and both the 100-000 and 200-000 transition proba-
bilities increase. The great slope difference between
the latter two is again due to the tenfold difference in
ordinate scale. It is interesting to note that a reason-
able value of the anharmonicity parameter accounts
for the intensity discrepancy in 200—000. At a slightly
lower value of r=0.995 one can bring all three
transitions into accord with a value of x. of about
0.008-0.009. The dependence of the FCF on the
anharmonicity coefficient at that geometry is very
similar to that shown for 1.00 A. Further, with this
value of .anharmonicity one can calculate the effect
on 300—-000 as well, although at this transition the
first order perturbed wave function is of doubtful
utility. In any even the FCF calculated with the per-
turbed wave function did not exceed the upperbound
determined experimentally.

It is evident that a similar situation holds for the
bending vibration as well. A similar parametrized
_ calculation indicates that for an anharmonicity of 0.01
" the same FCF is obtained at 109 deg instead of 110,
and for an anharmonicity of 0.04 at 108 deg. There is
little question that the bending mode is anharmonic,
and these results indicate that the accuracy as well
as the precision of the bending angle estimate is some-
what lower than appears from the FCF curves and the
small probable error of the experimental FCF.

3.4. Geometry of Water States

In table 4 are given the geometries of the various
states determined spectroscopically [22] and by spec-

FACTOR

FRANCK-CONDON

200 (x10)

V4
[2006a0) ¥ ___} 7o
210(‘10) /
T T T T T T T T ) T L i P
108° 110° 112° 0 005 010 005 X, 108° 110° 112°
o 0 = 110° o
00 A
I r=100A W01 A

FIGURE 3. Dependence of Franck-Condon factors for H,O on the
anharmonicity parameter x./*, for an upper state geometry of 1.00 A
and 110°.

Left-hand and right-hand graphs give the dependence on geometry for comparison.

troscopic FC and photoelectron spectroscopic FC
methods and the results of a SCF calculation by
Krauss [23]. On the basis of the crude discussion of
anharmonicity effects, one can suggest that at least
part of the angle discrepancy between the FCF results
of Bell and the rotational analysis of Johns is due to
anharmonicity. In the harmonic approximation we
obtained the same results as Bell. Further, in com-
paring the bond length of the C state and the ion state
we note that the bond length of the ion is smaller.
In addition, the ambiguity of geometry change deter-
mination which is still effectively present in the
harmonic approximation is in fact removed by the
anharmonicity assumptions required to account for
the abnormally high 200-000 FCF. The analogous
anharmonicity calculations for a decrease of bond
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length of equivalent magnitude below the neutral
molecule value would have led to an opposite effect
on the “corrected” transition probability. Lastly, the
bond angle estimate for the ion is of only moderate
value. It may in fact be equal to, or even lower than
that of the C state. The answer to that question will
depend on improved knowledge of anharmonicity.

We thank D. W. Turner and C. R. Brundle for
sending their results prior to publication and for helpful
correspondence.
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