JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 73A, No. 1, January-February 1969

Specific Heats of Oxygen at Coexistence*

Robert D. Goodwin** and Lloyd A. Weber**

Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

(August 8, 1968)

Specific heats of saturated liquid, along the coexistence path, are useful for computing thermodynamic properties throughout the compressed liquid phase. We report 86 experimental heat capacities of oxygen for the two-phase system, liquid plus vapor, from the triple-point to near the critical-point and corresponding derived values for the liquid phase. These results are represented by a formula which can be integrated for heat absorbed and for entropy. The changes in value of internal energy, enthalpy, and entropy of the saturated liquid are tabulated from the triple-point to the critical-point.

Key Words: Coexistence; experimental; heat capacity; liquid phase; oxygen; saturated liquid; specific heat.

 R_l

input lead-wire resistance.

path. We tabulate also the energy and enthalpy. Our results for specific heats in single-phase domains will

be reported separately. In a forthcoming publication

by one of us (L.A.W.), the present results are used

density.

List of Symbols

		r	
A, B, C, r	constants for eq (5.1) .	S	entropy.
A_i	coefficients for liquid density formula.	t	time.
B_i	coefficients for rectilinear diameter	Т	temperature, Kelvin.
	formula.	T_{1}, T_{2}	initial and final temperatures of a heating
C_i	coefficients of formula for C_b .		interval.
D_i, E_i	binomial coefficients (appendix IV).	T_a	average temperature in ΔT .
C_a	gross heat capacity adjusted for curvature.	T_c	critical-point temperature, 154.77 K. [17]
C_{h}^{a}	heat capacity of empty calorimeter bomb.	T_t	triple-point temperature, 54.3507 K. [17, 18]
\overline{C}	specific heat, two-phase sample, adjusted	ΔT	calorimetric temperature increment, deg.
	for curvature.		Celsius.
\overline{C}_r	specific heat of two-phase sample at con-	v	molal volume, $1/\rho$.
	stant total volume.	V_{h}	volume of the calorimeter bomb.
C_{σ}	specific heat of liquid on coexistence path.	V_1	total liquid volume.
E	internal energy.		
En	volt-box output potential.		1. Introduction
E_{s}	potential across standard resistor for		
	heater current.	This wo	ork is part of a program on thermodynamic
H	enthalpy.	properties	of oxygen. For gaseous states the tempera-
ΔH_v	heat of vaporization.	ture depe	ndence of these properties may be obtained
J	the joule.	from spec	etroscopically derived specific heats at zero
k	conversion factor, 0.101325 J/cm ³ atm.	density []] ¹ combined with accurate PVT data. For
N	total g moles of fluid in bomb plus capillary	compresse	ed liquid states, however, additional data
	tube.	are requir	red. Useful among these are specific heats
Nb	g moles of fluid in the bomb.	of satura	ted liquid, $C_{\sigma}(T)$, along the coexistence
N _c	g moles of fluid in the capillary tube.	path. In	the present report we give experimental
P	pressure, 1 atm = 0.101325 MN/m ² .	results fro	om near the triple-point to near the critical-
0	heat energy; also calorimetric heat input.	point. We	give an empirical formula for temperature
$\tilde{Q}/\Delta T$	unadjusted, gross heat capacity.	dependen	ce of these results, and the integrals in
R _b	volt-box input resistance.	analytical	form which we use for calculating the heat
		absorbed	and the change in value of entropy on this

^{*}This work was carried out at the National Bureau of Standards under the sponsorship of the National Aeronautics and Space Administration Fund Transfer R-06-006-046. **Cryogenics Division, NBS Boulder Laboratories, Boulder, Colorado 80302.

¹ Figures in brackets indicate the literature references at the end of this paper.

with extensive PVT data to construct a complete thermodynamic network for oxygen from the triplepoint to 300 K at pressures to 300 atm.

2. Apparatus and Procedures

2.1. Apparatus

The calorimeter is the same as used previously for hydrogen [2, 3], except that nearly all of the internal electric wires were replaced (following a relocation of our laboratory). In brief, the spherical sample-holder of type 316 stainless steel is about 2 in in diameter. It is filled via a stainless steel capillary tube 34 in long, $\frac{1}{16}$ in o.d. and 0.006 in i.d., terminating in a shutoff valve on top of the cryostat. A lightweight, cylindrical copper case on the sphere protects the 100 Ω electric heater (wound on the sphere) and serves as the reference temperature for two thermopiles (100 μ V/deg C) controlling a guard ring and the adiabatic shield. For control of each of these shields we use a commercial, electronic "controller," giving automatic reset and rate sensitivity, in addition to our previous equipment. We observe the relative shield temperatures continuously on a recorder.

Temperature of the sample-holder is measured with the same platinum resistance thermometer (NBS 1955 scale) and 6-dial, μ V potentiometer. Pressures are measured with the same dead-weight gage (piston diameters recently recalibrated), accurate to about one part in 10,000. For safety, oil of the gage is separated from the oxygen by nitrogen gas between two null-diaphragms. Filling pressures are corrected for hydrostatic pressure of cold oxygen in the capillary tube.

We obtain the calorimetric heating rate from simultaneous readings of potential and current. Potential wires are connected at the heater in a manner to account for heat developed in the current-carrying wires between shields and calorimeter [4, 5]. The potential wires lead to a potential-divider (volt-box). We correct for resistance of these potential wires, and for current drawn by the volt-box. The heater current is measured potentiometrically by means of a calibrated, standard resistor and a type K-3 potentiometer.

Time of the heating interval, Δt , is measured by an electronic counter (quartz piezoelectric oscillator) accurate to better than one part in a million. This counter is switched on and off by the potential across the calorimeter heater. An intervening transmitting circuit, of 22 megohm input impedance, gives the counter a signal independent of the heater potential.

2.2. Procedures for the Sample

The commercial high-purity oxygen (maximum nominal impurities 0.01%) is taken from a steel cylinder at about 130 atm. At this pressure the oxygen flows through a molecular sieve trap at 76 K, and is admitted slowly to the calorimeter bomb until this pressure also is near 130 atm. The amount of sample is fixed by the selected bomb temperature. A steady state exists after 30 min, when we measure temperature and pressure. We then immediately close the cryostat valve, and begin cooling the bomb into the region of two phases for the contained oxygen.

2.3. Procedure for a Heat Measurement

We measure five temperatures, T(t), in several minutes immediately preceding a heat. They are extrapolated linearly to obtain T_1 at the midtime, t_a , of the heating interval. For a temperature rise of about 5 °C in 10 min we use currents from 0.04 to 0.12 A, dependent on the amount of sample. We average electric power from three pairs of potential and current readings. Shield temperatures as shown on the recorder lag about 0.005 °C at the start, recovering to within 0.001 °C of the calorimeter in about a minute. The opposite behavior follows ending of a heat. We then observe temperature drift of the calorimeter on another recorder. In about 20 min the temperature no longer increases, and may begin a very slow decrease (imperfect adiabatic shielding), when we take another five values for T(t) over about 5 min. They are extrapolated linearly to obtain T_2 at t_a .

3. Calculations and Adjustments

3.1. Amount of Sample

Given the filling conditions P and T, we use an equation of state, appendix V, to calculate the onephase density with an uncertainty of about 0.1 percent. By use of our bomb volume (uncertainty 0.1%, appendix I) we then have the amount of sample in the bomb. We sum amounts over the length of the capillary tube by use of estimated temperatures in appendix II, and above equation of state. Sum of amounts in bomb and capillary is N, total gram moles in the closed system, with maximum uncertainty of 0.2 percent.

3.2. The PVT Conditions

We use the average temperature for a specific heat observation, $T_a = (T_1 + T_2)/2$, to calculate pressure P_a from the vapor-pressure equation (appendix VI). First and second derivatives of P(T) also are calculated at T_a . Volume of the bomb, V_b , and dV_b/dT are calculated at T_a , P_a (appendix I). Amount of sample in the bomb is $N_b = N - N_c$ where N_c is amount in the capillary tube at T_a , P_a . The increased amount in capillary tube, δN_c , is amount at T_2 , P_2 less amount at T_1 , P_1 . Average density of the sample is defined $\rho_{av} \equiv N_b/V_b$.

Density of the liquid phase, ρ_l mole/cm³, and the derivative versus T, we obtain from the function (L.A.W.) of table 1. By use of the function for rectilinear diameter (L.A.W.) table 2, we obtain the vapor density, ρ_g . Relative volume of liquid in the bomb then is

$$V_l/V_b = (\rho_{av} - \rho_g)/(\rho_l - \rho_g), \qquad (3.1)$$

where V_l is absolute (not molal) volume of the liquid phase.

