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To examine th e adequacy of the one-di mens ional, ruLe- in depe nde nt theory of plast ic-wave propa
gation for annealed , co mmericall y pu re a luminum , ex perime nta l res ults from t.he longi tudina l im pact 
of uniform a nd tapered rods are com pared to a theo re tical a nalys is. The th eore tical description is a 
num erica l solution whic h utili zes the charac teristi c properties of the gove rning equations to const ru c t 
diffe rence re la tions for a constant mesh spac ing. Numerica l ev idence of convergence and stabil ity 
of the so lution is presente d. A constant.-veloc ity bounda ry co ndition is de fin ed by the ax ia l co lli s ion 
of identical spec im ens, 6 inches (152 mm) in le ngth a nd tape red slope va rying between ± 0.03, usin g a 
3/4 -inch (19 mm) bore gas gun . S train-time profil es are measured at c ross-section di sta nces of 1, 2, a nd 
4 inches (25, 51, a nd 102 mm) from th e impact face with res ista nce gages. Quantitati ve agreeme nt 
be tween theore ti cal predic tion a nd ex perimental dat.a, e.g., di spers ive features and unloadin g pa tte rns 
of the s train wave, show the th eory a nd method of so lution (0 be a reasonabl y accu rate mode l of the 
de forma tion. The selec tion of the specim en geometr y as the experimenta ll y controllable para me ter in 
the longitudinal impact experim ent is found to be a useful tes ting me thod in in vesti gatin g the d yna mic 
response of mate rials. 

Key Words: Aluminum ; experiments ; longi tudinal impact; numerical solution; one-dimensional; 
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1. Introduction 

The one-dime nsional, rate -independent theory of 
plastic-wave propagation in thin, uniform rods has 
been extensively studied and the object of experimental 
verification since its inception in the independe nt 
works of von Karm an [1] t, Taylor [2] , and Rakhmatu
lin [3]. Assuming that the motion and stress state 
are uniaxial and that the stress-strain curve is not 
only strain-rate independent but also concave toward 
the strain axis, thi s theory predicts the following 
results: A s train of 10 propagates along the bar with a 
speed A= U '(E)/p ] t/2 where 1'(10 ) is the slope of the 
stress-s train curve a t the s train E , and p is the mass 
density; the rela ti onship between impact velocity v 

and s train is give n by v= l' AdE. Experime ntal in

vestigations have ce ntered , fo r the mos t part , on ve ri 
fying the above results and the s train-rate inde pende nt 
assumption of the s tress-s train cur ve_ 

Conve ntionall y, s train-rate indepe nde nce of me
c hanical response is taken to imply th at a material 

·Present address: Naval Research Labora tory, Washington, D.C. 20390. 
I F'igures in brac kets indicate the literature re fe rences on page 239. 

is c harac terized by an invariant s tress-strain rela tion 
for increasing or consta nt values of s train (loading) 
and a nother s tress-s train rela tion, us ually linear, for 
decreasing valu es of s train (unloading)_ The separa tion 
of material response into loading and unloading is 
suggested by the well-known yielding phenome non 
and elas ti c-plastic response of a uniaxial te nsion/ 
compression specimen. When abrupt yielding or un
loading occurs under dynamic conditions , the dis
continuous behavior of l' causes an elastic-plas tic 
boundary to propagate in the solution fi eld. Thi s 
boundar y not only separates r egions of elastic and 
plastic response but ql so defines a locus of discon
tinuities in particle acceleration and propagation 
speed A. S uch a boundary is called a weak di scon
tinuity in contras t to a · strong discontinuity (s hock) 
where stress and particle velocity are disconti nuous. 
The location of the elastic-plastic boundari es is a 
domon ant feature of the dynamic analysis a nd often 
necessitates a hybrid solution where analyti c, graph
ical, and numerical techniques are e mployed _ T he 
analysis by Lee [4] involving the constant-velocity 
impac t of a uniform rod of fi nite le ngth is a notable 
example. In many cases , idealization of boundary con
ditions and stress-strain behavior a re made to facili
tate the identification of the elas tic and plas ti c regions 
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in the x, t-plane. 
The degree to which the rate of strain influences the 

