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Measurements made on dental amalgam in tension indicate that amalgam exhibits three types of
viscoelastic phenomena: (1) instantaneous elastic strain, (2) retarded elastic strain (transient creep),
and (3) viscous strain (steady state creep). The combination of elastic plus retarded strain can be repre-
sented by an equation of the form € = Ao + B*0*> where A and B are functions of time but not of the
stress, o. The viscous strain rate can be represented by an equation of the form ¢, = Ko™ where
K and m are constants of the material. By applying a nonlinear generalization of the Boltzmann super-
position principle to a general equation describing the creep behavior of amalgam, the results of
creep tests can be directly related to the results of stress-strain tests.
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1. Introduction

There is no information in the literature on the
viscoelastic behavior of dental amalgam except the
limited amount that can be obtained from stress-strain
relationships [1, 2]." The stress-strain data indicate
that amalgam exhibits a nonlinear relation between
stress and strain over the entire range of stress in-
vestigated; this has been found to be true in both
tension and compression. It has been further noted
that the shapes of the stress-strain curves vary with
the strain rate indicating that the strain developed is
not only dependent on the applied stress but also upon
time of application of the stress. The results of tensile
stress-strain investigation by Rodriguez and Dickson
[1] indicated that dental amalgam might be a visco-
elastic material. It was, therefore, the objective of
this study (1) to make an exploratory investigation of
the types of viscoelastic phenomena exhibited by
dental amalgam in tension, (2) to describe the visco-
elastic phenomena exhibited by amalgam in terms of
available viscoelastic theory and (3) to make avail-
able a practical example and method of application
of viscoelastic theory to a dental material.

2. Theory

In general a strain-hardened material will ex-
hibit one or more of three aspects of viscoelastic phe-
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nomena: (1) elastic behavior, (2) viscous behavior
(steady-state creep), and (3) retarded elastic behavior
(transient creep).

In a material which exhibits all three phenomena
linearly related to the applied stress and in which the
responses are additive (obey a superposition relation),
the strain at any time may be represented by the equa-
tion

* , ot
e=dto [ @ a—eart 2, a
0 n
where
€ is the creep strain,

J,o is the instantaneous elastic response,
x

o |J (r)(1—e)dr is the retarded elastic re-
0

sponse,

at . :
— is the viscous response,

o is the applied stress,

J, is the elastic compliance, the reciprocal of the

elastic modulus,

J'(7) is a continuous distribution of retarded elas-
tic compliances as a function of the variable
retardation time 7 of a continuous distribu-
tion of responses

t is the time after application of the stress, and

n is the coefficient of viscosity.

The relationship between creep strain and stress
may not be linear as assumed above. For example, a
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material may obey the following equation:

e=Jo+o r J' (1) (1= er)dr

ot [ [T B =iy | +K@=aym, @
0

where K(o—o)"t=0 for all values of o <o, and

B(y) is a continuous distribution of retarded
elastic compliances as a function of the
variable retardation time 7y of a continuous
distribution of responses in the nonlinear
second degree stress response of the
material,
is the applied stress level at which the
material begins to exhibit a viscous flow,
and

K and m are constants at any given temperature.

Where the creep strain is linearly related to the
applied stress, the strain can be written as a product
of a general creep compliance, which is a function of
time only, and the applied stress as given by the fol-
lowing equation:

e=J(t)o, 3)
where

€ is the creep strain developed,
o is the applied stress, and
J(t) is the general creep compliance.

For example, in the linear creep behavior as seen in
equation (1), the general creep compliance J(¢) is
of the form:

l(t):/()+‘[‘f/’(7—)(1_67’/7)(1‘f+ —;— (4)

In the case that creep strain is linearly related to
the applied stress, the stress-strain behavior for a
material may be related to the creep behavior by
means of the linear superposition principle devel-
oped by Boltzmann [3] as shown below:

E(af):j "J(T—0)do(0), (5)
0
or
-
E(T):f J(T—0) ) 4. (6)
0 (19
where

o is the applied stress related to the ex-
perimental time 6 in a prescribed ex-
perimental functional relation,

E(T) is the strain of a stress-strain relation
measured at a time 7 subsequent to the
variable time 6, and

do(0)

30 df is the increment of stress from time 6
to time (0-+d6).