3.3. Gross, Tare, and Net Heat Capacities

Corresponding to the temperature rise ΔT , the total heat absorbed is Q joules, calculated from volt-box potential E_b , potential E_s across the standard resistor (both in volts), and time Δt , seconds,

$$E_x \equiv E_b \cdot (1 + R_l/R_b)/K, \qquad (3.2)$$

$$I_b = E_x / (R_b + R_l), \qquad (3.3)$$

$$Q = E_x \cdot [E_s/R_s - I_b] \cdot \Delta t. \tag{3.4}$$

In (3.4), $R_s = 1.000\ 004\ \Omega$, $R_b = 225,000\ \Omega$ is volt-box input resistance, $R_l = 30\ \Omega$ is resistance of the potential wires between heater and volt-box, and K = 1/2000is the volt-box ratio (0.02% accuracy). Potentiometer accuracies for E_b and E_s are 0.01 percent and 0.015 percent. Uncertainty in Q therefore is about 0.05 percent.

TABLE 1. Densities ρ_l of saturated liquid oxygen

$$ho_l =
ho_c + 10^{-6} \cdot \sum_{n=1}^7 A_n \cdot x^n$$

where $x \equiv (T_c - T)^{1/3}$.

$T_c = 154.77 \text{ K}$ $A_1 = 3419.8$ $A_3 = 319.91$ $A_5 = 92.846 5$ $A_7 = 0.927 88$	$\begin{array}{ll} \rho_c = & 0.01362 \; \mathrm{mol/cm^3} \\ A_2 = & 516.52 \\ A_4 = - \; 275.099 \\ A_6 = \; -14.724 0 \end{array}$

 TABLE 2.
 Rectilinear diameter for oxygen

$$(\rho_l + \rho_g)/2 = \rho_c + 10^{-3} \cdot \sum_{n=1}^{8} B_n \cdot x^n$$

where $x \equiv (T_c - T)/100$.

$T_c = 154.77 \text{ K}$	$\rho_c = 0.01362 \text{ mol/cm}^3$
$B_1 = 5.892$	$B_2 = 3.256$
$B_3 = -14.031$	$B_4 = 43.814$
$B_5 = -75.269$	$B_6 = 71.788$
$B_7 = -36.405$	$B_8 = 7.727$

As discussed below, the value of ΔT depends on the temperature scale, on extrapolations in time, and randomly on use of the potentiometer dials. We take the nominal uncertainty in ΔT to be $(0.1\%) \cdot (5/\Delta T)$. Uncertainty in the observed gross heat capacity, $Q/\Delta T$, therefore is roughly 0.15 percent.

An uncertainty in ΔT of roughly 0.05 percent is probable, based on uncertainties in slope of the temperature scale relative to the thermodynamic scale [7]. The statistical uncertainty in temperature increment, $\Delta T = T_2 - T_1$, obtained from least squares fitting of the T(t) data, usually is near 0.01 percent, with rare values of 0.03 percent. Possible uncertainties arising from accuracy of the potentiometer for $\Delta T = 5.0$ °C, are given by the last column of table 3. Values this large arise only by chance if the uppermost dial of the potentiometer is changed in obtaining ΔT . Most frequently the uncertainties will be 0.1 to 0.01 of these values. R. E. Barieau kindly pointed out that this uncertainty could be diminished by an autocalibration of the potentiometer.

TABLE 3. Uncertainties of temperatures derived from the potentiometer accuracy, k=0.01 percent, and characteristics of the platinum resistance thermometer

	$\delta T = k \cdot R \cdot dT/dR$										
<i>Т</i> , К	R, Ω	dR/dT	δΤ	$(\delta T/5.0), \%$							
50 100 150 200 300	$ \begin{array}{r} 1.923 \\ 7.305 \\ 12.72 \\ 17.99 \\ 28.23 \\ \end{array} $	0.095 .110 .107 .104 .101	0.002 .007 .012 .017 .028	0.04 .13 .24 .35 .56							

We measured 68 tare heat capacities C_b of the empty calorimeter bomb from 55 to 300 K, in J/K. They were adjusted for curvature by application of a cubic expression in three separate ranges of T. After investigating various ways to utilize Debye functions, we represent these data more simply by

$$\operatorname{Log}_{e}(C_{b}/50) = \sum_{i=1}^{8} C_{i} \cdot (100/T)^{i-1}, \quad (3.5)$$

with an rms relative deviation of 0.11 percent. Table 4 gives values for coefficients, C_i . For this report the deviation applies to values of C_b from 20 to 67 J/K in the range $55 \le T < 155$ K. For any quantity of sample, therefore, absolute uncertainty in the quantity $[Q/\Delta T - C_b]$ will range from 0.02 to 0.07 J/K due to uncertainties in C_b alone over the above range of T.

TABLE 4. Constants for C_b of the empty calorimeter, eq (3.5)

$C_1 = 0.9625$	75	$C_2 = -2.6479$	48
$C_3 = 6.6945$	41	$C_4 = -11.5636$	585
$C_5 = 10.9871$	61	$C_6 = -6.0136$	545
$C_7 = 1.7776$	616	$C_8 = -0.2195$	491

3.4. Curvature Adjustment

If the specific heat is not a linear function of T, a curvature adjustment may be necessary to find its value at the average temperature $T_a[5]$. We have applied this adjustment to the gross heat capacities, assuming that their true behavior is represented by

$$C_a = C_1 + C_2 \cdot T_a + C_3 \cdot T_a^2 + C_4 \cdot T_a^3 + C_5 / \sqrt{T_c - T_a}, \quad (3.6)$$

where T_c is the critical temperature. (The coefficients C_1 , C_2 etc. are not related to those of table 4.) The experimental gross heat capacity at average temperature T_a then is

$$C_{a} = Q/\Delta T$$

$$- \{C_{3}/12 + C_{4} \cdot T_{a}/4 + (C_{5}/32)/(T_{c} - T_{a})^{5/2}\} \cdot \overline{\Delta T}^{2}.$$
(3.7)

This formula is obtained by integrating (3.6), i.e., $C_a \equiv \delta Q/dT$, between the limits $(T_a - \Delta T/2)$ and $(T_a + \Delta T/2)$. Collection of terms then yields two parts for Q, $C_a(T_a)$ the desired heat capacity at T_a , and a correction term which is a function of T_a and of ΔT . Coefficients in (3.6) are found by least squares, using $C_a = Q/\Delta T$. The difference between C_a and $Q/\Delta T$ is found to be small compared with various uncertainties and therefore could be neglected in the present work. For brevity, we define results of the curvature adjustment on specific heat of the two-phase sample as follows (prior to adjustment for calorimeter volume expansion),

$$\bar{C} = (C_a - C_b)/N_b, \qquad (3.8)$$

with uncertainty of roughly 0.5 percent when $C_a \approx 2 \cdot C_b$.

3.5. Expansion and Capillary Adjustments

The bomb expands during the calorimetric interval ΔT . An adjustment to find specific heat at constant volume has been described [8, 9]. The capillary tube absorbs an amount of vapor, δN_c , which must boil away from liquid in the bomb. Combining these adjustments we obtain C_v for the two-phase sample,

$$\overline{C}_{v} = \overline{C} - \{T_{a}(dP/dT)(dV_{b}/dT) + \delta N_{c} \cdot \Delta H_{v}/\Delta T\}/N_{b}.$$
(3.9)

For this expression, we describe the heat of vaporization in joules per mole by use of $x \equiv (1 - T_a/T_c)$,

$$\Delta H_v = x^{0.4} \cdot (1.05 - 0.2 \cdot x) \cdot 10^4. \tag{3.10}$$

For computing overall uncertainty (see below), we take the following rough estimates,

$$(dP/dT)$$
, 0.5%, (dV/dT) , 2.0%

 δN_c , 100.0%, ΔH_v , 2.0%.

A large uncertainty is assumed for δN_c because temperature along the capillary tube is poorly defined. A portion of the total capillary volume of 0.015 cm³ is outside the cryostat, at room temperature.

3.6. Calculation for C_{σ}

At sufficiently low temperatures one may observe directly C_{σ} , the heat capacity of the condensed phase at its own (negligible) vapor pressure. Otherwise C_{σ} is related to \overline{C}_{v} of the two-phase system via PVT properties [8, 10]

$$C_{\sigma} = \bar{C}_{v} + (T/\rho)$$

 $\cdot \{ (-d\rho/dT) (dP/dT) / \rho - ((V_{b} \cdot \rho/N_{b}) - 1) \cdot d^{2}P/dT^{2} \},$
(3.11)

where ρ referes to the liquid phase. At the critical point $(-d\rho/dT) = \infty$. If the bomb is completely filled with liquid, $V_b \cdot \rho/N_b = 1$. For computing overall uncertainty (see below), we take the following rough estimates

$$ho, 0.1\%$$
 $V_b/N_b, 0.2\%$
 $d
ho/dT, 1.0\%$ $d^2P/dT^2, 5.0\%.$

4. Experimental Results

Table 5 gives loading conditions for the sample in five experimental runs. Temperature and pressure, obtained by computation from laboratory observations, in effect are direct measurements. Volume of the bomb is computed, appendix I. Density is obtained by iterating the equation of state [6]. Total g moles, N, includes a few ten-thousandths in the capillary tube.