stress-strain curve has remained an active concern, 
as well as a point of controversy, among investigators. 
As emphasized by Bell [5], the governing stress-strain 
curve need not be the static relationship to classify a 
material response as strain-rate independent. In
deed, from his finite-amplitude; plastic-wave measure
ments Bell [6] has correlated the governing stress
strain curve for annealed, commerically pure alu
minum with a rate-independent, parabolic law. This 
relationship is applicable between strain rates of 
10 sec - I to 10:1 sec - I and diverges from the static 
curve for strains above 0.02. Contrary to the results of 
Bell, however, dynamic stress-strain curves of 0-
tempered, commercially pure aluminum published by 
several authors [7, 8] show a strong dependence of 
mechanical response to rate of loading. These data 
are obtained for a range of strain rates, 10-3 sec - I 
to 10:1 sec- I, using several loading techniques (e.g., 
pressurized gas loaders, and split Hopkinson bar). 
In each case, loads and displace ments of adjacent 
loading heads are simultaneously recorded under near 
constant strain rates. Implicit in such a measurement 
and a limitation to maximum loading rates obtainable 
in such devices is the assumption that a uniaxial strain 
is uniformly distributed throughout the specimen. 

Within the general context of the above discussion 
and with the anticipation of developing a useful 
testing technique, the longitudinal impact of rods of 
nonuniform cross-sectional areas are examined in 
this study. The objective here is to define a constant 
and physically realizable loading (boundary) condition 
in the longitudinal impact problem, and through 
specimen geometry alter both the dispersive charac
teristics and unloading pattern of the deformation. 
In this way, experimental observations are readily 
made to test various aspects of theory and method 
of solution. Results are reported for three specimen 
geometries of annealed, commercially pure aluminum 
(1l0~). In each case, the boundary condition cor
responds to a constant-velocity impact except that the 
step in velocity has a finite rise time. 

The theoretical analysis is a numerical solution of 
the one-dimensional, rate-independent equations of 
plastic-wa ve propagation. The characteristic properties 
of the governing equations are utilized to construct 
difference relations for a c onstant mesh spacing. 
Boundaries separating regions of elastic and plastic 
response are located in the x, t-plane by an iterative 
scheme where the solution at each point is compared 
to its previous strain history. Shock-type motion is 
not encountered since only stress-strain curves con
cave toward the strain axis are considered. Numerical 
evidence of convergence and stability of the method 
is examined by several test problems. 

A constant-velocity loading of 800 in per second 
(20 meters per second) is achieved by the axial col
lision of identical specimens. Strain-time profiles are 
measured on the stationary specimens at cross
section distances of 1, 2, and 4 in (25, 51, and 102 mm) 
from the impact face with resistance gages. In each 

test , the responses at two positions are recorded from 
a dual-beam oscilloscope, and at least three tests are 
made for each of the three specimen geometries 
considered. 

2. Numerical Solution 

The integration of hyperbolic differential equations 
in two independent variables by finite difference 
methods is a well developed area of applied mathe
matics. Chapter 2 of the text by Forsythe and V"asow 
[9] gives important theoretical results and surveys 
existing methods. The selection or developme nt of 
anyone scheme usually is influenced if not dictated 
by the problem in question. For the class of elastic
plastic problems considered in this study, the govern
ing equations are first transformed into the normal 
form (see appendix for derivation) 

(1) 

where a is the nominal stress, v is the particle velocity, 
p the mass density, and A the cross-sectional area. 
The coefficient 'A = (j' / p) 1/2 is identified as the char
acteristic wave speed and f', the slope of the stress
strain diagram, satisfies the following relations: 

f' = E when E < Ey or EP = 0 

E > f' > 0 , and f' < 0 when EP ~ 0 (2) 

where E is Young's modulus, Ey is the strain at the 
proportional limit, and EP is plastic-strain rate. In the 
above formulation compressive stresses and strains 
are positive, and the stress-strain behavior is restricted 
to linear elastic response on stress reversal. 

A desirable property of hyperbolic equations 
transformed to the normal form is that the dependent 
variables are differentiated in a common direction. 
That is, a and v are differentiated along the so-called 
characteristic curve x=x(t) for which dx/dt=±'A. 
This form of the governing equations is amenable to 
finite difference approximation. The approach here is 
to write eq (1) as 

aA a dx 
da+'Apdv+'A ax A dt = 0; dt = 'A (3) 

aA a dx 
da- 'Apdv- A ax A dt = 0; dt = - 'A (4) 

where da and dv in eqs (3) and (4) are differentials 
along the + and - characteristic curves respectively. 

