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The stability of the shape of a solid cylinder crystallizing in a supercooled liquid is treated. The 
effects of solute diffusion, slightly anisotrop ic surface tension and interface kinetics are included. The 
resulting stability equations are appl ied to the specific case of ice cylinde rs. 
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1. Introduction is to be evaluated at the interface. We assume a slightly 
perturbed cylinder of shape [2] 

The stability of the shape of a solid growing by dif
fusion or heat flow was first studied by Mullins and 
Sekerka [1]', who determined the stability criteria 
for a sphere. The cylindrical geometry has been 
treated by Coriell and Parker [2] and Kotler and 
Tiller [3]. These studies assumed that the interface 
properties were isotropic. Cahn [4] has taken account 
of slightly anisotropic surface free energy for the 
sphere. Recently, we have made experimental studies 
[5, 6] of the morphological stability of ice cylinders. 
In connection with this experimental program, it 
appears desirable to work out the stability of a cylin
drical shape taking account of slightly anisotropic 
surface tension and interface kinetics. In this paper 
we treat the case of a cylinder crystallizing from a 
binary melt; it is assumed that the surface tension 
and kinetic coefficient are slightly anisotropic. For 
the case of isotropic interface properties, the problem 
reduces to the case previously treated by Kotler and 
Tiller [3]. 

Although our calculation is general, we are par
ticularly interested in the case of an ice cylinder 
growing from pure water and from water with im
purities added. We present some specific calculations 
for these cases. 

2. Formulation and Calculation 

We wish to solve Laplace's equation [1,2] for the 
temperature T and concentration C of impurity. The 
subscripts Sand L denote solid and liquid, respec
tively, while a subscript I denotes that the quantity 

I Figures in brackets indica te the lite rature refere nces at the end of this paper. 
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(1) 

where r, <1>, and z are the usual cylindrical coordi
nates, R is the radius of the unperturbed cylinder, 
a is the amplitude of the perturbation (aiR ~ 1), and 
k and A determine the shape of the perturbation. 
Neglecting diffusion in the solid, the equations to be 
solved are 

with the auxiliary equations 

TdRb) = Tb 

Ts(O) - finite 

Tu= TSI 

v= ks (aTs) _ kL (aTL) 
Lv ar I Lv ar I 

v= -DL (aCL) 

C Ll (1- j) ar I 

v= R + 8eik<l>ei21rZ/ X 

Te= TM -TMK {~fk.eik<l>} - mCu 

(2) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

(3f) 

(3g) 

(3h) 

(3i) 



and 

(3j) 

In the above equations Rb is the bath radius , To (a 
constant) is the temperature at Ro, Rc is the radius 
at which the concentration of impurity is Cb (a con
stant), v is the velocity of the interface, ks and kL are 
the thermal conductivities of the solid and liquid, 
respectively, Lv is the latent heat per unit volume of 

the solid, the ('f /Lkeik<l» is the slightly anisotropic 

linear kinetic c'oefficient,2 Te is the equilibrium tem
perature of the interface, DJ_ is the solute diffusion 
coefficient, j is the partition coefficient (the ratio of the 
equilibrium concentration of solute on the solid side 
of the ~nterfac.e to that on the liquid side of the inter
face), Rand 0 are the rate of growth of the unper
turbed cylinder and the perturbation, respectively, TM 
is the melting point of a flat interface, K is the curva-
ture of the perturbed cylinder, the ('f f keik<l» is the 

slightly anisotropic capillary constant, m is the freez
ing point lowering constant, and kz = 21TR/A. The solu
tion of Laplace's equation in cylindrical coordinates 
is of the form C 1 +C2 In r+eik<l>ei21rZ/A[C3h·(kzr/R) 
+ C4Kdkzr/R)] where the C's are constants and h
and Kk are modified Bessel functions . A solution of 
this form is written for TL , Ts, and CL and the con
stants are determined by the boundary conditions. 
Since we are treating small perturbations and slightly 
anisotropic surface tension and interface kinetics, 
we neglect all terms that are greater than first order 
in 0, /Lk" and f k (k 7'= 0), i.e., we omit terms containing 
02, O/Lk, of k, f k/Lk, etc., (k 7'= 0). Although the calcu
lation is tedious, it is straightforward and we will not 
reproduce the details here. We define Ao = In (Rb/ R), 
Ac= In (Rc/R) , 

tlT=TM-(TlvJfo/R)-To, M)=tlT-mCb 

/3A= (kdRLv/Lo) +Ab, g= [(l-j)kJAc]/[DLv ] 