Table 6 gives the experimental conditions, the specific heats, and the uncertainties (errors) for each measurement (point) of the five experimental runs. Under ID is given the run number, followed by two digits for the point in that run. Temperature is the average, T_a . Pressure, bomb volume, and density are calculated, section 3. This density is the defined average, $\rho_{av} = N_b/V_b$. The sixth column gives ΔT , followed by $Q/\Delta T$, its value adjusted for curvature, and the tare heat capacity from (3.5). Next is \bar{C}_v for the two-phase system, obtained via the adjustment of (3.9), and then C_{σ} calculated via (3.11), both in J/(mol K). The last two columns give uncertainties for \bar{C}_v and for C_{σ} in percent, calculated by methods of appendix III.

TABLE 5. Loading conditions for the samples

Run	<i>Т</i> , К	P, atm	V, cm^3	ρ, mol/l	N, mol
2	105.050	101 400	70.100	10.100	0.000
2	197.279	131.432	73.133	13.128	0.9602
3	139.255	129.352	72.950	28.679	2.0924
5	173.070	129.980	73.054	20.223	1.4775
20	180.928	123.245	73.072	16.833	1.2302
32	137.181	106.345	72.934	28.633	2.0882

С_v Ј/М-К Errors Percent DODTA CSAT ID Pres. V_b Dens. DEL T DO/DTTemp. Tare J/M-K K atm. cm³ mol/l K J/deg J/deg J/deg C_{v} CSAT 2.75474.096 74.096 22.910 53.307 53.243 0.580 0.587 201 56.948 0.003 72.669 13.214 13.213 76.465 76.466 25.185 53.404 53.280 .541 3.673 .527 202 60.157 .007 72.672 53.298 60.357 .008 72.672 13.213 3.645 76.628 76.629 25.326 53.428 .529 .543 203 .550 79.350 27.835 53.649 204 63.936 .018 72.677 13.212 3.525 79.350 53.405 .577 67.925 72.313 82.261 205 .042 72.682 13.211 4.481 82.261 30.578 53.824 53.377 .516 .566 13.210 53.345 .092 72.688 4.309 85.477 85.477 33.501 54.129 .538 .626 206 .558 .697 207 76.537 .181 72.695 13.209 4.151 88.651 88.650 36.199 54.624 53.390 80.914 72.702 13.208 4.614 92.088 92.087 38.860 55.430 53.591 .548 .756 208 .335 247 81.735 .374 72.704 13.207 .936 92.488 92.488 39.344 55.344 53.376 1.291 1.543 72.710 13.206 4.427 95.857 95.856 41.459 56.648 54.041 .564 .860 209 85.426 .590 93.826 40.276 .749 1.011 13.207 2.276 93.826 55.767 53.532 248 83.340 .458 72.707 87.465 91.759 72.714 72.723 13.205 4.377 97.515 97.513 42.585 57.201 54.201 .570 .911 210 .745 1.176 100.793 100.791 58.246 1.032 13.204 4.228 44.859 54.336 585 211 212 95.904 1.752 72.732 13.202 4.088 104.017 104.014 46.933 59.441 54.561 .598 1.160 48.972 100.224 13.200 4.580 107.561 107.558 61.006 55.036 .578 1.266 72.742 2132.557 13.198 111.190 50.953 62.724 55.572 .588 1.417 214 104.683 3.649 72.752 4.432 111.194 215 109.022 5.011 72.763 13.196 4.280 114.936 114.931 52.764 64.730 56.397 .597 1.567 66.999 57.402 1.682 216 113.688 6.856 72.776 13.194 5.087 118.950 118.942 54.592 .564 217 118.664 9.323 72.790 13.192 4.899 123.492 123.484 56.412 69.827 58.951 .569 1.847 57.958 127.721 127.715 72.617 60.725 .619 2.043 218 72.803 13.189 3.846 123.185 12.070 219 127.626 15.294 13.187 5.079 132.040 132.026 59.383 75.615 62.979 .558 2.091 72.817 2.204 137.178 66.468 .561 19.576 72.834 13.183 4.881 137.197 60.872 79.419 220 132.584 2.265 221 137.495 24.605 72.851 13.180 5.115 142.744 142.710 62.249 83.733 71.438 .547 151.443 151.349 82.803 222 32.240 72.875 13.176 5.273 63.863 91.026 .532 2.274 143.712 104.910 223 148.798 39.696 72.896 13.172 4.954 161.666 161.307 65.087 100.099 .529 2.174 224 2.288 174.037 173.290 65.903 111.709 159.122 .702 2.035 152.389 45.729 72.912 13.169 301 57.563 .004 72.669 28.793 2.150134.441 134.440 23.348 53.094 53.080 .563 .565 .508 28.792 2.769 136.329 136.328 25.089 53.164 53.142 .505 302 60.020 .007 72.672 28.790 138.737 138.735 27.279 53.268 53.229 .471 303 .015 72.676 3.473 .466 63.138 29.966 141.546 53.259 72.681 28.788 4.309 141.548 53.327 .438 .446 304 67.026 .035 28.786 144.316 144.314 32.805 53.293 53.179 .450 .466 305 71.253 .077 72.687 4.146 .451 .467 .082 72.687 28.786 144.308 144.307 33.041 53.177 53.059 306 71.610 4.145147.560151.277147.559151.27772.694 28.783 5.008 35.975 53.329 53.146 .431 307 76.180 .171 .456 .480 72.703 28.780 4.874 38.978 53.671 53.407 .441 81.112 .344 308 309 85.910 .624 72.711 28.776 4.757 155.073 155.074 41.729 54.170 53.827 .450 .504.508 1.090 28.772 158.927 158.929 44.473 54.700 54.289 .436 310 91.013 72.721 5.466 96.412 1.835 72.733 28.768 5.353 162.482 162.484 47.179 55.105 54.663 .444 .535 311 101.694 2.885 72.745 28.763 5.231 166.132 166.133 49.639 55.672 55.272 .452 .560 312 .459 .582 313 106.854 4.290 72.758 28.758 5.115 169.825 169.823 51.873 56.367 56.113 $173.190 \\ 177.526$ 28.753 53.791 57.073 .577 5.980 72.770 5.817 173.184 57.055 .445 314111.605 58.690 .587 55.952 .449 315 117.372 8.629 72.786 28.747 5.738 177.510 58.087 123.021 11.961 72.803 28.740 5.585 182.011 181.979 57.904 59.286 60.874 .455 .588 316 .391 501 58.515 .005 72.670 20.332 7.229 102.718 102.718 24.024 53.261 53.218 .386 53.289 6.924 107.935 107.935 28.979 53.437 .404 .421 20.330 502 65.588 .026 72.679 53.199 .462 503 72.387 .093 72.688 20.327 6.700 112.688 112.687 33.549 53.561 .420 72.699 6.483 117.578 117.577 37.695 54.064 53.369 .435 .517 78.969 .257 20.324 504 85.485 .594 72.711 20.321 6.569 122.788 122.786 41.492 55.019 53.877 .442 .579 505 72.723 127.571 127.569 44.936 54.261 .660 91.909 1.194 20.317 6.302 55.924 .455 506 47.984 56.940 54.741 .466 .745 507 98.099 2.132 72.737 20.313 6.100 132.123 132.119 137.342141.950 55.727 56.770 137.338 50.946 58.465 104.668 3.645 72.752 20.309 5.819 .477 .840 508 141.943 59.901 72.767 20.305 53.424 .472 .912 509 110.671 5.615 6.216 .992 72.784 20.300 6.012 147.003 146.994 55.734 61.753 58.421 .479 510 116.768 8.318 151.941 60.528 .486 1.060 151.952 20.295 63.712 511 122.642 11.713 72.801 5.771 57.777 157.421163.34815.996 21.382 20.290 6.071 157.401 59.654 66.131 63.681 .479 1.096 512 128.503 72.820 163.314 1.122 134.442 72.840 20.284 5.848 61.404 68.939 68.327 .483 513 514 139.909 27.392 72.860 20.278 5.129 169.472 169.416 62.892 72.051 75.118 .500 1.13372.878 175.847 175.757 64.066 75.536 85.273 .532 1.133 144.531 33.362 20.273 4.163 515 4.948 90.069 90.069 24.458 53.334 53.266 .445 .452 2001 .006 72.671 16.928 59.127 .482 2002 63.957 .018 72.677 16.927 4.748 93.761 93.761 27.849 53.578 53.414 .463 97.212 100.365 2003 16.926 97.212 31.062 53.771 53.444 .479 .516 68.641 .048 72.683 4.631 53.886 100.364 53.315 .496 .561 34.073 16.924 4.486 2004 73.193 .107 72.689 77.601 72.697 16.922 4.348 103.626 103.625 36.858 54.273 53.377 .512 .615 2005 .212 55.396 16.920 108.880 108.878 40.729 53.858 .485 .662 2006 84.131 .505 72.708 5.535 2007 89.547 .935 72.718 16.917 5.322 113.143 113.141 43.704 56.442 54.244 .499 .755 16.915 5.824 117.347 117.344 57.549 54.584 .492 .842 46.543 2008 95.108 1.628 72.730

