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The topic treated is that of finding a reproducible, plausible and computationally simple method of
selecting a discrete frequency distribution with a prescribed ranking of its components. The problem
is shown to be tractable when a minimax error selection criterion is employed, and “error” is measured
by maximum absolute deviation between components. The vertices of the polyhedron of optimal solu-
tions can also be found explicitly, and so their centroid can be calculated if unique specification is
required.
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1. Introduction

In the mathematical modeling efforts associated with an operations research study, one may
well have only incomplete information on which to base a representation of the probabilities of
the various outcomes of some pertinent chance event. Under these circumstances, one should of
course examine the consequences of several alternative probability distributions, each consistent
with the information at hand. It still seems desirable, however, to have a systematic and repro-
ducible method for arriving at a single “nominal’ distribution, to serve as a base-point for such
sensitivity analyses.

This note works out the mathematics of one approach, based on a “minimax error’ criterion,
to the selection of a nominal distribution. The “‘incomplete information”™ is assumed to consist
of a ranking of the individual terms of the probability distribution.! A previous paper ? considered
the case in which the given information consists of prescribed upper and lower bounds on these
terms.

Let P be the polyhedron of real n-vectors x (where n > 1) whose components x; satisfy

Osxis<ms<...<x, (1.1)
2pa=1. (1.2)

Our objective is to choose xeP to minimize
F(x)= max {d(x, y):yeP}, (1.3)

where d is the metric on n-space given by

d(x, y)= max; |xi—yi. (1.4)

! Study of this situation was suggested by J. McLynn of Davidson, Talbird and McLynn, Inc.
2 A. J. Goldman and P. R. Meyers, Minimax error selection of a discrete univariate distribution with prescribed componentwise bounds, J. Res. NBS 72B (Math.
Sci.) No. 4 263-271 (1968).
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Other metrics may be investigated subsequently.

The following section accomplishes the explicit evaluation of F'(x) in highly tractable form.
The minimization of F(x) over P, which begins section 3, is then trivial. It turns out, however, that
for n > 2 there will be a convex polyhedron of optimal x’s rather than a single one; section 3 goes
on to propose the centroid of this polyhedron’s vertices as a plausible “representative’’ choice, and
includes a determination of both vertices and centroid.

2. Evaluation of F

The particular metric (1.4) has the pleasant property that F(x) —for any compact set P, not
only the one defined by (1.1) and (1.2)— can readily be evaluated in terms of the quantities

M;= max {yi:yeP}, 2.1)
m; = min {y;:yeP}. (2.2)
Indeed, we have
F(x)= max, max; max (y; —xi, xi— Yi)
= max; max {maxy(y; —x;), max, (x; —yi)},
or finally
F(x)= max; max {M;—x;, xi—m;}. (2.3)

For the particular polyhedron P which figures here, it is easily verified that

M;i=1/(n+1—1i) (I1<i<n), (2.4)
mi=0 (1=<i<n), (2.5)
m,=1/n. (2.6)

Thus we have
F(x)= max {max;{1/(n+1—1i)—xi}, xn_1, xx— 1/n}.
The term corresponding toi=n is
1 — 2 =2 = xn-1,
so we can replace the last equation by
F(x)= max {max; {1/(n+1—1i)—x;}, xa —1/n}. (2.7)
Next, suppose the term with i=n—1 yields the maximum in (2.7). Then we should have
1/2—xn_1 = 20— 1/n, (2.8)
WP=5in 2 ll=52 (2.9)

Addition yields
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=% =l = lip,
which is equivalent to x,— < 1/2n. Thus x; < 1/2n for 1 <i<n—1, and so
1 — 1 —2x2=2712x5 < (n—2)[2n.

This and (2.8) imply

n+2)2n—xn1<xn=1/n+xn—1/n)<1/n+ 12— x4_1)= 1+ 2)2n — x5_;. (2.10)
Since equality holds in (2.10), it must hold throughout the preceding sequence of equalities. In
particular it holds in (2.8) and (2.9), so that the maximum in (2.7) does not occur uniquely for the
term with i=n—1, and hence this term can be deleted from (2.7):

F(x)= max {maxj<,_{1/(n+1—1i)—x;}, 1 —x,, xn—1/n}. (2.11)
Forn=2,(2.11) gives

F(x)= max {1 —x2, x» —1/2}. (2.12)

We next assume n = 3.