To construct a difference equation problem to the 
above equations consider a rectangular mesh in the 
x,t-plane of constant spacing, ax and at , as shown 
in figure 1. At the points P, Q, and R along a constant 
time line t, the solution is considered known. The 
solution is sought at point S at a later time t + at. 
Equations (3) and (4) can be integrated along the, as 
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yet unknown , + a nd - characte ri s ti c curves from 
their intersection with the line t, point 1 a nd 2 re
s pectively, to po int S. Thus, along the + c ha rac ter
is ti c curve 

cr(S)/A(S) - cr(l)/A. (1) + p [v(S) - v(l )] 

- crdA- I + - - dt = O Js IS aA cr 
I I ax A 

(5) 

and alo ng th e - c ha racte ri s ti c curve 

cr(S)/A(S) - cr(2)/A(2) - p [v(O) - v(2) ] 

- crdA- 1 - -- dt = 0 is lS aA cr 
2 2 ax A 

(6) 

where the numbers in pare ntheses and limits of in 
tegra tion de note the value of th e vari ables a t the 
corres pondin gly numbered points in fi gure l. 

Thus far , th e solution of th e quas i-linea r, elas ti c
plasti c equa tions has bee n redu ced to th e evala tio n 
of th e integra ls in eqs (4) a nd (5), the location of the 
intersection of characte ri sti c curves with the line 
t (i.e., points 1 and 2), and obtaining the values of 
stress a nd velocity a t th e latte r points. To ensure th at 
the characteris ti c c urves intersect be tween adj acent 
mesh points and to sati sfy the important convergence 
require me nt th a t the interval of de pendence for the 
differe nce equat io ns is greater than or equal to the 
one for the differ e ntial equations, the in cre mental 
di sta nce L1x to t he incre me ntal tim e L1t ra tio is take n 
as the elas tic- pro pagatio n velocity. Th at is 

(7) 

This res ult fo llows fro m th e defin it ion of the charac ter
isti c c urves and rela tio ns hi ps (2). 

The di s tance a;, locatin g points 1 a nd 2 in fi gure 1, 
is give n by t he line integra l 

(" 
0'; = j; Adt; i = 1,2 (8) 

along the res pec ti ve c urves. Whe n A is a constant in 
the regio n of interes t (th e cha racteri sti c curves are 
linear), the integration of eq (8) is e le me ntary and the 
first integrals in eqs (5) and (6) a re see n to vanish. In 
the more genera l case, a; is obta in ed fro m the differ
ence approxi mation 

i = 1,2 (9) 

where, for example , 

Consiste nt with th e approx im ation made in eq (9), 
the value of the de pende nt vari ables at points 1 a nd 2 
are de termined by lin ear inte rpola tion be tween adj a
ce nt points, for exa mple, 

(11) 

To co mple te the differe nce approximatio ns, the 
integrals of eqs (5) and (6) are approximated by the 
follow ing rela tions: 

(" d - 1 - [ S (.) ] AU) - A(S) O(h2) j; cr A - cr( )+ cr t 2A. ( i ) A(S) + (12) 

(s aA !!. dt = (aA!!. 1 + aA I ) L11 + O(h2). 
j; ax A ax A s ax; 2 

(13) 

DETERMI NE O"[il, V[il, Al il ; i = I,2 

( E.G., FROM EO 11 AND STRESS- STRAiN CURVE) 

SO LVE EO S 5 AND 6 FOR O" [Sl , V[Sl 

SO LUTION COMPLET E 

FIGURE 2. Flow diagram of numerical solution. 
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The 0(h2) approximation in the above relations hold 
if the i ntegrands satisfy a Lipschitz condition. 

With the given difference approximations, eqs (9) 
through (13), a noniterative solution of eqs (S), (6), and 
(8) can be obtained by approximating A(s) [e.g. , 
A (s) = A(Q)]. This simplification however, proved 
unsatisfactory for the problems considered in this 
paper, and an iterative scheme was formulated. This 
solution for a typical mesh point , see figure 1, is con
veniently illustrated in the flow diagram of figure 2. 
When adjacent points span an elastic-plastic boundary, 
the location of the boundary is taken at the midpoint 
of the mesh spacing. For example, if point P is un
loaded and 0'1 ~ O.S~x, A(l) = (Elp) 1/2. Otherwise , 
A(l) = A[a(l)]. Thus, the unloading boundary is 
located to within a mesh spacing in the numerical 
output and estimated in the calculation to within one
half of a mesh spacing. 