TABLE 6. Experimental specific heats, saturated liquid oxygen

ID	Temp.	Pres.	V _b	Dens.	DEL T	DQ/DT	DQDTA	Tare	C_v	CSAT	Errors	Percent
	K	atm.	cm ³	mol/l	K	J/deg	J/deg	J/deg	J/M–K	J/M–K	C_v	CSAT
2000	101.050	9.740	70 749	16 011	6 105	100.001	100.000	40.252	50.070	55.996	400	050
2009	101.059	2.740	72.743	16.911	0.105	122.031	122.020	49.352	59.070	55.220	.492	.952
2010	107.235	4.417	79 775	16.908	6 116	127.005	127.050	54 519	62 100	57.400	.490	1.072
2011	110.470	0.703	72 703	16 900	6 315	132.101	132.133	56 766	65 680	50.469	.490	1.200
2012	125 847	13 936	72.195	16.900	6.066	143 326	143 300	58 823	68 650	62 227	.495	1.310
2013	133 607	20,556	72.837	16.889	5.756	151 059	151 028	61 166	73.007	67 580	505	1.424
2015	139.222	26.577	72.858	16.884	5.513	157.562	157.504	62.711	77.003	74 171	507	1.546
2016	144.586	33.439	72.879	16.880	5.260	165.194	165.048	64.080	82.007	85.561	.508	1.531
2017	149.672	41.101	72.900	16.874	4.960	176.417	175.696	65.289	89.660	112.651	.506	1.442
3201	56.440	.003	72.668	28.736	3.670	133.850	133.848	22.547	53.301	53.290	.444	.446
3202	60.313	.008	72.672	28.734	4.084	136.722	136.721	25.296	53.360	53.336	.434	.437
3203	64.924	.023	72.678	28.732	4.364	140.173	140.172	28.521	53.468	53.417	.432	.439
3204	69.487	.056	72.684	28.730	4.772	143.206	143.205	31.631	53.431	53.337	.427	.440
3205	74.304	.128	72.691	28.727	4.876	146.489	146.489	34.788	53.492	53.336	.431	.453
3206	79.250	.268	72.699	28.724	5.032	150.113	150.114	37.865	53.754	53.519	.434	.468
3207	84.378	.520	72.708	28.720	5.254	154.102	154.103	40.869	54.226	53.904	.434	.483
3208	89.559	.937	72.718	28.716	5.122	157.864	157.865	43.710	54.666	54.266	.443	.510
3209	94.825	1.585	72.729	28.712	5.428	161.408	161.409	46.404	55.072	54.626	.441	.527
3210	100.347	2.583	12.142	28.707	5.635	165.171	165.171	49.029	55.616	55.187	.441	.546
3211	105.901	5.999	12.155	28.701	5.493	169.126	169.124	51.472	56.337	56.034	.448	.570
3212	111.010	5.982	12.110	28.090	5.321	173.243	173.237	53.793	57.193	57.196	.450	.590
3213	199 534	0.441	72 801	20.090	5.502	101.342	101.662	57.741	50.178	56.710	.454	.593
5214	122.004	11.042	12.001	20.005	0.072	101.091	101.005	57.741	39.331	00.791	.455	.590

TABLE 6. Experimental specific heats, saturated liquid oxygen-Continued

UN = 0.2, UA = 0.15, UB = 0.1, UC = 2.5, UD = 102.0, UE = 1.6, UF = 0.3, UG = 5.0, UH = 0.1.

5. Formulation and Comparisons With Earlier Data

An analytical description of $C_{\sigma}(T)$ is required for computations. Using the reduced argument, $x \equiv (T_c - T)/(T_c - T_t)$ where T_c and T_t are criticalpoint and triple-point temperatures, we find that a plot of $C_{\sigma} \cdot x^{1/2}$ versus T is a straight line, except for a small deviation as $T \rightarrow T_c$, figure 1. In the following

FIGURE 1. Data of run No. 2 in coordinates of eq (5.1).

form, this deviation is described by a binomial, which can be expanded for term-by-term integration,

$$C_{\sigma} = [A + B \cdot x + C \cdot (1 - r \cdot x)^{n}]/x^{1/2}, \qquad (5.1)$$

with n = 12. We define $r \equiv (T_c - T_t)/T_c$, such that $(1 - r \cdot x) \equiv T/T_c$.

This formula is similar to results obtained for a van der Waals fluid [16]. The weighted least squares determination of coefficients yields

$$A = 25.60277, B = 27.71001, C = -2.48274.$$

In table 7 the column PCNT is percent deviation of data, CSAT, from the calculated value, CALC. Weights, WT, are inversely proportional to the square of absolute errors obtained from the last column of table 6. In the last column of table 7, $D_2 \equiv (CSAT-CALC)^2$ and column entries are $D2 \cdot WT$. For n=86data, the weighted, mean-square relative deviation is

$$\left\{\sum_{\sigma}^{n} \left(\Delta C_{\sigma}/C_{\sigma}\right)^{2} \cdot WT \middle/ \sum_{\sigma}^{n} WT \right\}^{1/2} \cdot 100 = 0.19\%.$$

The correspondingly weighted absolute mean-square deviation is 0.11 J/mol K.

