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To examine the adequacy of the one-dimensional, rate-independent theory of plastic-wave propa-
gation for annealed, commerically pure aluminum, experimental results from the longitudinal impact
of uniform and tapered rods are compared to a theoretical analysis. The theoretical description is a
numerical solution which utilizes the characteristic properties of the governing equations to construct
difference relations for a constant mesh spacing. Numerical evidence of convergence and stability
of the solution is presented. A constant-velocity boundary condition is defined by the axial collision
of identical specimens, 6 inches (152 mm) in length and tapered slope varying between = 0.03, using a
Y4-inch (19 mm) bore gas gun. Strain-time profiles are measured at cross-section distances of 1, 2, and
4 inches (25, 51, and 102 mm) from the impact face with resistance gages. Quantitative agreement
between theoretical prediction and experimental data, e.g., dispersive features and unloading patterns
of the strain wave, show the theory and method of solution fo be a reasonably accurate model of the
deformation. The selection of the specimen geometry as the experimentally controllable parameter in
the longitudinal impact experiment is found to be a useful testing method in investigating the dynamic

response of materials.
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1. Introduction

The one-dimensional, rate-independent theory of
plastic-wave propagation in thin, uniform rods has
been extensively studied and the object of experimental
verification since its inception in the independent
works of von Karman [1]1, Taylor [2], and Rakhmatu-
lin [3]. Assuming that the motion and stress state
are uniaxial and that the stress-strain curve is not
only strain-rate independent but also concave toward
the strain axis, this theory predicts the following
results: A strain of € propagates along the bar with a
speed A= [f"(e)/p]'* where f'(€) is the slope of the
stress-strain curve at the strain €, and p is the mass
density; the relationship between impact velocity v

£
and strain is given by v=f Ade. Experimental in-
0

vestigations have centered, for the most part, on veri-
fying the above results and the strain-rate independent
assumption of the stress-strain curve.
Conventionally, strain-rate independence of me-
chanical response is taken to imply that a material

*Present address: Naval Research Laboratory, Washington, D.C. 20390.
!Figures in brackets indicate the literature references on page 239.

is characterized by an invariant stress-strain relation
for increasing or constant values of strain (loading)
and another stress-strain relation, usually linear, for
decreasing values of strain (unloading). The separation
of material response into loading and unloading is
suggested by the well-known yielding phenomenon
and elastic-plastic response of a uniaxial tension/
compression specimen. When abrupt yielding or un-
loading occurs under dynamic conditions, the dis-
continuous behavior of f’ causes an elastic-plastic
boundary to propagate in the solution field. This
boundary not only separates regions of elastic and
plastic response but also defines a locus of discon-
tinuities in particle acceleration and propagation
speed N. Such a boundary is called a weak discon-
tinuity in contrast to a-strong discontinuity (shock)
where stress and particle velocity are discontinuous.
The location of the elastic-plastic boundaries is a
domonant feature of the dynamic analysis and often
necessitates a hybrid solution where analytic, graph-
ical, and numerical techniques are employed. The
analysis by Lee [4] involving the constant-velocity
impact of a uniform rod of finite length is a notable
example. In many cases, idealization of boundary con-
ditions and stress-strain behavior are made to facili-
tate the identification of the elastic and plastic regions
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in the x, t-plane.

The degree to which the rate of strain influences the
stress-strain curve has remained an active concern,
as well as a point of controversy, among investigators.
As emphasized by Bell [5], the governing stress-strain
curve need not be the static relationship to classify a
material response as strain-rate independent. In-
deed, from his finite-amplitude; plastic-wave measure-
ments Bell [6] has correlated the governing stress-
strain curve for annealed, commerically pure alu-
minum with a rate-independent, parabolic law. This
relationship is applicable between strain rates of
10 sec™' to 10% sec™!' and diverges from the static
curve for strains above 0.02. Contrary to the results of
Bell, however, dynamic stress-strain curves of O-
tempered, commercially pure aluminum published by
several authors [7, 8] show a strong dependence of
mechanical response to rate of loading. These data
are obtained for a range of strain rates, 10~% sec™!
to 10? sec™!, using several loading techniques (e.g.,
pressurized gas loaders, and split Hopkinson bar).
In each case, loads and displacements of adjacent
loading heads are simultaneously recorded under near
constant strain rates. Implicit in such a measurement
and a limitation to maximum loading rates obtainable
in such devices is the assumption that a uniaxial strain
is uniformly distributed throughout the specimen.