For example, applying the Boltzmann superposi-
tion principle to the example of creep given in eq (1)
gives the following relation between creep behavior
and the strain measured in a stress-strain test [4]:

do(0)
do

(T—6)

T ))dr

T x
B =lo+ [ [Trma-e d

A discussion of the application of the Boltzmann
superposition principle as applied to linear viscoelastic
phenomena is given by Leaderman [5]. However, if
a material exhibits a nonlinear relation in its retarded
strain (transient creep) and the applied stress, as
discussed earlier, the linear Boltzmann superposition
principle cannot be applied to relate strain of a stress-
strain test on the material to the creep strain. A gen-
eralization of Boltzmann’s superposition principle
developed by Nakada [6] may be used to relate non-
linear retarded elastic creep behavior to the stress-
strain behavior of the material as given:

o(T

E.(o)= . )\I’(T—H)do-(ﬂ)—i—

ﬁr(’lv) :('r) D(T—0, T—¢)do(0)do(d)

o(T) (o(T) [o(T)
+f f f F(T—@6,
0 0 0

T—¢, T—a)do(0)do(d)do(x)+ . . 8)

Now for example, consider the application of the
nonlinear superposition principle of Nakada as applied
to the case of retarded strain (transient creep) related
to the applied stress by a second degree equation as
shown earlier:

GRZU\l/(t)+0'2<I>2(t) 9)

where W(t) and ®(¢) could be represented by the
equation shown below in accordance with the Voigt
model

W(t) =fx J' (1) (1 —e~Idr,

(

<1><t>:f/3<y)<1—e-'»“vnzy-

If one applies an approximation of Nakada’s general
formulation described by Leaderman, McCrackin,
and Nakada [7], the equation representing the re-
tarded elastic response takes the following form:

a(T)
B (o (1) = [w(r=0)do(0)

)
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a(T)

o(T)
i
0 0

Considering an example of a material which exhibits
all three phenomena but in which the creep strain is
a nonlinear function of the applied stress according
to eq (2), then applying the above approximation of
the nonlinear superposition principle, the stress-
strain behavior of the material may be related to the
creep behavior by the following equation:

D(T—0)D(T—¢)do(0)do(P).

(10)

E=ol -1-]1"[’(’['—())(10'(0)
+J‘Tfr<l)(T—())CD(T—(b)do-(())d(r(d))

T
+f K(O’(())—(T())"'(lf). (1])

However, as will be discussed later, it was found in
the investigation that a different approximation is
required to describe the behavior of dental amalgam.

3. Materials

The specimens were prepared using a commer-
cial alloy for dental amalgam certified to comply with
American Dental Association Specification No. 1.
This alloy (composition approximately Ag 70%, Sn
26%, Cu 3.5%, Zn 0.5%) was mixed with mercury
and condensed into a mold as described by Rodri-
guez and Dickson [1] to produce a specimen with
dimensions as shown in figure 1. Specimens were
aged for at least one week to obtain essentially full
mechanical strength [8].

4. Procedure

The dumbbell-shaped specimen was placed in
the grips and Tuckerman optical strain gages were
mounted on opposite sides of the specimen as shown
in ficure 2. To obtain the creep curve, readings were
taken on the strain gages, a weight was suspended
from the lower grip and a second strain gage reading

075"

050"

T »

0.08"Rad.

010" Thick

Dimensions of the dumbbell-shaped tensile specimen of
amalgam.

FIGURE 1.
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was taken immediately. Strain readings were then
made at 15 s intervals for 4 min and at increasingly
longer intervals until the strain rate became con-
stant (usually after approximately 1.5 hr). At the end
of this period, the load was removed, a strain reading
was taken immediately and the recovery curve was
followed by reading first at 15 s intervals and then at
longer intervals until the strain became constant.

Strain readings obtained on the two sides of the
specimen were averaged and strain was plotted against
time to obtain the loaded creep and unloaded recov-
ery curves. Readings on the strain gages were nor-
mally made to the nearest 2X 1075 in. Since a gage
length of 0.25 in was used this is equivalent to a strain of
8 X107, Thus, in the results given below, differences
in strain of 1X10-* are approximately equal to the
minimum reading difference.

Loads placed on the specimen (with a nominal 0.01
in? cross-sectional area) varied from 5 to 40 Ib giving
stresses from approximately 500 to 4,000 psi. Most
specimens were used for several runs, first at high
and then at lower stresses. The first loaded creep run
was considered a strain hardening treatment and data
obtained on these runs were not used in the calculation
of results other than for viscous strain rate. All runs
were made at 23+ 1 °C.