ID	Temp.	CSAT	CALC	PCNT	Weight	D2*WT	ID	Temp.	CSAT	CALC	PCNT	Weight	D2*WT
3201 201 301 501 2001	56.440 56.948 57.563 58.515 59.127	53.290 53.243 53.080 53.218 53.266	53.294 53.290 53.286 53.280 53.277	$ \begin{array}{r} -0.007 \\088 \\386 \\117 \\021 \end{array} $	1.5956 .5287 .5631 .9487 .7744	$\begin{array}{c} 0.002 \\ .115 \\ 2.379 \\ .366 \\ .010 \end{array}$	2008 212 311 507 213	95.108 95.904 96.412 98.099 100.224	$54.584 \\ 54.561 \\ 54.663 \\ 54.741 \\ 55.036$	54.565 54.645 54.698 54.884 55.143	$.034 \\154 \\064 \\260 \\194$	$\begin{array}{c} .2872\\ .1675\\ .5845\\ .3490\\ .1418\end{array}$.010 .119 .072 .712 .162
302 202 3202 203 303	$\begin{array}{c} 60.020\\ 60.157\\ 60.313\\ 60.357\\ 63.138 \end{array}$	53.142 53.280 53.336 53.298 53.229	53.274 53.274 53.273 53.273 53.273 53.272	248 .012 .118 .047 081	.6574 .5978 1.6550 .5929 .7318	$1.146 \\ .002 \\ .652 \\ .037 \\ .136$	$3210 \\ 2009 \\ 312 \\ 508 \\ 214$	$\begin{array}{c} 100.347\\ 101.059\\ 101.694\\ 104.668\\ 104.683\end{array}$	55.187 55.226 55.272 55.727 55.572	55.159 55.253 55.340 55.787 55.790	$\begin{array}{r} .051 \\049 \\123 \\108 \\390 \end{array}$.9920 .2298 .5364 .2790 .1142	.079 .017 .247 .102 .542
204 2002 3203 502 304	$\begin{array}{c} 63.936\\ 63.957\\ 64.924\\ 65.588\\ 67.026\end{array}$	53.405 53.414 53.417 53.289 53.259	53.274 53.274 53.278 53.281 53.292	.246 .263 .261 .014 061	.5404 .7054 1.6381 .8563 .7887	.927 1.380 3.168 .005 .085	$\begin{array}{c} 3211 \\ 313 \\ 2010 \\ 215 \\ 509 \end{array}$	$105.901 \\ 106.854 \\ 107.253 \\ 109.022 \\ 110.671$	56.034 56.113 56.211 56.397 56.770	$\begin{array}{c} 55.994 \\ 56.163 \\ 56.237 \\ 56.581 \\ 56.931 \end{array}$.071 090 045 324 283	.8828 .4952 .1823 .0930 .2360	.140 .125 .012 .313 .612
205 2003 3204 305 206	67.925 68.641 69.487 71.253 72.313	53.377 53.444 53.337 53.179 53.345	53.300 53.308 53.318 53.345 53.364	.144 .255 .035 310 035	$\begin{array}{r} .5561 \\ .6369 \\ 1.6381 \\ .7449 \\ .4783 \end{array}$.329 1.181 .058 2.043 .016	$314 \\ 3212 \\ 2011 \\ 216 \\ 510$	$111.605 \\ 111.610 \\ 113.476 \\ 113.688 \\ 116.768$	57.073 57.196 57.499 57.402 58.421	57.143 57.145 57.602 57.656 58.528	123 .090 178 441 183	.4881 .7901 .1430 .0793 .1950	.242 .209 .151 .513 .224
503 2004 3205 207 2005	72.387 73.193 74.304 76.537 77.601	53.199 53.315 53.336 53.390 53.377	53.365 53.381 53.406 53.464 53.497	$\begin{array}{r}311 \\124 \\131 \\139 \\224 \end{array}$	$\begin{array}{r} .7556 \\ .5645 \\ 1.5432 \\ .4036 \\ .4906 \end{array}$	2.073 .247 .753 .223 .702	$3213 \\ 315 \\ 217 \\ 2012 \\ 3214$	$117.010 \\ 117.372 \\ 118.664 \\ 119.674 \\ 122.534$	58.716 58.690 58.951 59.463 60.791	58.603 58.717 59.143 59.498 60.622	.193 046 324 058 .278	.7415 .4557 .0637 .1152 .6991	.946 .033 .234 .014 1.988
504 3206 208 308 247	78.969 79.250 80.914 81.112 81.735	53.369 53.519 53.591 53.407 53.376	53.543 53.553 53.617 53.625 53.652	324 063 048 407 514	.6373 1.4377 .3559 .7097 .1055	$1.920 \\ .163 \\ .024 \\ 3.375 \\ .802$	511 316 218 2013 219	$122.642 \\123.021 \\123.185 \\125.847 \\127.626$	$\begin{array}{c} 60.528 \\ 60.874 \\ 60.725 \\ 62.227 \\ 62.979 \end{array}$	$\begin{array}{c} 60.669 \\ 60.834 \\ 60.906 \\ 62.191 \\ 63.179 \end{array}$	232 .067 297 .058 317	.1637 .4296 .0501 .0926 .0448	.324 .070 .164 .012 .180
248 2006 3207 209 505	83.340 84.131 84.378 85.426 85.485	53.532 53.858 53.904 54.041 53.877	53.726 53.765 53.778 53.834 53.838	360 .173 .235 .384 .073	$\begin{array}{r} .2189\\ .4317\\ 1.3263\\ .2823\\ .5302\end{array}$.820 .373 2.112 1.206 .082	$512 \\ 220 \\ 2014 \\ 513 \\ 221$	$128.603 \\132.584 \\133.607 \\134.442 \\137.495$	$\begin{array}{c} 63.681 \\ 66.468 \\ 67.580 \\ 68.327 \\ 71.438 \end{array}$	$\begin{array}{c} 63.711 \\ 66.670 \\ 67.565 \\ 68.354 \\ 71.775 \end{array}$	047 302 .022 039 470	$.1474 \\ .0367 \\ .0710 \\ .1199 \\ .0305$.013 .149 .002 .008 .347
309 210 2007 3208 310	85.910 87.465 89.547 89.559 91.013	$53.827 \\ 54.201 \\ 54.244 \\ 54.266 \\ 54.289$	$53.862 \\ 53.956 \\ 54.096 \\ 54.097 \\ 54.206$	064 .455 .273 .312 .153	.6535 .2555 .3468 1.1755 .6383	$\begin{array}{r} .079 \\ 1.538 \\ .759 \\ 3.359 \\ .441 \end{array}$	$2015 \\ 514 \\ 222 \\ 515 \\ 2016$	$139.222\\139.909\\143.712\\144.531\\144.586$	74.171 75.118 82.803 85.273 85.561	74.199 75.292 83.275 85.609 85.776	038 231 567 392 251	.0579 .0995 .0229 .0792 .0453	.005 .300 .510 .892 .209
211 506 3209	91.759 91.909 94.825	54.336 54.261 54.626	54.265 54.278 54.538	$.130 \\031 \\ .162$.2061 .4291 1.0881	.103 .012 .845	223 2017 224	148.798 149.672 152.389	104.910 112.651 159.122	105.396 112.502 157.151	461 .132 1.254	.0159 .0303 .0081	.374 .067 3.136

TABLE 7. Comparison of experimental specific heats with values calculated from eq(5.1)

Comparison with earlier data, which exist at temperatures up to the boiling-point, becomes possible by use of (5.1) for interpolation. Table 8 gives such data for saturated liquid oxygen, in J/mol K [11, 12, 4, 13], and compares them with our calculated results. The mean deviation of a few tenths of 1 percent from the data of Giauque and Johnston is within our accuracy.

Values for d^2P/dT^2 at saturation can be derived from two-phase heat capacities at two or more average densities [10]. Such data may be an aid to formulating an accurate vapor pressure equation, and R. E. Barieau brought this to our attention [14] almost simultaneously with the report of Yang and Yang [15]. For coexisting phases the relation is

$$\overline{C}_{v}/T = -d^{2}G/dT^{2} + (d^{2}P/dT^{2}) \cdot v$$
(5.2)

where G is the Gibbs free energy per mole and v is the average molal volume. We see that d^2P/dT^2 is obtained on isotherms as the slope of plots of \overline{C}_v/T versus v. We now use this method only to show consistency between our experimental specific heats and available vapor pressure equations of high accuracy. We have compared two vapor pressure equations [6, 7] with each other, finding excellent agreement in the second derivatives from the triple point to the boiling point.

Column 10 of table 6 gives the raw data, \bar{C}_v , for five runs at four significantly different average densities.

				1
ID	Т, К	Refer.	Calcd.	Prent.
1 1 1 1	57.40 60.50 65.10 67.70	53.60 53.56 53.39 53.22	53.29 53.27 53.28 53.30	0.59 .54 .21 15
1	69.50	53.22	53.32	18
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{array} $	71.30 73.00 56.60 58.00 59.70	53.47 52.80 52.80 52.59 52.13	53.35 53.38 53.29 53.28 53.28 53.28	$\begin{array}{r} .23 \\ -1.08 \\92 \\ -1.30 \\ -2.15 \end{array}$
2 2 2 2 2 2	$\begin{array}{c} 62.50 \\ 65.10 \\ 65.50 \\ 67.40 \\ 67.60 \end{array}$	$53.72 \\ 54.14 \\ 52.47 \\ 52.26 \\ 53.68$	53.27 53.28 53.28 53.30 53.30	$.84 \\ 1.62 \\ -1.52 \\ -1.94 \\ .72$
2 2 2 2 2 2	69.20 70.10 71.00 72.50 72.80	52.26 53.30 52.43 53.09 52.34	53.31 53.33 53.34 53.37 53.37	-1.98 05 -1.71 52 -1.94
3 3 3 3 3 3	56.95 57.95 60.97 61.48 65.57	53.38 53.22 53.18 53.18 53.18	53.29 53.28 53.27 53.27 53.27 53.28	$\begin{array}{r} .17 \\12 \\17 \\17 \\17 \\19 \end{array}$
3 3 3 3 3	65.92 68.77 69.12 70.67 71.38	53.18 53.26 53.35 53.43 53.47	53.28 53.31 53.31 53.34 53.35	19 09 .07 .18 .23
3 3 3 3 3	73.31 74.95 75.86 77.58 78.68	53.60 53.76 53.56 53.72 53.68	53.38 53.42 53.45 53.50 53.53	.41 .63 .21 .42 .28
3 3 3 3 3	81.13 82.31 82.96 84.79 86.43	$53.89 \\ 53.81 \\ 53.89 \\ 54.10 \\ 54.02$	53.63 53.68 53.71 53.80 53.89	.49 .25 .34 .56 .24
3 3 3 3 4	86.61 86.97 87.32 90.33 70.00	$54.18 \\ 54.06 \\ 54.02 \\ 54.35 \\ 53.40$	53.90 53.92 53.95 54.15 53.33	.51 .25 .14 .36 .14
4. 4. 4. 4. 4.	74.00 78.00 82.00 86.00 90.00	53.57 53.73 53.89 54.06 54.22	53.40 53.51 53.66 53.87 54.13	.32 .41 .42 .36 .17

 TABLE 8.
 Comparison of calculated specific heats, J/mol K, with Euken, 1; Clusius, 2; Giauque, 3; Itterbeek, 4.

To interpolate onto isotherms, we represent the data for each run with a fourth order power series (x = T/100),

$$\bar{C}_v = A + B \cdot x + C \cdot x^2 + D \cdot x^3 + E \cdot x^4.$$
(5.3)

The first row of table 9 identifies the experimental run. Second and third rows give density in mol/liter and the molal volume in cm³/mol respectively. Following rows give values for the coefficients in (5.3), followed by the rms deviation in percent. We then give selected isotherms of \bar{C}_v and of \bar{C}_v/T , interpolated by use of eqs (5.3).