Within the general context of the above discussion
and with the anticipation of developing a useful
testing technique, the longitudinal impact of rods of
nonuniform cross-sectional areas are examined in
this study. The objective here is to define a constant
and physically realizable loading (boundary) condition
in the longitudinal impact problem, and through
specimen geometry alter both the dispersive charac-
teristics and unloading pattern of the deformation.
In this way, experimental observations are readily
made to test various aspects of theory and method
of solution. Results are reported for three specimen
geometries of annealed, commercially pure aluminum
(1100-0). In each case, the boundary condition cor-
responds to a constant-velocity impact except that the
step in velocity has a finite rise time.

The theoretical analysis is a numerical solution of
the one-dimensional, rate-independent equations of
plastic-wave propagation. The characteristic properties
of the governing equations are utilized to construct
difference relations fer a constant mesh spacing.
Boundaries separating regions of elastic and plastic
response are located in the x, ¢t-plane by an iterative
scheme where the solution at each point is compared
to its previous strain history. Shock-type motion is
not encountered since only stress-strain curves con-
cave toward the strain axis are considered. Numerical
evidence of convergence and stability of the method
is examined by several test problems.

A constant-velocity loading of 800 in per second
(20 meters per second) is achieved by the axial col-
lision of identical specimens. Strain-time profiles are
measured on the stationary specimens at cross-
section distances of 1, 2, and 4 in (25, 51, and 102 mm)
from the impact face with resistance gages. In each

test, the responses at two positions are recorded from

a dual-beam oscilloscope, and at least three tests are -
made for each of the three specimen geometries

considered.

2. Numerical Solution

The integration of hyperbolic differential equations
in two independent variables by finite difference
methods is a well developed area of applied mathe-
matics. Chapter 2 of the text by Forsythe and Wasow
[9] gives important theoretical results and surveys
existing methods. The selection or development of
any one scheme usually is influenced if not dictated
by the problem in question. For the class of elastic-
plastic problems considered in this study, the govern-
ing equations are first transformed into the normal
form (see appendix for derivation)

<8—0+Aa—0>+)\ <@+)\@ PN S
a — " ox) ot~ “oax) T T ox A )

where o is the nominal stress, v is the particle velocity,
p the mass density, and A the cross-sectional area.
The coefficient A= (f'/p)'? is identified as the char-
acteristic wave speed and f’, the slope of the stress-
strain diagram, satisfies the following relations:

f"=FE whene<e€, or =0
E>f >0, and "< 0 when € # 0 (2)

where £ is Young’s modulus, €, is the strain at the
proportional limit, and € is plastic-strain rate. In the
above formulation compressive stresses and strains
are positive, and the stress-strain behavior is restricted
to linear elastic response on stress reversal.

A desirable property of hyperbolic equations
transformed to the normal form is that the dependent
variables are differentiated in a common direction.
That is, o and v are differentiated along the so-called
characteristic curve x=x(t) for which dx/dt==\.
This form of the governing equations is amenable to
finite difference approximation. The approach here is
to write eq (1) as

0A o dx
do+Npdv+X\ A dt—O,’Jt‘—)\ (3)
do 5 o dx__
do—\pdv—NX\ 9% A dt=0; 7 A (4)

where do and dv in eqs (3) and (4) are differentials
along the +and — characteristic curves respectively.

To construct a difference equation problem to the
above equations consider a rectangular mesh in the
x,t-plane of constant spacing, Ax and At¢, as shown
in figure 1. At the points P, Q, and R along a constant
time line ¢, the solution is considered known. The
solution is sought at point S at a later time ¢+ At.
Equations (3) and (4) can be integrated along the, as
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FIGURE 1.  Characteristic curves at a typical mesh point.
yet unknown, + and — characteristic curves from

their intersection with the line ¢, point 1 and 2 re-
spectively, to point S. Thus, along the + character-
istic curve

a(S)INS)—a(H/N1)+ p[v(S)—v(1)]

S 9A
‘)—X% dt=0 (5)

e

—f.(r(/)\ 14
1

and along the — characteristic curve
a(S)INS) —a(2)/N2)— p[v(0)—v(2)]

—ftrdA '—f\":’iﬂdz:() 6)
P 9 0X 4

where the numbers in parentheses and limits of in-
tegration denote the value of the variables at the
correspondingly numbered points in figure 1.

