JOURNAL OF RESEARCH of the National Bureau of Standards —A. Physics and Chemistry
Vol. 73A, No. 3, May—June 1969

Vortex Motions in Ideal Bose Superfluid®

Martin J. Cooper

Institute for Basic Standards, National Bureau of Standards, Washington, D.C.

20234

(February 11, 1969)

A general nonlinear field equation is derived for the macroscopic order parameter of an ideal
coherent Bose gas. It is shown that this noninteracting system can support stable quantized vortex-
like motions within the superfluid phase. It is suggested that this coherent phase of the ideal Bose
gas describes the dominant physical features of real superfluid liquid helium.
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1. Introduction

The presence of quantized vortex motions in the
superfluid phase of liquid helium was first postulated
by Onsager [1] ! and Feynman [2] and has since been
confirmed by numerous experiments [3]. The micro-
scopic theory of such macroscopic motions was
developed independently by Gross [4] and Pitaevskii
[5], who assumed the fluid to be a dilute gas of weakly
repulsive Bose particles. They were able to show
that a self-consistent equation-of-motion for the macro-
scopic order parameter of the Boson field contains
a nonlinear contribution arising from the interac-
tions between the particles. Stable vortex motions
with quantized circulation appear as special solu-
tions of the nonlinear field equation.

In this paper we suggest that vortex motions of
the superfluid phase are due to the Bose statistics
and are not dependent upon any interactions (either
attractive or repulsive) between the particles. We
shall demonstrate this by showing that quantized vor-
ticles are stable configurations of the macroscopic
order parameter within the ordered phase of a non-
interacting free Bose gas.

It is generally remarked that the ideal Bose gas is
an overly simple system which describes unphysical
situations due to its oversensitivity to boundary
conditions. If, for example, the gas is contained in
a rigid box of large but finite dimensions, it is found
that the particles will condense into a ground state
with a highly nonuniform density profile [4]. Such
an unreal distribution is usually removed by intro-
ducing repulsive interactions between the particles
so that they smear themselves out more uniformly
over the entire volume. Since we wish to exhibit

*Not subject to copyright—contribution of the National Bureau of Standards.
! Figures in brackets indicate the literature references at the end of this paper.
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certain properties as explicit characteristics of the
Bose statistics in the absence of any interactions and
independent of boundary conditions, we choose in-
stead to think of the ideal Bose system within the
framework of the Grand Canonical formalism. This
permits us to consider an ensemble of N noninter-
acting Bosons contained in a volume V(=L3) at an
equilibrium temperature 7T(=1/8) in the thermo-
dynamic limit of N— «, '— o with a fixed number

density N/V.

2. Field Equation

The appropriate description for the ideal gas of
Boson particles is given in terms of the creation and
annihilation operators of the quantized Bose field,
Yr(r), Y(r) with [Y(r), ¥ (r')]=8(r—r'). The pres-
ence of an ordered or condensed phase is character-
ized by the existence of a spontaneous macroscopic
expectation value for the single operator ¥i(r)[6].
This author together with Green [7] have considered
the condensation of such a system as a model second-
order phase transition by removing the phase sym-
metry of the Fock states through a linear coupling
of the field operators to a fictitious external source
S(r). Making use of the coherent state representa-
tion and following standard thermodynamic argu-
ments, it was shown that the number density is of
a simple analytic form. In the limit of a vanishing
uniform source S(r)=S— 0 (after the thermody-
namic limit of N, V— o, N/V finite) the number
density separates into two branches at a critical value
of the temperature, T.. Below this temperature,
the total density is composed of two uniform coexist-
ing parts,

n=mnT32+ Pz (1)
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where the constant m= (2wh/m)32((3) = (2m)3/2
2.612 - - - in units of A=m=1. The first term is
just the number density for the normal component of
the fluid. The quantity W corresponds to a sponta-
neous thermal expectation value which is of finite
magnitude below T. and vanishes identically for all
temperatures above it. In general, ¥ represents a
complex order parameter for the coherent phase with
both an amplitude and phase V=|¥(r)|exp (ip(r)).
Within the framework of the two fluid model, | W |2
is associated with the number density of the ordered
or superfluid phase, while the spatial gradient of the
phase is interpreted as the superfluid velocity
vs=V(r).