We obtain coefficients of (5.2) by least squares using the form

$$C_v/T = A + B \cdot (k \cdot v), \qquad (5.2a)$$

such that $(-d^2G/dT^2) \equiv A$, and $(d^2P/dT^2) \equiv B$. Table 10 gives results on selected isotherms. The first three

TABLE 9. Interpolation of \overline{C}_{v} on isotherms

			1		
ID =	2	20	5	32	3
Dens=	13.21	16.92	20.31	28.72	28.78
Vol=	75 71	59.11	49.23	34.82	34.74
101	10.11	05.11	17.20	01.02	01.11
A =	72.0792	76.3722	78.6311	67.1128	72.2048
B =	-69,9082	-945828	-108.3571	-60.9817	-82,8364
$\tilde{C} =$	80 7733	133 9037	163 3518	96 4842	128,5652
$\tilde{D} =$	-34.2514	-81 4570	-107.2576	-67.6495	-87,2916
$\tilde{F} =$	12 2039	24 5486	31 0169	20.6393	24 8471
Rms =	0.22	0.16	0.12	0.12	0.17
	1				
Temp	C_v	C_v	C_v	C_v	C_v
55	53.48	53.55	53.44	53.39	53.29
60	53.40	53.41	53.28	53.32	53.15
65	53.54	53.48	53.30	53.35	53.14
70	53.90	53.73	53.48	53.45	53.24
75	54.49	54.16	53.81	53.64	53.43
80	55.31	54.75	54.28	53.89	53.70
85	56.35	55.51	54.87	54.22	54.04
90	57.63	56.43	55.58	54.61	54.46
95	59.14	57.52	56.42	55.07	54.94
100	60.90	58.78	57.39	55.61	55.49
105	62.91	60.23	58.49	56.23	56.12
110	65.19	61.88	59.75	56.96	56.84
115	67.76	63.74	61 18	57.80	57.67
120	70.62	65.84	62.80	58 77	58.62
125	73.80	68.21	64.66	59.90	59.71
120	10.00	00.21	01.00	05.50	
Temp	C_v/T	C_v/T	C_v/T	C_v/T	C_v/T
55	0.9724	0.9737	0.9717	0.9708	0.9688
60	.8899	.8902	.8879	.8887	.8859
65	.8237	.8228	.8199	.8207	.8176
70	.7701	.7676	.7640	.7636	.7606
75	.7266	.7221	.7175	.7152	.7124
80	6914	6844	6785	.6737	.6713
85	6630	6531	6455	6378	6358
90	6403	6270	6176	6067	6051
95	6225	6055	5939	5797	5783
100	.6090	.5878	.5739	.5561	.5549
105	5002	5796	5570	5255	5245
105	5097	.5730	.3370	5170	5167
110	.5927	.5025	.3431	.5178	.5107
115	.5892	.5543	.5320	.5020	.5015
120	.5885	.5487	.5234	.4898	.4085
125	.5904	.5450	.5173	.4792	.4///
			1		

For 50 points, Sumpet. = -0.08, Rmspet. = 0.81.

columns give T, A, B, for (5.2a). The next column, D2PDT2, is the second derivative of Stewart's vapor pressure equation [6]. It is to be compared directly with the values in column B. Columns UA, UB are the absolute, statistical uncertainties in A, B, based only on deviations of the data from (5.2a). Maximum uncertainties in the \overline{C}_v data of various runs, however, are about 0.5 percent (table 6). A probable uncertainty of 0.2 percent may be assigned to each run. One then finds that uncertainties of B for (5.2a) range from about 140 percent at 55 K to about 2 percent at 125 K. Within these bounds, the vapor pressure equation [6] and our specific heats are consistent at temperatures up to 125 K.

 TABLE 10.
 Coefficients A and B for eq (5.2a)

Equation, $C_v/T = A + B \cdot (K \cdot V)$										
Temp	A	B	D^2PDT^2	UA	UB					
55	0.96750	0.00077	0.00014	0.00211	0.00039					
60	.88471	.00074	.00039	.00209	.00039					
65	.81494	.00116	.00088	.00221	.00041					
70	.75500	.00198	.00169	.00215	.00040					
75	.70261	.00314	.00286	.00195	.00036					
80	.65613	.00461	.00439	.00170	.00032					
85	.61438	.00636	.00624	.00145	.00027					
90	.57646	.00835	.00836	.00122	.00023					
95	.54175	.01055	.01070	.00105	.00019					
100	.50978	.01295	.01321	.00093	.00017					
105	.48024	.01551	.01586	.00089	.00017					
110	.45290	.01823	.01862	.00092	.00017					
115	.42763	.02107	.02148	.00098	.00018					
120	.40436	.02401	.02445	.00107	.00020					
125	.38305	.02705	.02753	.00116	.00022					

6. Derived Thermodynamic Functions

We have used (5.1) for integrations along the coexistence path from triple point to critical point, as described in appendix IV. The thermodynamic functions are calculated via the following relations:

 $\Delta S = \int [C_{\sigma}/T] \cdot dT, \qquad Q = \int C_{\sigma} \cdot dT,$ $\Delta E = Q - \int P \cdot dv, \qquad \Delta H = Q + \int v \cdot dP.$

The pressure-volume integrals were evaluated numerically by use of the vapor-pressure equation [6] and the liquid densities of table 1.

Table 11 presents our results at integral temperatures, at which are calculated the vapor-pressure, the saturated liquid density in mol/liter, and C_{σ} from (5.1) in J/mol K. Following columns give the molal increase of entropy, ΔS , the heat absorbed, $C \cdot DT$, the work, $P \cdot DV$, the increase of internal energy, ΔE , the work, $V \cdot DP$, and the increase of enthalpy, ΔH , all relative to the triple-point values. Throughout this table the unit of energy is the joule. Note that $H-H_t=E-E_t+Pv-(Pv)_t$, but at the triple point $(Pv)_t=0.002$ J/mol, hence ΔH is numerically equal to $\Delta E+Pv$.

The probable uncertainty in these functions, obtained by integration, should not exceed that of C_{σ} for which we assess a probable error of 0.3 percent, as compared with maximum errors in table 6 from 0.5 to 2.2 percent.

7. Discussion

The accurate formulation of adjustment calculations for experimental specific heat measurements on a two-phase system is an exacting challenge [8, 10]. It therefore may be helpful to record the following details, pointed out by Barieau.

In eq (3.9) the adjustment for vapor entering the capillary tube is not rigorous. This vapor boils away from the liquid phase, and account should be taken of the diminished volume of liquid, an effect of increasing importance at temperatures approaching critical. In place of ΔH_v in eq (3.9) one should use ΔH_a , the heat of vaporization per mole of vapor leaving the vessel,

$$\Delta H_a = \Delta H_v \cdot \rho_l / (\rho_l - \rho_g) = T \cdot (dP/dT) / \rho_g, \quad (7.1)$$

where ρ_l , ρ_g are densities of saturated liquid and vapor. Note that ΔH_a does not vanish at the critical point. An adjustment to present data via eq (7.1), however, is not significant. At T=152 K, for example, we have roughly $\Delta H_v = 2000$ J/mol, $\rho_l/(\rho_l - \rho_g) = 1.7$, and $\delta N_c/\Delta T = 2 \cdot 10^{-6}$ mol/deg for our capillary tube.

As noted by H. J. Hoge, several difficult adjustments are eliminated by performing experiments with relatively large and also with relatively small amounts of liquid in the calorimeter [8]. When two phases are present,

$$C_{\text{total}} = \text{Lim} \ (Q/\Delta T) = C_b - (N - N_c) \cdot T \cdot \frac{d^2 G}{dT^2}$$
$$+ V_b \cdot T \cdot \frac{d^2 P}{dT^2} + T \cdot \frac{dV_b}{dT} \cdot \frac{dP}{dT} + \Delta H_a \cdot \frac{dN_c}{dT}, \qquad (7.2)$$

where G is the Gibbs free energy per mole. The difference of eq (7.2) for two amounts of sample, N_2 and N_1 , is

$$C_2 - C_1 = -(N_2 - N_1) \cdot T \cdot d^2 G/dT^2.$$
(7.3)

From eq (7.3) may be obtained the heat capacity of liquid along the coexistence path by use of PVT data whenever the latter are available,

$$C_{\sigma} = T \cdot dS/dT = -T \frac{d^2G}{dT^2} + \frac{T}{\rho} \left(\frac{d^2P}{dT^2}\right) - \frac{T}{\rho^2} \frac{d\rho}{dT} \cdot \frac{dP}{dT}, \quad (7.4)$$

where ρ and S refer to liquid.

In planning the present work we elected not to follow the above very attractive method. At temperatures approaching the critical temperature, the two different filling densities eventually must approach the same value. In this region, d^2G/dT^2 from eq (7.3) might suffer the low accuracy expected in the difference of two large experimental values. Another practical impediment to eq (7.3) is the isothermal condition,

which cannot be enforced experimentally for the two different fillings. Interpolation is required along each experimental run. Finally, for specific heats of the liquid at very low temperatures, the above filling densities are not optimum.