Thus far, the solution of the quasi-linear, elastic-
plastic equations has been reduced to the evalation
of the integrals in eqs (4) and (5), the location of the
intersection of characteristic curves with the line
t (i.e., points 1 and 2), and obtaining the values of
stress and velocity at the latter points. To ensure that
the characteristic curves intersect between adjacent
mesh points and to satisfy the important convergence
requirement that the interval of dependence for the
difference equations is greater than or equal to the
one for the differential equations, the incremental
distance Ax to the incremental time Atz ratio is taken
as the elastic-propagation velocity. That is

Ax
K);Z(k/p)'“. (7)

This result follows from the definition of the character-
istic curves and relationships (2).

The distance «;, locating points 1 and 2 in figure 1,
is given by the line integral

a,-:f A\dt: 1=1,2 (8)

along the respective curves. When A is a constant in
the region of interest (the characteristic curves are
linear), the integration of eq (8) is elementary and the
first integrals in eqs (5) and (6) are seen to vanish. In
the more general case, «; is obtained from the differ-
ence approximation

aiZJ ANt = NiAt+ 0(h2), i=1,2 9)

where, for example,

A= N(S)/2+ [AM(R)az + M(Q)Ax —az) ]/2Ax.  (10)
Consistent with the approximation made in eq (9),
the value of the dependent variables at points 1 and 2
are determined by linear interpolation between adja-
cent points, for example,

[0(Q)—a(R)]a
Ax

ag2)=o(Q)+ (11)

To complete the difference approximations, the
integrals of eqs (5) and (6) are approximated by the
following relations:

s . .1 AE) —A(S) .
-1 = v/ o\ 2
ﬁ odA [o(S)+ o (i)] INOIG) +0(h2) (12)
vodo (Mo M)E 2 :
J'i ox A dt_(()x Als oxl|i/ 2 +O(A%).  (13)
LET A[S]=A[P)
{DETERMiNE & FROM EQ 9; i= 1,21

DETERMINE OTil, V[il, ALi); i=1,2
(E.G., FROM EQ 11 AND STRESS-STRAiIN CURVE)

[SOLVE EQS 5 AND 6 FOR ('[S], VIS]

SET N=yE/p

SET X=A[0'(5)]

SET Als)=x*

SOLUTION COMPLETE

FIGURE 2. Flow diagram of numerical solution.
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The 0(h*) approximation in the above relations hold
if the integrands satisfy a Lipschitz condition.

With the given difference approximations, eqs (9)
through (13), a noniterative solution of eqs (5), (6), and
(8) can be obtained by approximating A(s) [e.g.,
A(s) =A(Q)]. This simplification however, proved
unsatisfactory for the problems considered in this
paper, and an iterative scheme was formulated. This
solution for a typical mesh point, see figure 1, is con-
veniently illustrated in the flow diagram of figure 2.
When adjacent points span an elastic-plastic boundary,
the location of the boundary is taken at the midpoint
of the mesh spacing. For example, if point P is un-
loaded and o, =0.5Ax, A(1)= (E/p)"2. Otherwise,
AN(1)=A[o(1)]. Thus, the unloading boundary is
located to within a mesh spacing in the numerical
output and estimated in the calculation to within one-
half of a mesh spacing.

3. Example of Numerical Solution

To illustrate the behavior of the numerical solution,
the plastic-wave motion in an infinite, uniform rod
subject to a stress-pulse loading at the end is examined.
This problem was chosen for illustration since it con-
tains the general features of the unloading phenomena
in elastic-plastic analyses and a sufficiently accurate
graphical solution is available for comparison. The
boundary condition is given by

(0] t)ISO'y% (1—1/T) (14)

where o is the yield stress, o(0, t) is the stress at
x=0, t again denotes time, and T is the pulse duration.
The stress at the end of the rod, x =0, is seen to obtain
a maximum value of 20y at t=0.5T. The stress-strain
curve is a bilinear relationship with an elastic modulus
to plastic-tangent modulus ratio (E/E") of 16. The

elastic-wave speed is, therefore, 4 times the plastic-
wave speed (A\=4\").