The thermodynamic potential describing the co-
herent phase as a function of the superfluid density
|¥|? and temperature T in the vicinity of the transition
as (I'—T.)/Tc=t <0 becomes small is given by

F Wz, T) = [Wz(1+3t/¥2)]3 (2)

Taking the actual superfluid to be locally a coherent
Bose gas, [7, 8] this result provides the functional
form of the thermodynamic potential density expressed
in terms of the reduced temperature ¢ and the magni-
tude of local macroscopic order parameter W(r).
It is like a phenomenological Landau expansion for
the free-energy carried to third order in W2 If the
superfluid is spatially nonuniform or in motion rela-
tive to the normal component (v,=0) then there is
an additional contribution £2|VV|*2m [9].

[Remark—We wish to note here the similarity
between the thermodynamic potential for the coher-
ent superfluid phase of the ideal Bose fluid given in
eq (2) and certain recently proposed forms for the po-
tential of superfluid helium. Several persons [10-12]
have suggested variations of the conventional Landau
theory of phase-transitions based on the expansion
of F(W2, T). Noting that the superfluid density varies
like (1—T/T)\)?/3, Mamaladze[10] made ad hoc
modifications in the temperature dependence of the
lowest order expansion coefficients. Amit[11] pro-
posed a more consistent formulation by including
terms to order W% and has been able to describe
certain features of superfluid helium films. Miller
and Luban[12] pointed out a further consequence
of such a term would be the existence of two criti-
cal superfluid velocities. ]

For stable configurations, the total potential func-
tion[9] ZF(Vz, T)= [dr[—3|VVY|2+F(V2, T)]
must be a minimum with respect to ¥ (also, its con-
jugate ¥*). The variational procedure leads to a
field equation for the magnitude of the local order

parameter W(r) which describes the superfluid
behavior of the coherent ideal Bose gas,
V2| (r)|+ (V2+3t)2| W (r)|=0. 3)

This result is like the equation obtained by Gross[4]
and Pitaevskii[5] to describe the superfluid proper-
ties of an interacting Bose gas. Taking a finite frac-
-tion of the particles to be in a single quantum state,

they showed that the condensate wave function
behaves like an effective hydrodynamic variable
which obeys a nonlinear equation

VA (r) + (1 — 2Vp2) =0 @)
The theory is restricted by the requirement that
the product of the condensate density and the effec-
tive potential, |¢|2V remain small. A basic potential
dependent dimension A= (2|y|2F)-¥2 is used to
characterize the length scale. The nonlinear contri-
bution to the equation is directly proportional to the
interaction potential. Thus, in the absence of such
interactions, the G-P equation describes a simple
free-field whose characteristic length becomes
infinite.

The field describing the hydrodynamics of the super-
fluid phase of the coherent Bose gas is given by
eq (3). There, despite the lack of any direct poten-
tial, the equation contains terms to order |W|5 and
is therefore of a more nonlinear nature than that

described by the G—P result.
3. Special Solutions

We shall consider solutions of the field equation
for ¥ in two cases of particular physical interest,
namely, the behavior of the superfluid near a wall
and the possibility of vortex-like configurations. It
is convenient to obtain a normalized field equation
by introducing a reduced variable for the magni-
tude of the order parameter

o= (1) )|

. 20\1/2
and a new distance scale 52(7) t|r

Va (1= 42) 2 =0: 6
Consider first the problem of the Bose gas in a semi-
infinite domain bounded by rigid wall (x-y plane).
In this one dimensional geometry, the superfluid
density vanishes at the wall Y2=0, z=0) and has
a uniform value (normalized ¥2=1) far from it. With
these boundary conditions, the solution of eq. (5)
is given by

Y(z) =2/ (3+22) 1/ 6)

This implies that the superfluid density {* rises from
zero to over half of its uniform value less than two
distance units from the wall (3/4 of its uniform value
by three distance units). It appears therefore that
the coherent superfluid phase of the ideal Bose gas
is strongly “self-healing” and not overly sensitive
boundary conditions. '

The occurrence of a natural length scale parameter
as a general consequence of the nonlinear equation
for the interacting Bose gas has already been noted.
In the same one dimensional geometry, the G—P
equation has the solution Y= (2V)~'2 tanh (z/2).
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Here, the corresponding healing behavior of the
superfluid density depends inversely on the strength
of potential. Thus, as the interactions between the
particles becomes small, the healing scale becomes
increasingly large. As the potential vanishes, the
characteristic length scale A diverges, typifying the
over response of the noninteracting Bose gas within
the usual treatment.