3. Example of Numerical Solution 

To illustrate the behavior of the numerical solution, 
the plastic-wave motion in an infinite , uniform rod 
subject to a stress-pulse loading at the end is examined. 
This problem was chosen for illustration since it con
tains the general features of the unloading phenomena 
in elastic-plastic analyses and a sufficiently accurate 
graphical solution is available for comparison. The 
boundary condition is given by 

t 
a(O , t) = 8aYT (l - tIT) (14) 

where a y is the yield stress, a(O , t) is the stress at 
x = 0, t again denotes time, and T is the pulse duration. 
The stress at the end of the rod, x = 0, is seen to obtain 
a maximum value of 2ay at t = O.ST. The stress-strain 
curve is a bilinear relationship with an elastic modulus 
to plastic-tangent modulus ratio (EIE') of 16. The 

SYMBOL .1 

0.5 1.0 1.5 

XI ).'r 

FIGURE 3. Graphical and numerical solution of stress pulse 
problem (dimensionless stress-time-x plot). 

elastic-wave speed is, therefore , 4 times the plastic
wave speed (A = 4A'). 

An overall picture of the deformation is contained 
in the dimensionless xlA'T - tiT plane of figure 3. 
The initial elastic response , region I, is bounded by 
the parallel elastic-characteristic curves x = At. On 
yielding, a(O , t) = a y , the diverging elastic-charac
teristic and plastic-characteristic curves define a 
constant state solution in region II. For t greater than 
O.ST, the stress boundary condition decreases in 
absolute value and an unloading boundary propagates 
into the solution field. The area between the un
loading boundary and the initial plastic disturbance, 
region III, defines the zone of plastic deformation . 
Above the unloading boundary the response is elastic. 
The graphical solution of this problem can be found 
in the book by Rakhmatulin and Den' Yanov [10] and 
was originally published by Shapiro rll1-

Dimensionless stress-time and velocity-time relation
ships of the graphical solution at positions x= 0, 
O.SA'T, 1.0A'T, l.SA'T are shown in figures 3 and 4 .. 
Superimposed on this description are the numerical 
calculations for mesh spacings of b.t = O.OST, 0.0l2ST , 
and 0.0062ST, and ~x = A~t. The numerical de
scription is seen to converge to the more accurate 
graphical relationships as the mesh size is decreased. 
The symbols used to designate the numerical solu
tion are made open and dark at alternate positions 
for clarity in the 3-dimensional plot of figure 3. Only 
during the plastic deformation at x= 1.0A'T does 
the convergence of the numerical solution appear 

FIGURE 4. Graphical and numerical solution of stress pulse problem 
(dimensionless velocity-tinte plot). 
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objectionably slow. Examination of th e x/AT-t/T 
plan e of fi gure 3 shows th e width of th e plastic zone , 
region III , at thi s poi nl is the same order of magni
tude as the s malles t L1x mes h s pacin g. Thus , the 
mes h size mu st be decreased seve ralfo ld to obtain 
a more accurate so lut ion in thi s region . The location 
of the elas ti c-plasti c boundaries ex hibit similar 
be havior. That is , the numeri cal solution is reliable in 
locating the elastic-plastic boundaries of figure 3 
to within the accuracy of the mes h size and the pre
cision of th e calculations. 

An important observation is that the numerical 
calculations show no evidence of instability. This 
hypothesis is supported by the agreement between 
the graphical and numerical solutions in the region 
of co nstant state , on the unloading portion of the stress
wave , and the totally elastic res ponse at x= l.SA ' T. 
For the above and similar test proble ms , a theoretical 
energy balance of kineti c, elasti c, and plasti c e nergy 
to work input was found to be a meas ure of the over
all accuracy of the nu me ri ca l solution. Thi s res ult 
is used in es timating the error in the nu me rical de
sc ription of th e followin g section where alternate 
methods of solution are not avai lable. 