An overall picture of the deformation is contained
in the dimensionless x/N'T— /T plane of figure 3.
The initial elastic response, region I, is bounded by
the parallel elastic-characteristic curves x=At. On
yielding, o (0, t)=0,, the diverging elastic-charac-
teristic and plastic-characteristic curves define a
constant state solution in region II. For ¢t greater than
0.5T, the stress boundary condition decreases in
absolute value and an unloading boundary propagates
into the solution field. The area between the un-
loading boundary and the initial plastic disturbance,
region III, defines the zone of plastic deformation.
Above the unloading boundary the response is elastic.
The graphical solution of this problem can be found
in the book by Rakhmatulin and Den’ Yanov [10] and
was originally published by Shapiro [11].

Dimensionless stress-time and velocity-time relation-
ships of the graphical solution at positions x=0,
0.5N'T, 1.0AN'T, 1.5\'T are shown in figures 3 and 4.
Superimposed on this description are the numerical
calculations for mesh spacings of At=0.05T, 0.01257,
and 0.006257, and Ax=MAAt. The numerical de-
scription is seen to converge to the more accurate
graphical relationships as the mesh size is decreased.
The symbols used to designate the numerical solu-
tion are made open and dark at alternate positions
for clarity in the 3-dimensional plot of figure 3. Only
during the plastic deformation at x=1.0N'T" does
the convergence of the numerical solution appear
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objectionably slow. Examination of the x/N'T—1t/T
plane of figure 3 shows the width of the plastic zone,
region III, at this point is the same order of magni-
tude as the smallest Ax mesh spacing. Thus, the
mesh size must be decreased severalfold to obtain
a more accurate solution in this region. The location
of the elastic-plastic boundaries exhibit similar
behavior. That is, the numerical solution is reliable in
locating the elastic-plastic boundaries of figure 3
to within the accuracy of the mesh size and the pre-
cision of the calculations.

An important observation is that the numerical
calculations show no evidence of instability. This
hypothesis is supported by the agreement between
the graphical and numerical solutions in the region
of constant state, on the unloading portion of the stress-
wave, and the totally elastic response at x=1.5A"T.
For the above and similar test problems, a theoretical
energy balance of kinetic, elastic, and plastic energy
to work input was found to be a measure of the over-
all accuracy of the numerical solution. This result
is used in estimating the error in the numerical de-
scription of the following section where alternate
methods of solution are not available.

4. Constant-Velocity Impact of Tapered Rods

Unlike the stress pulse problem of the previous sec-
tion, the last integral term of eqs (5) and (6) is non-
zero for a rod of nonuniform cross-sectional area.
The additional terms cause no change in the numerical
scheme illustrated in the flow diagram of figure 2.
Furthermore, since the difference relations of -eqs
(12) and (13) are consistent—that is, of the same
degree of approximation—no complication in the
observed behavior of the numerical solution is antici-
pated. Indeed, convergence of the numerical solution
in this case was found to be similar if not faster than
the results shown in figure 3 and other test problems.
For example, the calculations presented in the fol-
lowing discussion for tapered rocds are, for the most
part, convergent to 3 significant figures for At equal
0.254 and 0.127 ps. A test problem of a uniform, semi-
infinite rod subjected to the same boundary conditions,
stress-strain relationship, grid size, and total time of
calculations also exhibited convergence to 3 significant
figures, and at no time was the difference between the
numerical and exact solutions greater than 4 percent.
The theoretical energy balance also indicated that the
accuracy of the solutions presented in this section
is within this range. Although analytic or so-called
closed form solutions of plastic-wave propagation in
rods of nonuniform cross-sectional areas have re-
ceived attention in the literature (see E. Wlodarczyk
[12, 13] for a notable contribution and a list of im-
portant publications), the idealizations required in
this approach are too restrictive for the interests of
this investigation. In fact, while such descriptions
employ a variety of analytical methods, the term closed-
form is sometimes misleading in that solutions often
require numerical procedures and evaluation of
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FIGURE 5. Stress-strain curves for commercially pure aluminum

annealed 2 hr at 1100 °F (593 °C) and furnace cooled.

implicit functions. Thus, more direct evaluation of the
numerical method in this case was not attempted.