The nonlinear nature of the field equation for the
order parameter iy suggests that vortex-like motions
may be stable configurations within the ideal Bose
superfluid [13]. This can be demonstrated by noting that
the field equation (eq (5)) permits cylindrically symmet-
ric solutions of the form Y(r, 6, z)=R(r) exp (ivh),
where v is an integer. The radial function R (r), which
is normalized by requiring that 27 [drr|R(r)|?>= super-
fluid density per unit height along the z axis, satisfies
the differential equation

(l d d 0

V2 2\2R —
e = R_)R-&-(l R2)2R =0.
While an explicit solution of this equation has not in
general been possible, the asymptotic properties of
the radial function can be determined [14]. Near the
axis as r— 0, the centrifugal force term dominates
so that R (r) must vanish like r*/*I. Within this region
the higher powers of R are negligible and the radial
behavior may be approximated by the Bessel func-
tion of order |v|, R(r) ~ J,/(r), (to within a constant
multiplicative factor). At very large distances from the
axis, the superfluid density approaches its uniform
value, Y?(r— ») =1, with the radial function of the
asymptotic form R(r) =—|v|/r. When »=0, only
the simple solution of an everywhere uniform R(r) =1
is possible.

These cylindrical solutions for the quantum-me-
chanical order parameter ¥ describe a field with a
macroscopic axial component of angular momentum

L.,
_h Q¥ oy*
L-=3; fd’["’ 90 oy

Thus, the total angular momentum is proportional
to the superfluid density, y*§. The flow field of the
superfluid about the z axis has a tangential com-
ponent of angular velocity v ¢,

which falls off like |v|/r. Such a solenoidal flow pat-
tern is characteristic of a “classical vortex line’’ found
in the hydrodynamic theory of incompressible fluids.
The vortex filament has a vorticity Q,= (curl v),
which is zero everywhere (except on the axis where
the superfluid density vanishes such that the strength
(Q:|¢|2=0, r=0). The circulation of the vortex flow

I'=¢ dorve=*H|v|>0

w]=vfdr|R<r>|2- ®)

©)

(10)

is quantized in units of #.

One may estimate the effective size of the vortex
core by setting the two asymptotic forms of R(r) equal
at a common value r=p [11]. Requiring also con-
tinuity of the radial derivatives,

A (r) =1—v/r

Al (r) = v/r? (r=p) (11)

we find a core dimension p=(1+ |v|)/|v|.

Gross [4] and Pitaevskii [5] found similar vortex-like
solutions to be stable configurations in the superfluid
phase of the interacting Bose gas. In that system, the
vortices owe their existence to the presence of the
nonlinear term in the G-P field equation arising from
the repulsive interactions between the particles.
There the asymptotic solutions of the G—P radial
equation are given by

R(r=0) = Jy(r)

R(r>0) =1—|v|?/2r2.

While these limiting forms for the radial behavior
are independent of the interactions, the order para-
meter itself depends upon the strength of the potential
through the normalization ¢y= (2F) 2R (r) exp (i|v|6).
Thus in the absence of any interactions between par-
ticles, such vortex lines vanish as possible solutions

to the G—=P field equation.

In general it is not possible to obtain explicit solu-
tions to the field equation for the order parameter of
either the ideal Bose system (eq (3)) or the interacting
gas (G—P equation) [15]. Both are highly nonlinear
equations and can be solved only for certain very
special situations. In the limit of a low superfluid
density to a first approximation, they are both non-
linear to the same order Y3, and will describe a some-
what similar type of physical behavior. It is, however,
important to recognize the very essential difference
in the physical origin of the nonlinearity. In the G—P
equation, the nonlinear term arises from the direct
repulsive interactions between the particles which are
superimposed upon the Bose statistics. Without these
interactions, the super-fluid order parameter satisfies
a linear equation characteristic of a free noninteracting
quantum field. Quite a different behavior was found
for the superfluid phase of the ideal coherent Bose
gas. In that description, since all terms in the field
equation are due to the particle statistics, the non-
linear nature of the order parameter is a direct con-
sequence of the Bose statistics. While any real gas
must certainly have strong short-ranged repulsive
interactions between particles, this nonlinear be-
havior suggests that the coherent phase of the ideal
Bose gas might well describe the dominant physical
features of superfluid liquid helium.
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