Al = [KdkzRb/R)/h(kzRoIR)] , 

DI = [KdkzRc/R)/h-(kzRc/R)], 

J A = - kz{[Kk(kz) - Adk(kz)]/ [Kk(kz) - Adk(kz)]}, 

JIJ = - kz{[Kk(kz) - Dd~(kz)]/ [Kdkz) - Ddk(kz)]}, 

2 The kinetic coe fficient and the capillary constant can be written in this form since we 
are only considering first order terms in the perturbation amplitude and in the anisotropy. 
In general, fo r exampl e, the kinetic coefficient JL can be expanded as 

/J. ~ 2 J dk, /J..(k,j e'We'k,<" IRl 
k 

where <%> ' and Z' give the orientation of the surface. For a slightly perturbed cylinder , the 
orientational coordinates Z' a nd <1> ' are related to the space coordinatesz and <t> by z'=O+8al 
and <1>' = <l> + 8a2, where al and U2 are fun ctions of <l> and z. Substituting these expressions 
in the expansion of j.L, expa nding the exponentials , neglecting terms of the order p.k(kz) 8, 
and performing the integra l over kz we obtain p. = I.1l,l.-eik¢l, where Ilk = f dkzllk(kz). A sim-

ilar procedure gives r = L r,l.-e/k<Z' ; he re r is OILI')(y+d2yld4l2 ) where y is the surface tension. 
k 
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where the prime indicates the derivative with respect 
to k z• The results of the calculation are 

(4a) 

where (DT) is given by 

(DT) =Ab -+- - Ao -+- -- . [ 1 tlTJ I {[ 1 tlTJ2 M) }1/21 
2g 2/3A 2g 2/3A /3Ag 

(4b) 

For the ratio (8/0)/(R/R) we obtain 

&1= {I +~+ ma}-I {JA -1 + ma (JD-l) 
oR /Lo jJ jJ 

and 

In the above equations f k and /Lk (k 7'= 0) are zero if 
kz 7'= 0, i.e., the anisotropic terms only effect <I>-type 
perturbations and have no effect on perturbations 
along the axis of the cylinder. This follows, for example, 
since there are no terms of the form f k, kzeik<l>ei21rZ/A in 
eq (3i) (see footnote 2). 

Thus one of the important results of this calculation 
is that the growth rate of z-perturbations is independent 
of slightly anisotropic surface tension and kinetic 
coefficient. 

Discussion 

The general results of our stability analysis are given 
by eqs (4a-c). In this section, we apply these equations 
to the special case of ice cylinders (oriented with the 
c-axis of ice parallel to the cylinder axis) growing in 
slightly supercooled water (tlT == 0.1 °C). We also 
consider the case in which impurities have been added 
to the water. Weare interested in the case where R 
lies between 0.04 cm and 0.25 cm; the bath radius 
Rb in most of the experimental work was 0.875 cm. 
Under the above conditions we can simplify the equa
tions by neglecting interface kinetics, i.e., we take 

a 
1 + /Lo == 1. This implies that (kJRLv)(J A + H/ks/h) 

«; /Lo; typically (J A + HJks/ h) < 100 and the above 
approximation is valid if /Lo P .0.1 cm deg- l sec-I. 



Although the interface kinetic coefficient for ice grow
ing perpendicular to the c-axis is not known, a lower 
bound can be obtained from bath undercooling meas
urements_ For example, Lindenmeyer et aL [7], ob
served a growth velocity of 1 cm sec-I at a bath under
cooling of 2 °C Assuming a linear law, this gives 
/-to > _5 cm sec-I deg-I [8]. Since /-to may be orders 
of magnitude greater than this, it appears valid to 
neglect interface kinetics. It follows that {3A == Ab. 