The material selected for investigation is commer-
cially pure aluminum (1100-0) which has been an-
nealed for 2 hr at 1100 °F (593 °C) and furnace cooled.
The stress-strain curve shown in figure 5 is obtained
from the average data of 8 static tests, and is closely
approximated by 20 linear segments for use in the
computer code. Three specimen geometries presented
for discussion and subsequently compared to experi-
ments are a rod of uniform cross-sectional area and
rods with a =0.03 tapered slope. In each case, the
rods are initially unstressed and 6 in (152 mm) in
length; the boundary condition at the impact face
corresponds to a constant-velocity impact except that
the step in velocity has a finite rise-time. This phe-
nomenon of longitudinal impact testing is caused by
the physical limitation of achieving a plane impact
of flat surfaces and is also influenced by the two-
dimensional wave structure of the deformation near
the impact face. For an impact velocity of 800 in/s
(20 m/s), the loading condition was approximated by

V=800 sing—éfor0§t§40 -

(15)

and

V=800 for ¢ > 40 us

The 40 wus rise-time in the above relations was esti-
mated from strain-time observations in the impact of
uniform rods and agrees with similar data published
by Bell [14]. From symmetry conditions of the longi-
tudinal impact of two identical specimens, the con-
stant-velocity loading, equal to one-half the speed
of the projectile, can be shown to hold until the axial
stress at the impact boundary is reduced to zero.
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FIGURE 6. Theoretical location of unloading boundary (U. B.)
in x.t-plane.

It was hypothesized that the rise-time would be rela-
tively constant for the uniform and tapered rods for
the same impact velocity. At the free end of the rods,
the stress is zero for all times.

The theoretical locations of the unloading bound-
aries in the x,t-plane for the above defined problems
are shown in figure 6. In all cases, unloading is in-
itiated at the free end, x=6.0 in (152 mm), and travels
at the elastic speed into the solution field. Due to
the interaction with the incident compressive wave,
however, these disturbances are contained near the
free end producing a sawtooth appearance. For the
cross-sectional area decreasing in the direction of
motion, —0.03 tapered rod, unloading also takes
place at the impact face (x= 0) immediately after the
velocity obtains a constant value (¢ greater than
40 ws). This boundary is seen to propagate at a near
constant velocity of 0.188 times the elastic speed and
produces a stress-pulse wave form. In the case of
the uniform bar, a similar unloading pattern de-
velops at a later time of 90 us and is attributed to the
influence of the free end. For the cross-sectional
area increasing in the direction of motion, +0.03
tapered rod, the eventual unloading along the bar
starts near its center at a time of 160 ws.

The attenuation and amplification of the stress
wave as a function of position along the bar and
specimen geometry are shown in the diagrams of
figure 7. Influencing the wave shape, in any one
case, are the combined and interrelated effects of
changes in mass along the bar and the occurrence of
unloading. For example, while the cross-sectional
area decreasing in the direction of motion tends to
raise the transient stress level, the relatively rapid
unloading of the specimen in this case limits maxi-
mum stress values to levels below the corresponding
values in the uniform bar.

As indicated in the relationships of figure 7, the
stress can be expected to change from compression
to tension. A tension stress can not obviously be
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FIGURE 7. Theoretical stress-time relationships.

maintained at the impact faces, and the boundary
condition at the moment when the stress changes
sign should be changed from constant velocity to
stress free. The solutions presented for discussion
were terminated sometime after the specimen, had
unloaded along its entire length. During this time,
compression stresses were maintained at the impact
face and the maximum tension stress in the bar only
slightly exceeded 1200 psi (8.27 MN/m?), the virgin
compression-yield stress of the material. Nonethe-
less, this behavior points to the need of incorporating
the response of the material on stress reversal, e.g.,
a Bauschinger effect, into the dynamic analysis.
Also, there is no guarantee that plastic deformation
cannot reappear at a later time. The relative im-
portance of these uncertainties in the present prob-
lems will be determined from experimental observa-
tions.

5. Experimental Observations

A constant-velocity loading is achieved by the axial
collision of identical specimens using a ¥4-in (19 mm)
bore gas gun. A schematic view of ihe experimental
setup is shown in figure 8. Fibrous washers are used
to make the tapered projectiles concentric with the
barrel. Impact velocities are measured by a light screen
and photomultiplier tube system whose signals
alternately start and stop a timer on passage of the
projectile. The instrumented specimens are axially
alined with the barrel and rest on point supports.
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FIGURE 8. Schematic diagram of experimental apparatus and
instrumentation.