4 . Constant-Velocity Impact of Tapered Rods 

Unlike the stress pulse prob le m of the previous sec
tion , the las t integra] te rm of eqs (S) and (6) is non
zero for a rod of no nuniform cross-sectional area. 
The additiona l terms cause no chan ge in th e numerical 
scheme illus trated in the Aow diagram of fi gure 2. 
Furthermore, since the diffe re nce rela ti ons of -eqs 
(12) and (13) are consis te nt - th at is, of the same 
degree of approximation - no co mpJication in the 
observed behavior of th e numeri cal so lution is antici· 
pated. Indeed , convergence of the numerical so lution 
in thi-s case was found to be similar if not fas ter than 
the results shown in fi gure 3 and other tes t problem s. 
For example, the calculations prese nted in the fol 
lowing di scussion for tapered roes are, for the most 
part , convergent to 3 significant figures for L1t equal 
0.2S4 and 0.127 J.L S. A tes t problem of a uniform, semi 
infinite rod subjec ted to the same boundary conditions, 
stress-strain relationship, grid size, and total time of 
calculati ons also ex hibited co nvergence to 3 significant 
figures, and at no time was the difference between the 
numerical and exact soluti ons greater than 4 percent. 
The theoretical energy balance also indicated that the 
accuracy of the soluti ons presented in thi s section 
is within this range. Alth ough a nalyti c or so-called 
closed form solutions of plastic-wave propagation in 
rods of nonuniform cross-sectional areas have re
ceived atten tion in the literature (see E. Wlodarczyk 
[12, 13] for a notable con tribution and a li st of im 
portant publications) , th e ideali zation s required in 
this approach are too restric tive for the interes ts of 
this investigation. In fact, while s uch descriptions 
employ a variety of analytical methods, the te rm closed
form is so me ti mes misleading in that solutions often 
reqUIre num eri cal procedures and e valuation of 
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impli cit fun ctions. Thus, more direct evaluation of the 
numeri cal method in thi s case was not attempted. 

The material se lected for inves ti gatio n is co mmer
cia ll y pure aluminum (1100-0) whi ch has bee n an
nealed for 2 hr a t 1100 of (593 °e) a nd furnace cooled. 
Th e s tress-s train c urve s how n in fi gure S is obtain ed 
fro m th e average data of 8 stati c tes ts , and is closely 
a pproxi mated by 20 linear segme nts for use in th e 
co mputer code. Three s pecim e n geo metri es presented 
for di scuss ion a nd subseque ntly co mpared to ex pe ri 
me nts are a rod of uniform cross-sec tional area and 
rods with a ± 0.03 ta pe red s lope. In each case, th e 
rods aTe initially un s tressed and 6 in (152 mm) in 
le ngth ; the boundary condition a t the impact fC'c~ 
corr~spo nds to a co ns tant -velocity impact except that 
the ste p in ve.!ocity has a finite ri se-time. Thi s phe
nom e non of longitudinal impact testing is caused by 
the physical limitation of achieving a plane impact 
of Aat s urfaces and is also influe nced by the two
dime nsional wave s tru cture of the deformation near 
the impact face. For an impact velocity of 800 in/s 
(20 m/s), the loadin g co ndition was approximated by 

7ft 
V = 800 sin 80 for 0 ~ t ~ 40 J.LS 

and (1S) 

V=800 for t > 40 J.LS 

Th e 40 J.LS rise-time in the above relations was es ti 
mated from strain-time observations in the impact of 
uniform rods and agrees with similar data published 
by Bell [14]. From symmetry conditions of the longi
tudinal impact of two ide ntical specime ns, the con
stant-velocity loading, eq ual to one-half the speed 
of the projectile, can be shown to hold until the axial 
stress at the impact boundary is reduced to zero. 
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It was hypothesized that the rise-time would be rela
tively constant for the uniform and tapered rods for 
the same impact velocity. At the free end of the rods, 
the stress is zero for all times. 

The theoretical locations of the unloading bound
aries in the x,t-plane for the above defined problems 
are shown in figure 6. In all cases, unloading is in
itiated at the free end, x = 6.0 in (IS?' mm), and travels 
at the elastic speed into the solution field. Due to 
the interaction with the incident compressive wave, 
however, these disturbances are contained near the 
free end producing a sawtooth appearance. For the 
cross-sectional area decreasing in the direction of 
motion, - 0.03 tapered rod, unloading also takes 
place at the im pact face (x = 0) immediately after the 
velocity obtains a constant value (t greater than 
40 /-Ls). This boundary is seen to propagate at a near 
constant velocity of 0.188 times the elastic speed and 
produces a stress-pulse wave form. In the case of 
the uniform bar , a similar unloading pattern de
velops at a later time of 90 /-LS and is attributed to the 
influence of the free end. For the cross-sectional 
area increasing in the direction of motion, + 0.03 
tapered rod, the eventual unloading along the bar 
starts near its center at a time of 160 /-LS. 