It is almost always (and certainly under the experi
mental conditions of interest) valid to neglect the A I 
and D I terms in the definition of J A and J D. Defining 
HJ(=-kzK~(kz)/(Kk(kz), we then have JA == HI( =JD. 
With this approximation and the neglect of interface 
kinetics , eqs (4b) and (4c) can be written 

(DT) =t([ (Ad~) + ~T] -I ([Ab/~) + ~TF 

-4MUd~}1/2I) (Sa) 

and 

For pure water, there is further simplification, VIZ, 

taking m=O and ~~O, 

(DT) = ~T (6a) 

and 

Recalling that for a kz ~ 0 perturbation /-tk = 0 and · 
fk=O (k ~ 0), eq (6b) becomes 

8R=H .-1- TMfo(P+ k~-I)Ab[HK+ (ks/h)HIJ. 
oR A R(DT) 

(6c) 

This equation has been used in references 5 and 6 to 
analyze the experimental data. 

We now give a brief discussion of the choice of the 
bath boundary conditions , i.e., the choice of Rb and 
Rc; we also discuss the use of Laplace's equation. For 
an infinite bath, the choice of these parameters has 
been previously discussed [2]. For an infinite bath 
Rb= R>.. where R>.. = R/ (1.33A.) and A. satisfies 

A.2e>..2Ei(-A.2 ) +S=O. 
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In the above equation Ei is the exponentiai integral 
function and for heat flow S=S7'=Cv(T,-Tb)/Lv and 
for impurity diffusion [9] S= Sc= (Cu - Cb) /Cu ( 1- j ). 
In these equations Tb and Cb are the te mperature and 
concentration at infinity, respectively, and Cv is the 
specific heat per unit volume of the liquid_ In order for 
Laplace's equation to be valid, it is necessary that 

S7' ~ 1 and Sc ~ 1. Since ST == (713) ~T, it is clear that 

for ~T < 1, ST ~ 1. Using the solution of the diffusion 
equation, we may rewrite Sc as Sc= (Ac/Ab)(kL/DLv)DT. 
Taking h = 1.33 (10- 3) cal cm -I deg- I sec-I, Lv = 73.4 
cal cm-3 , D= 10- 5 cm2 sec- I, and (Ac/Ab) == 1, we have 
Sc == 1.8 (DT). For DT=O.I, Sc == 0.2, and Laplace's 
equation is a reasonable approximation. For larger 
(DT) and for smaller diffusion constants, there may 
well be deviations from Laplace 's equation. 

In the actual experiments the temperature is 
maintained at Tb at some radius, say R o.. If Ra < R>.., 
it seems reasonable to take Rb = Ra and this has been 
done [5, 6]. If Ra > R>.., it is better to take Ro = R>... If 
this were not done, i. e., if in stead we le t R,)= Ra when 
Ra > R>.., then from eq (4a) we would predic t that 
R is larger when Td oo ) = To than whe n Tl.(Ra) = To. 
This is obviously wrong and he nce for R(l > R>.. we take 
Rb= R>... When Ra < R>.., there is a certain error in 
taking Rb= Ra, but this error lies within the experi
mental error in measuring ~T and R. The choice of 
Rc is even more complicated since the average con
centration in the liquid changes as solute is rejected 
from the ice. Fortunately for many cases the results 
are not very sensitive to the choice of Rc and for 
calculational purposes we take Rc = Ra. The proper 
choice of Rc and Rb can be studied experimentally 
by comparing the observed growth rate R of the 
unperturbed cylinder with the theoretical R. 

We prese nt some calculations of 0 as a function of 
R for the special case where (fiR/oR) is given by eq 
(6c). Following Cahn [4] we u se the relationship 
(fiR/oR) = (R/o) (do/dR) . Denoting the right hand 
side of eq (6c) by f(R) , we have 

(7a) 

Integrating yields 

In (0/00) = JR f(x) dx, 
Ro X 

(7b) 

where 00 is the value of 0 at R = Ro. The integral has 
been evaluated numerically for various values of the 
parameters occurring in f(R) _ In many cases over 
small ranges of R, In 0 is to a good approximation 
linear with R. This is illu strated in table 1 which 
gives (d In o/dR) as a function of R. From table 1, 
it is seen that (d In 0/ dR) changes very slowly with R. 
Since in the experimental measurements of 0 versus R, 
R varies by about 0.02 to 0.03 cm and R is greater 
than 0.120 cm, it is to be expected that plots of the 
experimental data in the form In 0 versus R will 
appear linear. 