Except for the small constraint of the fibrous washers,
the projectile and specimen are in free flicht during
collision.

Strain-time profiles are measured at cross-sectional
distances of 1, 2, and 4 in (25,51, and 102 mm) from the
impact face with epoxy back, 0.063-in (1.6 mm) gage
length, constantan, resistance gages. For each meas-
urement, two gages are mounted diametrically opposite
one another with either RTC epoxy or Eastman 910
cements; the gages are wired in series and connected
to a constant current power supply of 25 mA. Before
each test, the circuit is calibrated by shunting a series
of resistors across the gages. Outputs from two sets
of gages are fed to a-c coupled, vertical amplifiers of
a dual beam oscilloscope. The horizontal sweep of the

oscilloscope beams is triggered by the signal from the
photomultiplier tube just before impact. The writing
speed is 20 ws/cm, and the vertical sensitivity is be-
tween 20 and 100 mV/em depending on the maximum
strain level. The response of the oscilloscope for the
latter operating condition, better than 1 ws rise-time,
is more than adequate for the observed transient sig-
nals. The signals are recorded by an open shutter
camera.

Both the experimental and theoretical strain-time
profiles for the three problems are shown in figures 9,
10, and 11. The designated points on the experimental
traces correspond to calibration levels. Asterisks
denote interpolations between calibration points.
The reproducibility of the data is considered good.
Two important considerations in obtaining represen-
tative data are (1) to minimize bending deformation
caused by unsymmetrical and skew impact of specimen
and projectile, and (2) to accommodate the one-dimen-
sional approximation to the motion by making measure-
ments in that section of the specimen where radial
inertia effects are negligible. To investigate these
factors in the present experiments, tests were made
in which two sets of gages are mounted 90° apart
at the same cross-sectional distance. One set of
gages is mounted in the standard way to measure the
axial strain; the other set of gages, 0.25 in (6.4 mm)
length by 0.032 in (0.8 mm) width, is mounted so as
to measure circumferential strain. Typical data is
shown in figure 10, test No. 14 for the uniform rod
at the one inch position. The axial strain is seen to
equal twice the circumferential strain. These results
are in agreement with the incompressible behavior
of plastic flow for a uniaxial stress state; and therefore,
indicate that effects of bending and radial motion are
small.
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FIGURE 9. FExperimental and theoretical, axial strain-time profiles (—0.03 tapered
rod).
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Considering the approximation of the boundary
condition defined in eq (15), comparison of the the-
oretical and experimental strain-time profiles show the
theory and method of solution to be an accurate model
of the deformation. That is, the general features of the
strain waves predicted by the numerical solution are,
for the most part, in quantitative agreement with the
observed behavior. Of particular note is the develop-
ment of the unloading boundary in the —0.03 tapered
rod which is well defined by the peak levels of the

strain-time traces. This boundary is seen not only to
initiate near the impact face but its propagation speed
is within 10 percent of the theoretical value.

At 1 in from the impact end, each of the three
specimens experienced a near constant strain-rate
of 40/s. For the uniform and —0.03 tapered rods,
the calculated maximum strain levels of 0.024 and
0.019, respectively, are in close agreement with
experimental values. In the case of +0.03 tapered
rod, however, the measured maximum strain is
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axial, permanent-strain distribution.

significantly less than the predicted value. While
this difference suggests a strain-rate dependence of
material response, the above results can also be
rationalized in light of the dynamic stress-strain
curve of this material reported by Bell [6]. As shown
in figure 5, Bell’s dynamic curve diverges from the
static relationship for strains above 0.02. Further-
more, at a stress level of 11 ksi (75.8 MN/m?2), the
difference in strain between the dynamic and static
curve is the same order of magnitude observed in
figure 11.