Now suppose the maximum in (2.11) holds for the term corresponding to some i <n— 1. Then
we should have

I (eI == =", (2.13)
1/(n+1—i)—x;i = xn— 1/n. (2.14)
Addition yields
2[n+1—i)—2x;=1—1/n,
or equivalently
2xi<2/(n+1—1)+1/n—1
=2n+m+1—i)—nn+1+i)/nn+1—i
=[1+2n—n2+(n—1)il/n(n+1—1i)
=[2—(n—12+(n—1)il/nn+1—1i)
=[2—(n—1)(n—1—i)l/n(n+1—1i).
Since x; = 0, we must have
2= (n—1)(n—1—1i). (2.15)
But n—1= 2 and n—i > 1. Thus this situation is impossible for n > 3, i.e..

F(x) =max {1 —x,, xn—1/n} (n>3). (2.16)
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And it is possible for n=3 only when i=n—2=1, in which case equality holds in (2.15), hence
throughout the preceding inequalities, so that the maximum in (2.11) does not hold uniquely for
the term corresponding to i=1. We have now shown that, for all n > 1,
F(x) =max {1 —xu, xn—1/n}. (2.17)
3. Determination of Optimal Distributions

The minimization of F'(x) over P is trivial in view of (2.17), which can be rewritten

Fx)=1—x, forO0<x, < (n+1)/2n,

F(x)=x,—1/n for (n+1)2n <x, < 1. o
We see at once that
Foin=(n—1)/2n, (3.2)
and that the minimizing xeP are precisely those with
xn= (n+1)/2n. (3.3)
One such x is given by
S P forlsi<n—1. (3.4)

But this choice is somewhat arbitrary, and moreover honors the original ranking (for x;, . . .,
%n-1) only in a technical sense. In view of the original intention to fasten on a single x, it seems (to
the writer) less arbitrary to select the centroid of the vertices of the polyhedron of F— minimizing
xeP. This centroid is obtained by adjoining an nth component (n+1)/2n, as in (3.3), to the centroid
of the polyhedron Q in (n—1)-space consisting of those z with

O0szi< ... <z =<(n+1)/2n, (3.5)
Sr-lzi=1—(n+1)/2n=(n—1)/2n. (3.6)
Note that in view of (3.6), the last inequality in (3.5) can be dropped.

To determine the vertices of (), note that a nonsingular linear transformation preserves
extreme points of polyhedra. This applies in particular to the transformation associated with the
substitutions

uy =2z,
Ui =Zi— Zi-1 (2=<is<n-—1),
which convert Q into the polyhedron ' defined in u-space by
ui=0 (Il=sis=n—-1), (3.7)

Srt(n—i)ui= (n—1)/2n. (3.8)

Q' consists of the intersection of the hyperplane H, defined by (3.8), with the nonnegative orthant.
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Thus its extreme points are the intersections of H with the (n—1) positive coordinate axes, i.e.,
the (n—1) points u'? given by

ul=§;j(n—1)/2n(n—j). (3.9)
The corresponding extreme points z/) of () are given by
=0 (1=si<sjy),
2= (n—1)/2n(n—j) (j=sis=n-—1).
Thus the centroid z* of () has coordinates
zF=(n—1)"3<i(n—1)/2n(n—j) = (1/2n)3j<i(n —j) 1, (3.10)
which unlike (3.4) are strictly increasing in i.
We conclude by pointing out two somewhat disquieting features of the solution obtained above.
The first [see (3.3)] is that the chance-event outcome ranked most probable is assigned a probability
greater than 1/2, though only slightly so for large n. The second [see (3.2)] is the size of F;, . . .

nearly 1/2 for large n. But perhaps this should not be surprising in view of the extremely conserva-
tive nature of minimax decision criteria.

(Paper 72B4—277)
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