Of interest is the wavelength dependence of the 
o versus R curves. This is shown in table 2 for three 
different wavelengths. We can consider 0/00 as an 
amplification factor, that is, it gives the relative 
magnitude of 0 at R as compared to 0 at Ro. As seen 
from the table, these amplification factors are very 
large. Experimentally values of 0 of 3(10-3) cm have 
been observed at R == 0.175 cm. Extrapolating to 
R = 0.05 cm gives a value of 0 == 10- 7 cm as the size 
of the initial perturbation. It is clear from table 2 
that the amplification factor is a function of wavelength. 
For small R, perturbations with A = 0.045 cm are ampli
fied slightly more than perturbations corresponding 
to the other wavelengths of the table. For larger R, 
however, the amplification is greatest for A = 0.055. 
Calculations similar to these will be useful in attempt
ing to predict the wavelength of the perturbation which 
appears on a growing cylinder. However, such a 
prediction requires some assumption about the 
initial distribution of the amplitudes of the perturba
tions of various wavelengths. 

We wish to discuss the effect of solute on the 
stability equations. It is interesting that for no aniso
tropy and zero surface tension, the addition of solute 
has no effect on (8/0)/(R/R), i.e., eqs (5b) and (6b) 
are identical. The addition of solute changes the 
unperturbed growth rate by changing DT. For a bath 
undercooling ~T= 0.1, the value of (DT) for various 
values of mCb are given in table 3. 

Also of interest is the factor 1 + (ma/v) appearing 
in eq (5b). It can be shown that 

(ma/v) == (h/DLv)(mcb)(l + ks/h) == 9 (mcb). 

Thus for mCb < 0.1 deg., 1 + (ma/v) varies from 1 to 2. 
Since DT varies more rapidly than this, the main effect 
of adding solute is to decrease DT and thus to increase 
the magnitude of the last terrl1 in ~q (5b). Thus for 
fixed ~T adding solute makes (%)/(R/R) smaller, thus 
stabilizing the cylinder. On the other hand for fixed 
(DT), which corresponds to not changing the unper
turbed velocity R, the addition of solute increases 
(8/o)/(R/R) and consequently makes the cylinder more 
unstable. The above statements assume that the 
r 0 term is the dominant term inside the bracket of 
eq (5b) and that the addition of solute does not change 
the physical properties such as the surface tension. 
If solute is adsorbed at the interface, one expects a 
lowering of the surface tension. One method of study
ing such effects is to add a very small amount of solute, 
e.g., 10-4 M NaCI in which case mCb == 4(10- 4) . From the 
preceding calculations, it is clear that DT == ~T and 
1 + (ma/v) == 1 so that eqs (6a) and (6b) can be used. 
Thus any difference between experimental results 
for distilled water and water containing 10-4 M of 
impurities should probably be attributed to a change 
in the surface tension due to adsorption at the interface. 

In summary, we have analyzed the stability of a 
solid cylinder growing by heat flow into a binary melt 
and have take n account of any small anisotropy in 
the interface properties. In particular, we have pro
vided a theoretical framework for the experimental 
study of the stability of ice cylinders. 
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TABLE 1. (d In ll/dR) as a function of R for >-. = 0.055 cm; y = O.OlB 
J /m 2 and /Yl'= 0.1 deg. 

R(cm) (dlnll/dR) (em-I) 

0.100 85.8 
.1l0 84.3 
.120 82.9 
.130 81.7 
.140 80.7 
.150 79.7 
.160 78.9 
.170 78.1 
.180 77.4 
.190 76.8 
.200 76.3 

TABLE 2. Effect of wavelength on Il/Ilo for y=O.OlB J/m2 and 
tlT= 0.1 deg. 

(Il/Ilo) 
R(cm) 

>-'=0.045 em 1..=0.055 em >-' = 0.065 em 

0.050 1.00 1.00 1.00 
.075 1.08(10 1 ) 1.07 (10 1 ) 9.88 
.100 9.85(10 1) 9.70(10 1 ) 8.16(lO') 
.125 7.80(102 ) 7.91(lO') 6.07(lO') 
.150 5.53(103) 5.99(103) 4.22(103) 
.175 3.59(104) 4.28(104 ) 2.80(104) 
.200 2.17(105 ) 2.93 (105 ) 1.80(105) 

TABLE 3. Value of effective undercooling (DT) as afunction of added 
solute for bath undercooling tlT=O.l °C (t/Ab=l.B deg- I used in 
the calculation) 

0.001 0.0988 
.01 .0881 
.02 .0768 
.04 .0556 
.06 .0359 
.08 .0174 
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