Post-mortem examinations of the specimens and
projectiles are made by measuring the diametral
deformation with micrometers of 0.0001 in resolu-
tion. As shown in figure 12, twice the diametral
strain is found nearly equal to theoretical prediction
of the permanent, axial-strain distribution except
for higher values of strain noted above. These results
also satisfy the incompressible behavior of plastic
flow, and resolve an earlier contention that plastic
deformation of the longitudinal impact problems is
confined to the time periods described in figures
9, 10 and 11. Thus, the restriction of the stress-strain
curve to linear-elastic response on stress reversal is
of little consequence in this study. It is noted that this
restriction on the stress-strain curve is caused by
the absence of a unique formulation of plastic flow on
cyclic loading, and is not due to any limitation in the
method of solution. Comparison of data in figures 11
and 12 also shows the resistance gages are reliable
in measuring the maximum strain of these magni-
tudes at the 1-in (25-mm) position.

The adequacy of the rate-independent theory to
describe the dynamic deformation of annealed alu-
minum reported above is in general concordance with
the recent studies of Bodner and Clifton [15] on the
stress-pulse propagation in uniform rods at room tem-
perature; and of Schultz, Tuschak, and Vicario [16]

‘on the transverse wire impact measurements. It would

seem unlikely that close correlation between theory
and experiment would be obtained for such diverse
studies if the governing stress-strain curve were rate-
dependent to the degree reported in references 7 and 8.
In the latter references, the rate-dependent behavior
of O-tempered, commercially pure aluminum is deter-
mined by a split Hopkinson bar for a strain rate of
40/s. These data show a marked increase in flow stress
above the static curve for strains between yield point
and 0.10. Since the theoretical-experimental com-
parisons cited above do not measure simultaneously
stress and strain at a material point these results are
a necessary but not a sufficient measure of materials’
rate-independent behavior. Nonetheless, results of
the split Hopkinson bar suffers from similar limitations
in assuming the stress state is quasi-static and uni-
axial; and therefore, the seemingly contradictory
results are noteworthy.

6. Conclusion

An iterative-explicit, numerical solution has been
formulated to a large class of problems in the one-
dimensional, rate-independent theory of plastic-wave
propagation. Convergence and stability behavior of
the method are found sufficient for machine computa-
tion. For example, solutions presented in this study
with At =0.254 ws required approximately 5 min/1000
time steps on a Univac 1108 computer. The solution
has been used to design experiments in the lon-
gitudinal impact of uniform and tapered rods of an-
nealed aluminum. Close correlation between theory
and measured response has been obtained for strain-
rates and strains as high as 40/s and 0.024. The one-
dimensional theory is, however, of questionable value
near the impact face, within one-half diameter, where
the wave structure is two-dimensional. Also consistent
with the uniaxial approximation is the requirement
that the change in cross-sectional area be kept to some
minimum, nominal value.

7. References

[1] von Karman, Th., On the Propagation of Plastic Deformation
in Solids, NDRC Report No. A-29, OSRD No. 365 (1942).

[2] Taylor, G. I., The Plastic Wave in a Wire Extended by an Im-
pact Load, The Scientific Papers of G. I. Taylor (Edited
by G. K. Batchelcr, University Press, Cambridge) 467-479
(1958).

[3] Rakhmatulin, Kh. A., The Propagation of unloading waves,
Prikladnaya Matematika i Mekhanika 9, 1 (1945).

[4] Lee, E. H., A boundary value problem in the theory of plastic
wave propagation. Quarterly of Applied Mathematics 10,
335-346 (1952).

[5] Bell, J. F., The Dynamic Plasticity of Metals of High Strain
Rates, Behavior of Materials Under Dynamic loading (Ed.
N. J. Huffinton, ASME, N.Y.) 19-41 (1965).

239



[6] Bell, J. F., Experincntal study of the interrelation between
the theory of dislovations in polycrystalline media and finite
wave propagation in solids, J. Applied Physics 32, 10,
1982-1993 (Oct. 1961).

[7] Holt, D. L., Babcock, S. G., Green, S. L., and Maiden, C. J.,
The strain-rate dependence of the flow stress in some alumi-
num alloys, Trans. American Society for Metals 60, 2, 152—
160 (June 1967).

[8] Lindholm, U. S., and Yeakley, L. M., High strain-rate testing:
tension and compression, Experimental Mechanics 8, 1-9
(Jan. 1968).

[9] Forsythe, G. E., and Wasow, W. R., Finite-Difference Methods
for Partial Differential Equations, ch. 2 (John Wiley &
Sons, New York, N. Y. (1960).