<i>Т</i> , К	P, atm	Mol/1	CSAT	ΔS	$C \cdot DT$	$P \cdot DV$	ΔE	$V \cdot DP$	ΔΗ
54 351	0.001	40 842	53,313	0.000	0.00	0.000	0.00	0.000	0.00
55.000	.002	40.752	53,306	.633	34.61	.000	34.61	.001	34.61
60.000	.007	40.057	53.274	5.270	301.05	.000	301.05	.014	301.06
65.000	.023	39.359	53.278	9.534	567.42	.001	567.41	.055	567.47
70.000	.061	38.652	53.325	13.484	833.90	.003	833.90	.155	834.06
75.000	.143	37.936	53.423	17.166	1100.75	.008	1100.74	.371	1101.12
80.000	.297	37.208	53.581	20.618	1368.23	.019	1368.21	.786	1369.02
85.000	.561	36.463	53.811	23.873	1636.68	.042	1636.64	1.573	1638.19
90.000	.981	35.700	54.129	26.957	1906.49	.087	1906.40	2.694	1909.18
90.180	1.000	35.672	54.142	27.065	1916.23	.089	1916.14	2.748	1918.98
95.000	1.611	34.914	54.555	29.895	2178.15	.169	2177.98	4.504	2182.65
100.000	2.509	34.100	55.114	32.707	2452.26	.310	2451.95	7.142	2459.40
105.000	3.738	33.253	55.842	35.413	2729.57	.545	2729.02	10.840	2740.41
110.000	5.363	32.367	56.785	38.031	3011.03	.923	3010.11	15.862	3026.90
115.000	7.454	31.433	58.010	40.581	3297.89	1.517	3296.37	22.506	3320.39
120.000	10.082	30.439	59.617	43.082	3591.77	2.437	3589.33	31.118	3622.89
122.000	11.300	30.022	60.398	44.074	3711.77	2.932	3708.84	35.202	3746.97
124.000	12.621	29.592	61.277	45.063	3833.42	3.518	3829.91	39.692	3873.12
126.000	14.049	29.147	62.272	46.051	3956.95	4.215	3952.74	44.621	4001.57
128.000	15.591	28.686	63.402	47.041	4082.60	5.043	4077.56	50.022	4132.62
130.000	17.249	28.207	64.696	48,034	4210.67	6.029	4204.64	55.931	4266.60
132.000	19.031	27.706	66.189	49.032	4341.52	7.207	4334.31	62.390	4403.91
134.000	20.942	27.181	67.930	50.040	4475.59	8.618	4466.97	69.443	4545.04
136.000	22.986	26.628	69.982	51.062	4613.45	10.318	4603.13	77.143	4690.59
138.000	25.170	26.042	72.441	52.101	4755.79	12.381	4743.41	85.548	4841.34
140.000	27.501	25.416	75.443	53.164	4903.57	14.908	4888.66	94.727	4998.30
142.000	29.986	24.740	79.200	54.259	5058.06	18.041	5040.02	104.765	5162.83
144.000	32.631	24.000	84.063	55.399	5221.10	21.995	5199.11	115.766	5336.87
146.000	35.448	23.177	90.653	56.602	5395.45	27.105	5368.35	127.864	5523.32
148.000	38.446	22.236	100.210	57.896	5585.66	33.950	5551.71	141.239	5726.90
150.000	41.638	21.113	115.688	59.335	5800.13	43.669	5756.46	156.158	5956.29
151.000	43.312	20.445	127.975	60.142	5921.59	50.335	5871.25	164.319	6085.91
152.000	45.041	19.662	146.721	61.043	6058.19	59.059	5999.13	173.052	6231.24
153.000	46.828	18.688	180.235	62.103	6219.75	71.412	6148.34	182.485	6402.24
154.000	48.675	17.292	268.103	63.503	6434.78	92.343	6342.43	192.863	6627.64
154.770	50.140	13.620		66.148	6843.48	170.977	6672.50	202.000	7045.48

TABLE 11. Thermodynamic properties, saturated liquid oxygen

9. Appendix I. Volumes of the Calorimeter

For a spherical shell,

$$V/V_{1,0} = (l/l_1)^3 \cdot [1 + g(T) \cdot P]^3, \tag{1}$$

where $V_{1,0}$ is our reference volume at T=100 K, P=0 atm. Length, l, may be a diameter (l_0 at T=0, l_1 at T=100 K) at P=0. Function g(T) includes the modulus of elasticity. We developed an approximation formula for thermal expansivity of type 316 stainless steel in the form

$$l/l_0 = 1 + f(T)$$
.

Dropping higher order terms from (1) we then have

$$V/V_R = 1 + 3 \cdot f(T) + 3 \cdot g(T) \cdot P,$$
 (2)

where

$$V_R = V_{1,0} / [1 + 3 \cdot f(100)].$$

For the elasticity, we use six unpublished values of $(\Delta V/\Delta P)/V$ obtained by Younglove and Diller for this

calorimeter from 40 to 300 K [3]. They are represented within their precision of a few percent by

$$(\Delta V/\Delta P)/V = k \cdot x^{1/3}$$
, atm⁻¹,

where $x \equiv T/100$. Our description for the calorimeter volumes therefore is

$$V/V_R = 1 + 3 \cdot f(T) + k \cdot x^{1/3} \cdot P, \qquad (3)$$

where

$$f(T) = [C_1 + C_2 \cdot x] \cdot \exp \left[\alpha \cdot (1 - 1/x)\right],$$

with constants,

$$V_R = 72.657 \text{ cm}^3,$$
 $C_1 = -0.0002 \text{ 1461},$
 $C_2 = +0.0005 9455,$ $\alpha = 1.01062,$
 $k = 0.0000111 \text{ atm}^{-1}.$

The reference volume measured by Younglove and Diller was $V_{1,0} = 72.74$ cm³. We checked this volume at room temperature by expanding oxygen from the bomb at 3 atm into a calibrated, 130 cm³ glass flask, observing pressures on a commercial, helical-quartz *bourdon* gage. We used the equation of state derived by L.A.W. for these conditions, $Pv/RT=1-0.195 \cdot P/T$, with units of atmospheres and degrees Kelvin. Our volume of 73.19 ± 0.1 cm³ at 297.3 K adjusts to $V_{1,0}=72.6\pm0.1$ cm³. In our specific heat calculations we have used $V_{1,0}=72.74$ cm³, assigning an uncertainty of 0.1 percent.

10. Appendix II. Estimated Temperatures Along the Capillary Tube

For a capillary tube which is thermally isolated except at its two ends, we may estimate temperatures by use of the temperature-dependent thermal conductivity, K, of stainless steel. We developed the approximation formula,

$$K/K_{100} = \exp\left[1.2 \cdot (1 - 10/T^{1/2})\right]. \tag{1}$$

We placed (1) in the heat-flow equation, integrated numerically by computer, and developed an approximation formula for the results,

$$T_x = T_0 \cdot [1 + a \cdot x]^{2/3},$$

$$a \equiv [(T_1/T_0)^{3/2} - 1].$$
(2)

Here $x \equiv l/l_1$ is fraction of the distance from the cold end of a capillary tube of length l_1 . Temperature at the cold end is T_0 , at the hot end is T_1 , and at position x it is T_x .

11. Appendix III. Method for Estimating Uncertainties (Errors)

We express the saturated liquid heat capacity in the following form,

$$C_{\sigma} = (A - B - C - D)/N_b + [E - (F - 1) \cdot G] \cdot H,$$

where

$$\begin{split} A &= C_a, \qquad B = C_b, \qquad C \equiv k \cdot T \cdot (dP/dT) \cdot (dV_b/dT), \\ D &= \delta N_c \cdot \Delta H_v / \Delta T, \qquad E \equiv (-d\rho/dT) \cdot (dP/dT) / \rho, \\ F &= V_b \cdot \rho / N_b, \qquad G \equiv d^2 P/dT^2, \qquad H \equiv k \cdot T / \rho, \\ k &= 0.101325 \text{ J/mol-deg}, \qquad \rho \text{ refers to the liquid phase.} \end{split}$$

Wherever a sum of terms occurs in brackets we sum absolute errors. For each product or ratio we sum relative errors. Uncertainties in A, B, etc., are symbolized UA, UB, etc., given in percent at the bottom of table 6. For A, alone, we introduce dependence on the interval, ΔT , $U_a = 0.05 + 0.10 \cdot (5/\Delta T)$. Results are given in the last two columns of table 6.