The attenuation and amplification of the stress 
wave as a function of position along the bar and 
specimen geometry are shown in the diagrams of 
figure 7. Influe ncing the wave shape, in anyone 
case, are the co mbin ed and interrelated effects of 
changes in mass along the bar and the occurrence of 
unloading. For example, while the cross·sectional 
area decreasing in the direction of motion tends to 
raise the transient stress level, the relatively rapid 
unloading of the specimen in this case limits maxi· 
mum stress values to levels below the corres ponding 
values in the uniform bar. 

As indicated in the relationships of figure 7, the 
stress can be expected to change from compression 
to tension. A tension stress can not obviously be 
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maintained at the impact faces, and the boundary 
condition at the moment when the stress changes 
sign should be changed from constant velocity to 
stress free. The solutions presented for discussion 
were terminated sometime after the specimen, had 
unloaded along its entire length. During this time, 
compression stresses were maintained at the impact 
face and the maximum tension stress in the bar only 
slightly exceeded 1200 psi (8.27 MN/m2), the virgin 
compression-yield stress of the material. Nonethe· 
less, this behavior points to the need of incorporating 
the response of the material on stress reversal, e.g., 
a Bauschinger effect, into the dynamic analysis. 
Also, there is no guarantee that plastic deformation 
cannot reappear at a later time. The relative im· 
portance of these uncertainties in the present prob· 
lems will be determined from experimental observa· 
tions. 

5. Experimental Observations 

A constant·velocity loading is achieved by the axial 
collision of identical specimens using a 3/4 ·in (19 mm) 
bore gas guo. A schematic view of ',he experimental 
setup is shown in figure 8. Fibrous washers are used 
to make the tapered projectiles concentric with the 
barrel. Impact velocities are measured by a light screen 
and photomultiplier tube system whose signals 
alternately start and stop a timer on passage of the 
projectile. The instrumented specimens are axially 
ali ned with the barrel and rest on point supports. 
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F IGURE 8. Schematic diagram oj experimental apparatus and 
instrurnenlation. 

Except for th e s mall co ns traint of the fibrou s wash ers , 
the proj ec til e and s pec im en are in free Ai ght durin g 
collision. 

Strain-time profiles are measured at c ross-sec tion a l 
di stances of 1, 2, and 4 in (25,51, and 102 mm) from th e 
impact face with e poxy bac k, 0.063-in (1.6 mm) gage 
le ngth , co ns tantan , res is tan ce gages. For eac h meas· 
ureme nt , two gages are mounted diam etri call y oppos ite 
one another with eith er RTC e poxy or Eas tman 910 
cements; th e gages are wired in se ri es and co nn ec ted 
to a cons tant c urre nt powe r suppl y of 25 mAo Before 
each tes t , the circ uit is calibra ted by shuntin g a se ri es 
of res istors across the gages. Outputs from two se ts 
of gages are fed to a·c co upled, ve rti ca l a mplifi ers of 
a dual bea m oscilloscope. The horizontal s weep of the 

oscilloscope beams is tri gge red by th e signal from the 
photomultipli e r tube jus t before impact. The writing 
speed is 20 /-t s /c m, and th e ve rti cal se ns itivity is be
tween 20 and 100 mV/c m de pe ndin g on the maximum 
strain leveL Th e res pon se of th e oscilloscope for the 
latter operating condition, be tte r th a n 1 /-tS ri se-time, 
is more than adequat e for th e observed trans ie nt s ig
nals. The signals are recorded by an ope n shulte r 
camera. 