[10] Rakhmatulin, Kh. A., and Den’ Yanov, Yu. A., Strength Under
High Transient Loads, Israel Program for Scientific Transla-
tions, Jerusaleum (Daniel Davey and Co., Inc., New York,
N.Y.) 31-33 (1966).

[11] Shapiro, G. S., Prodol’ nye kolebaniya sterzhnei (Longitudinal
vibrations of bars), Prikladnaya Matematika i Mekhanika
10, 5 and 6 (1946).

[12] Wlodarczyk, E., Propagation of elastic-plastic and shock
waves in a bar of finite length and monotone decreasing
cross-sectional area, Proceeding of Vibration Problems,
Warsaw 2, 7, 135-153 (1966).

[13] Wlodarczyk, E., Propagation of a loading and unloading wave
in a bar with monotone increasing cross-sectional area and
curvelinear (o-E) relation, Bulletin De L’Academie, Pol-
onaise Des Sciences, Serie de science techniques 14, 3,
185-252 (1966).

[14] Bell, J. F., Study of Initial Conditions in Constant Velocity
Impact, J. Applied Physics 31, 12, 2188-2195 (Dec. 1960).

[15] Bodner, S. R., and Clifton, R. J., An experimental investiga-
tion of elastic-plastic pulse propagation in aluminum rods,
J. Applied Mechanics 34, 1 (Mar. 1967).

[16] Schultz, A. B., Tuschak, P. A., and Vicario, A. A., Jr., Experi-
mental evaluation of material behavior in a wire under
transverse impact, J. Applied Mechanics 34, 2 (June 1967).

8. Appendix: Transformation of Governing
Equations into Normal Form

Adopting a Lagrangian description of the deforma-
tion, let u(x, t) denote the particle displacement from
its initial position x in an unstrained rod of nonuniform
cross-sectional area. Hence, the nominal strain, change

. dJu
in length per unit initial length, is €= and the

. . . du : N .
particle velocity is v=-—. The kinematic identity

. at
follows
d d
=== (1)
Jt  dx
and the equation of motion is
do v 904 o
Ztp—t+ZZ=0
ax Pt ax A esl

where o denotes the nominal stress, force per unit
area, p is the mass density, and 4 is the cross-sectional
area. A determinate system of equations is obtained by
introducing the stress-strain relation, o =f(¢€), of the
material in the form

80’_ ﬁ

w L a0 (3a)

where /" =do/de. In the above formulation compres-
sive stresses and strains are positive, and conservation
of mass is implicitly satisfied.

The three governing equations can be written in the
matrix form

L{w] = Aw,+ Bw,;+ dwo=0 (4a)
where w= (v, o, €) and
04 1
01 0 p 0 0 0 %A 0
A=|1 0 0|;:B=[0 0 1 |;:d=|0 0 0

00 0 T 0 0 0

The characteristic roots A of the above equations are
obtained by setting the determinate of the charac-

teristic matrix A to zero, that is,
det A=det (4—A\B)= (5a)
and are found to be
A== (f"(e)/p)'* 0 (6a)

The nonzero roots are recognized as the wave speed
corresponding to a strain €.
Associated with the characteristic matrix and each
root is a null vector [ which satisfies
Al=0 (7a)
For eqs (4a), the null vectors are to an arbitrary scale
factor

L=\ \p,1) when A=+ (f"/p)"/?

L=0—Np.—1)  when \=—(f/p}? (8a)

lb=1(0,0,1) when A=0.

The normal form of eq (4a) is obtained by their scalar
product with the null vector, that is

[-Llw]=0

Performing the above operation one obtains

(9a)

filod v 04 o dJe Jv o de
et == uciabeiiitl 24 — ——
A<6x+p6t+r)x A>+}\p< +8x>+(8t fat) ¢
do 04 o ) dv do  ,, 0€\
A(&x +p +8x A) Ap(d[—i_dx) <at E)t)ko
(__f ()G) _
(10a)
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Substituting eq (3) and the last of the above equa- dJo | do _ dv v %0’_0
tions into the first two and rearranging terms, the B o P\ot " “ox) “ox A4
normal form is
(11a)
Jo Jdo v Jv 0A o
—+A—]+Ao|— — A——=0 .
(d{ dx) P <(’)t ke ()x) + dx A (Paper 72C4-260)
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