12. Appendix IV. Definite Integrals Used for Thermal Functions

Given A, B, C, r, and n for eq (5.1), define –

$$T_d \equiv (T_c - T_t), \qquad q \equiv r^{1/2}.$$
$$x \equiv (T_c - T)/T_d, \qquad z \equiv x^{1/2}.$$

The heat absorbed upon heating from the triple point is -

$$\int_{T_t}^T C_{\sigma} \cdot dT = T_d \cdot \{2A \cdot (1-z) + 2B \cdot (1-z^3)/3 + C \cdot \sigma_D\},\$$

where

$$\sigma_D \equiv \sum_{i=1}^{n+1} 2D_i \cdot (1-z^j)/j, \qquad j \equiv 2i-1,$$

and the binomial coefficients are-

$$D_1 \equiv 1, \qquad D_{i+1} \equiv -D_i \cdot r \cdot (n+1-i)/i.$$

The increase of entropy upon heating from the triple point is -

$$\int_{T_t}^T (C_{\sigma}/T) \cdot dT = r \cdot [A \cdot F_a + B \cdot F_b + C \cdot \sigma_E],$$

where

$$F_a \equiv \lambda/q, \qquad F_b \equiv [\lambda - 2q \cdot (1-z)]/q^3,$$

$$egin{aligned} \lambda &\equiv \ln\left[rac{1+q}{1-q}\cdotrac{1-q\cdot z}{1+q\cdot z}
ight], \ \sigma_E &\equiv \sum_{i=1}^n 2E_i\cdot(1-z^j)/j, \qquad j\equiv 2i-1, \end{aligned}$$

and the binomial coefficients are-

$$E_1 \equiv 1$$
, $E_{i+1} \equiv -E_i \cdot r \cdot (n-i)/i$.

13. Appendix V

The equation of state from reference [6] is

$$\begin{split} P &= \rho RT + (n_1T + n_2 + n_3/T^2 + n_4/T^4 + n_5/T^6)\rho^2 \\ &+ (n_6T^2 + n_7T + n_8 + n_9/T + n_{10}/T^2)\rho^3 \\ &+ (n_{11}T + n_{12})\rho^4 + (n_{13} + n_{14}/T)\rho^5 \\ &+ \rho^3(n_{15}/T^2 + n_{16}/T^3 + n_{17}/T^4) \exp(n_{25}\rho^2) \\ &+ \rho^5(n_{18}/T^2 + n_{19}/T^3 + n_{20}/T^4) \exp(n_{25}\rho^2) \\ &+ \rho^7(n_{21}/T^2 + n_{22}/T^3 + n_{23}/T^4) \exp(n_{25}\rho^2) \\ &+ n_{24}\rho^{n_{28+1}}(\rho^{n_{28}} - \rho^{n_{28}}_c) \exp[n_{26}(\rho^{n_{28}} - \rho^{n_{28}}_c)^2 \\ &+ n_{27}(T - T_c)^2]. \end{split}$$

The coefficients of the equation of state, n_1 through n_{28} , taken from [6], are given in table 12. These coefficients were determined by a weighted least squares fit of the input experimental data. In this least squares fit, constraints for the critical point were imposed upon the equation of state. These constraints are listed in table 13; the fixed points are listed in table 14.

TABLE 12. Coefficients for the equation

T in K, P in atm, ρ in mol/liter			
$\begin{array}{rcl} R=&0.0820535\\ n_1=&3.38759078\times 10^{-3}\\ n_2=-1.31606223\\ n_3=-7.38828523\times 10^3\\ n_4=&1.92049067\times 10^7\\ n_5=-2.90260005\times 10^{10}\\ n_6=-5.70101162\times 10^{-8}\\ n_7=&7.96822375\times 10^{-5}\\ n_8=&6.07022502\times 10^{-3}\\ n_8=-2.71019658 \end{array}$	$\begin{array}{l} n_{10}=-3.59419602\times 10\\ n_{11}=1.02209557\times 10^{-6}\\ n_{12}=1.90454505\times 10^{-4}\\ n_{13}=1.21708394\times 10^{-5}\\ n_{14}=2.44255945\times 10^{-3}\\ n_{15}=1.7365508\times 10^2\\ n_{16}=3.01752841\times 10^5\\ n_{17}=-3.49528517\times 10^7\\ n_{18}=8.86724004\times 10^{-1} \end{array}$	$\begin{array}{rl} n_{19}=-2.67817667\times 10^{2}\\ n_{20}=&1.05670904\times 10^{5}\\ n_{21}=&5.63771075\times 10^{-3}\\ n_{22}=-1.12012813\\ n_{23}=&1.46829491\times 10^{2}\\ n_{24}=&9.98868924\times 10^{-4}\\ n_{25}=-0.00560\\ n_{66}=-0.157\\ n_{27}=-0.350\\ n_{28}=&0.90 \end{array}$	

TABLE 13. Constraints imposed on the equation of state [6]

$$\begin{array}{l} P{-}\rho{-}T \text{ at the critical point} \\ P{-}\rho{-}T \text{ at the critical point} \\ (\partial P/\partial \rho)_T{=}0 \text{ at the critical point} \\ (\partial^2 P/\partial \rho^2)_T{=}0 \text{ at the critical point} \\ (\partial P/\partial T)_\rho{=}dP/dT \text{ from appendix 6 at the critical point} \\ {=}1.928386 \text{ atm/K} \end{array}$$

TABLE 14. Fixed point data [6]

Critical pressure	50.14 atm
Critical temperature	154.77 K
Critical density	13.333 mol/liter
Normal boiling temperature (IPTS, fixed point)	90.18 K
Density saturated vapor at nbp	0.1396 mol/liter
Density saturated liquid at nbp	35.65 mol/liter
Triple point pressure	0.00150 atm
Triple point temperature	54.353 K

14. Appendix VI. The Vapor Pressure Equation from [6]

The vapor pressure equation is [P in atm, T in K]:

 $\ln P = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 + a_5 T^5 + a_6 T^6 + a_7 T^7.$

TABLE 15. Coefficients for the vapor pressure equation

$a_0 = -6.25967185 \times 10$	$a_4 \!=\! -4.09349868 \times 10^{-6}$
$a_1 = 2.47450429$	$a_5 = 1.91471914 \times 10^{-8}$
$a_2 = -4.68973315 \times 10^{-2}$	$a_5 = -5.13113688 \times 10^{-11}$
$a_3 = 5.48202337 \times 10^{-4}$	$a_7 = 6.02656934 \times 10^{-14}$
0	

8. References

- Woolley, H. W., Thermodynamic properties of molecular oxygen, ASTIA Document AD 19900 (June 1953).
- [2] Goodwin, R. D., Apparatus for determination of *PVT* relations and specific heats of hydrogen to 350 atm at temperatures above 14 °K, J. Res. NBS 65C (Engr. and Instr.) No. 4, 231-243 (1961).
- [3] Younglove, B. A., and Diller, D. E., The specific heat of saturated liquid parahydrogen from 15 to 32 °K, Cryogenics 2 (No. 5), 283 (1962).
- [4] Giauque, W. F., and Johnston, H. L., The heat capacity of oxygen from 12 °K to its boiling point and its heat of vaporization. The entropy from spectroscopic data. J. Am. Chem. Soc. 51, 2300-2321 (1929).
- [5] Scott, R. B., Meyers, C. H., Rands, R. D., Jr., Brickwedde, F. G., and Bekkedahl, N., Thermodynamic properties of 1,3-butadiene in the solid, liquid, and vapor states, J. Res. NBS 35, 39-85 (1945) RP1661.
- [6] Stewart, R. B., The Thermodynamic Properties of Oxygen, Dissertation, Dept. of Mech. Engr'g., Univ. of Iowa, June 1966.
- [7] Muijlwijk, R., Moussa, M. R., and Van Dijk, H., The vapour pressure of liquid oxygen, Physica 32, 805 (1966).
- [8] Hoge, H. J., Heat capacity of a two-phase system, with applications to vapor corrections in calorimetry, J. Res. NBS 36, 111 (1946) RP1693.
- [9] Walker, P. A., The equation of state and specific heat of liquid argon, Thesis, Queen Mary College, Univ. of London (1956).
- [10] Rowlinson, J. S., Liquids and Liquid Mixtures (Butterworths, London, 1959).
- [11] Eucken, A., Uber das thermische Verhalten einiger komprimierter und kondensierter Gase bei tiefen Temperaturen, Verhandl. Deut. Physik. Ges. 18, 4-17 (1916).
- [12] Clusius, K., Uber die spezifische Wärme einiger kondensierter Gase zwischen 10° abs und ihrem Tripelpunkt, Z. physik. Chem. (Leipzig) B3, 41-79 (1929).
- [13] Van Itterbeek, A., and Van Dael, W., Properties of some cryogenic liquids from sound velocity data, Advances in Cryogenic Engineering 9, 207-216 (1963).
- [14] Barieau, R. E., Helium Research Center, U.S. Bureau of Mines, Amarillo, Texas 79106, private communication, Jan. 14, 1965.
- [15] Yang, C. N., and Yang, C. P., Critical point in liquid-gas transitions, Phys. Rev. Letters 13(9), 303-305 (1964).

- [16] Barieau, R. E., Thermodynamic properties of a van der Waals fluid in the two-phase region, U.S. Bureau of Mines Report RI 6950, June 1967.
- [17] Hoge, H. J., Vapor pressure and fixed points of oxygen and heat capacity in the critical region, J. Res. NBS 44, 321–345 (1950) RP2081.
- [18] Weber, L. A., Thermodynamic and related properties of oxygen from the triple point to 300 K at pressures to 330 atmospheres, internal report, June 20, 1968.

(Paper 73A1-529)