Both the experimenta l and theo re ti cal stra in·time 
profiles for the three probl e ms a re s hown in fi gures 9, 
10, and 11. The design ated point s on th e expe rim e nta l 
traces correspond to calibration le vels. As te ri sks 
denote interpolations be tween ca libration points. 
The reproduci bility of the data is co ns ide red good. 
Two important considerations in obtaining re prese n
tative data are (1) to minimize bending deformation 
caused by unsy mmetrical and s ke w impac t of s pecim e n 
and projectil e, and (2) to accommodate th e one·d im e n· 
sional approximation to the motion by making measure· 
me nts in th at section of the s pecime n whe re radial 
in ertia effec ts are negli gib le. To inves ti gate these 
fac tors in the prese nt experim e nts, tes ts were made 
in which two se ts of gages are mounted 90° apart 
at th e sa me c ross-sectional di stance . One se t of 
gages is mounted in the sta nd ard way to measure the 
axial s train ; the othe r se t of gages, 0.25 in (6 .4 mm) 
le ngth by 0.032 in (0.8 mm) width, is mounted so as 
to measure c ircumfere nti al strain. Typi cal data is 
shown in figure 10, tes t No. 14 for the uniform rod 
at the one inc h position. The axial strain is see n to 
equal twice the circ umfe re nti al stra in. Th ese res ults 
are in agree ment with the incompress ibl e behavior 
of plasti c Aow for a uniaxial s tress state; and th erefore, 
indicate tha t e ffects of be ndin g and radia l motio n are 
s ma ll. 
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Considering the aJ.lproximation of the boundary 
co ndition defined in eq (15) , compari so n of the the· 
oretical and experimental s train·tim e profiles show the 
theory and method of solution to be an accurate model 
of the deformation. That is, th e general features of th e 
strain waves predic ted by the numerical solution are , 
for the most part , in quantitative agree ment with the 
observed behavior. Of particular note is the develop· 
ment of the unloading boundary in the - 0.03 tapered 
rod whi ch is well defined by the peak levels of th e 

strain·time traces. This boundary is see n not only to 
initiate Ilear the impact face but its propagation speed 
is within 10 percent of the theoretical value. 

At 1 in from the impact end, each of the three 
specimens experienced a near constant strain·rate 
of 40/s. For the uniform and - 0.03 tapered rods, 
the calc ulated maximum strain levels of 0.024 and 
0.019, respectively, are in close agreement with 
experimental values. In the case of + 0.03 tapered 
rod , however, the measured maximum strain is 
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sign ifi cantly less than the predi cted value. While 
th is diffe re nce sugges ts a s train -rate de pende nce of 
material res ponse, the above res ults can also be 
rationali zed in light of the dynami c s tress-s train 
curve of thi s mate rial re ported by Bell [6]. As s how n 
in figure 5, Bell's dynamic c urve dive rges from the 
static relationship for strains above 0.02. Further
more, at a stress level of 11 ks i (75.8 MN/m2) , th e 
difference in strain between the dynami c and stati c 
curve is the same order of magnitud e obse rved in 
figure 11. 

Post-morte m examinations of th e s pecim e ns and 
projectiles are made by measuring the di ametral 
deformation with micrometers of 0.0001 in reso lu
tion., As shown in fi gure 12, twice the diametral 
strain is found neady e qual to theoretical predic tion 
of the permane nt , axial-strain di stribution except 
for higher values of s train noted above. These results 
also satisfy the in co mpress ib le be havior of plasti c 
flow , and resolve an earlier co nte ntion that plastic 
deformation of the longitudin al impact proble ms is 
confined to th e tim e periods described in fi gures 
9, 10 and 11. Thus, the res tri ction of the stress-strain 
curve to linear-elas ti c response on s tress reversal is 
of litt le co nseque nce in this s tud y. It is noted th at thi s 
restri c tion on the s tress-s trai n curve is caused by 
the absence of a unique formulation of plastic flow on 
cyclic loadin g, and is not due to any limitation in the 
method of solution. Comparison of data in figures 11 
and 12 also s hows the resistance gages are reliable 
in meas uring the max imum strain of these magni 
tudes at the I-in (25-mm) pos ition. 

The adequacy of the rate-ind e pendent theory to 
describe the dyna mi c deformat ion of a nnealed alu
minum reporte d above is in gene ral co ncordance with 
the recent s tudi es of Bodn e r and Clifton [J5] on the 
stress-pulse propagation in uni fo rm rods at room te m
perature; and of Schultz , Tusc ha k, and Vicario [16] 
'on the transverse wire impact measure ments. It would 
seem unlikely that close co rre lat ion betwee n th eory 
and experiment would be o.btained fo r s uc h dive rse 
studies if the governing st ress-s train c urve were rate
dependent to the degree reported in references 7 and 8. 
In the latter referen ces, the ra te-depende nt be ha vior 
of O-tempere d , commercially pure aluminum is de te r
mined by a split Hopkin son bar for a s train rat e of 
40/s. These data show a marked in crease in fl ow s tress 
above the stati c curve for s trai ns between yield point 
and 0.10. Since the theoretical-ex pe ri me ntal co m
pariso ns ci ted above do not :neasure s imulta neo usly 
s tress a nd st ra in a t a material point these res ults are 
a necessary but not a s uffi c ie nt measure of materials' 
rate-independent behav ior. Nonetheless , res ults of 
th e s plit H opkin so n bar s uffe rs from s imilar limitations 
in ass umin g the s tress state is quasi-static and uni
ax ial; and therefore, the see mingly contradi c tory 
results are noteworthy. 

6. Conclusion 

An ite rative-ex pli c it , nume ri cal solution has bee n 
formu lated to a la rge class of problem s in th e one
dim e nsional , rate-inde pe nde nt th eory of plasti c-wave 
propagatio n. Co nve rge nce a nd stab ilit y be havior of 
the method ar e found suffi c ie nt for machine co mputa
tion. For exa mp le, so lutions prese nte d in thi s s tud y 
with t:..t = 0.254 /-L S required approximate ly 5 min/lOOO 
ti me ste ps on a Univac II 08 co m puter. T he solution 
has bee n used to design ex pe rim e nt s in the lon
gitudinal impac t of uniform and tapered rods of an
nealed aluminum . Close correlation between th eory 
and meas ured r espo nse has bee n obtained for st rain
rates and strains as hi gh as 40/s and 0.024. The one
dime nsional theory is, however, of ques tionabl e value 
near the impac t face, within one-half diamet er, where 
the wave structure is two-dimensional. A lso consiste nt 
with the uni axial approximation is the re quirement 
that the c hange in cross-sectional area be kept to some 
minimum , nominal value. 
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8. Appendix: Transformation of Governing 
Equations into Normal Form 

Adopting a Lagrangian description of the deforma
tion, let u(x, t) denote the particle displacement from 
its initial position x in an unstrained rod of nonuniform 
cross-sectional area. Hence , the nominal strain , change 

in length per unit initial length, 

particle velocity is 
follows 

au 
V=-. The at 

and the equation of motion is 

. au d h 
IS E = ax ' an t e 

kinematic identity 

(la) 

ao- + av + aA ~ = 0 
ax P at ax A (2a) 

where 0- denotes the nominal stress , force per unit 
area, p is the mass density , and A is the c ross-sec tional 
area. A determinate system of equations is obtained by 
introducing the stress-strain relation , 0- = f( E) , of the 
material in the form 

ao- _ f' aE = 0 
at at (3a) 

where f' = do-IdE. In the above formulation compres
sive stresses and strains are positive, and conservation 
of mass is implicitly satisfied. 

The three governing equations can be written in the 
matrix form 

L[w] = Aw:r + Bw, + dw = 0 (4a) 

where w = (v, 0-, E) and 

o 1 

A= 1 0 

o 0 

: ; J:: : l ; J: ~~o ~ :1 
o l~ J - f ' l~ 0 ~j 

The characteristic roots A of the above equations are 
obtained by setting the determinate of the charac
teristic ·matrix A to zero, that is, 

det A = det (A - AB) = 0 (Sa) 

and are found to be 

A=± (I' (E) lp)1/2; O. (6a) 

The nonzero roots are recognized as the wave speed 
corresponding to a strain E. 

Associated with the characteristic matrix and each 
root is a null vector I which satisfies 

AI= o. (7a) 

For eqs (4a), the null vectors are to an arbitrary scale 
factor 

l+ = (A, A2p, 1) 

L = (A , -A2p , - 1) 

when A=+ (f' lp)1 /2 

when A= -If'lp)1/2 

{0 = (0, 0, 1) when A= O. 

(8a) 

The normal form of eq (4a) is obtained by their scalar 
product with the null vec tor , that is 

[ · L[w] = O. (9a) 
Performing the above operation one obtains 

(ao- av aA 0-) (dE av) (ao- ,aE) A -+p-+-- + A2p - + - + - -f- = 0 ax at ax A at ax at at 

(ao- _ f' aE) = O. 
at at 

(lOa) 
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Substir uting e q (3) and the las t of the above equa
tion s into the firs t two a nd re arranging terms , the 
normal form is 

(aCT + A aCT) + A (av + A av) + A aA ~ = 0 
at ax P at ax iJx A 
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