5. Results and Discussion

The creep curves (both loaded and recovery curves)
of strain hardened dental amalgam as shown for a

FIGURE 2. Tensile specimen in position for load application with
optical strain gages mounted on opposite sides of the specimen.



number of different stress levels in figure 3 indicate
that at room temperature amalgam exhibits three
different types of viscoelastic phenomena: (1) in-
stantaneous elastic strain, (2) retarded elastic strain
(transient creep), and (3) viscous strain (steady-state
creep).

The viscous strain rate was determined from the
loaded portion of the creep curve by taking the slope
of the straight line portion of the curve, and was also
determined from the recovery portion of the creep
curve by dividing the value of the recovery strain
(the permanent strain in the specimen) by the total
time the load was on the specimen. The viscous strain
rates for any given creep curve as calculated from the
loaded and recovery portions of the curve were found
to agree fairly well as shown in table 1. The log of the
viscous strain rate was found to be a linear function
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FIGURE 3. Creep and recovery of amalgam loaded in tension.
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FIGURE 4. Relationships between viscous strain rate and stress.

Straight lines are least-squares fits of equation log € =log K+ m log o to the data, with
errors assumed to be in log € only. Loaded values are from straight portion of creep curve;
unloaded values are from strain remaining in specimen after unloading and recovery.

of the log of the applied stress, as shown in figure 4;

thus the viscous strain rate could be related to the

applied stress by the following equation:
éy=Kom,

12)
where

€, is the viscous strain rate,
o is the applied stress, and
K and m are constants of the material.

The value of m for amalgam is the value of the
slope of the curve in figure 4, while the value of K
is the antilog of the viscous strain rate value at a
value of applied stress o of 1 psi. For the dental
amalgam used in this investigation values for K of
2.85X 10~ and 4.98X10-' were obtained from
loaded and unloaded data respectively, and values of
3.99 and 3.92 were obtained for m.

The strain developed in amalgam due to the other
two phenomena (1) instantaneous elastic strain and
(2) retarded strain can be determined from the strain
recovery since these two types of strain are recoverable
while the viscous strain is not. Thus, at any given load
the strain values taken from the creep curve after
the sample has been unloaded (that is in the recovery
portion of the creep curve) are subtracted from the
strain value on the creep curve at the instant just
before unloading of the specimen. This difference is
plotted against recovery time t;=T;—T, where T, is
the time at which the specimen was unloaded and

TABLE 1. Viscous strain rates
Strain per minute
Specimen —run Stress
Ib/in 2 Loaded X 10-32 Unloaded X 10-3"
41-40-1 3807 5.65 €6:35
41-40-2 3807 5.98 5.80
39-40-1 3731 4.92 €5.74
39-40-2 3731 5.23 5.08
40-40-1 3731 745 ©8.04
3458 S €3.71
3458 3.23 328
3458 3.42 3.4
2959 1.92 r1.98
2959 1.68 1.68
2959 1.74 1.72
2855 2.84 2.96
2465 0.91 0.89
2375 1.05 S1F33
2375 0.98 1.06
2375 1.03 1.08
2366 1.09 ©1.40
2366 0.783 0.82)
2366 185 .806
1900 384 L
1900 419 0.435
1892 .349 .358
1425 11 113
1419 .076 077
35-10-7 950 .031 034
38-10-6 946 .023 025
38-10-7 946 017 .018
35-05-8 475 .008 .007

2 From slope of straight portion of loaded creep curve.

P From strain remaining in specimen after unloading and recovery.

¢ These values include effects of strain hardening and were not used in calculating the
relation between stress and viscous strain rate.

206



T is the time of the strain value on the recovery portion
of the curve. These difference values, €', are seen
plotted against the recovery time for each load or
stress in figure 5. These plots are a measure of the
combination of the elastic and retarded elastic strain
behavior of dental amalgam as a function of time for
various stress levels. A measure of the combination
of elastic and retarded strain may also be obtained
from the loaded portion of the creep curve by taking
values off the loaded creep curve and subtracting
the viscous strain accumulated in the specimen at
that time. The accumulated viscous strain at any time
may be calculated by multiplying the viscous strain
rate by the time corresponding to that value on the
creep curve. Thus the difference between the creep
curve value on the loaded portion and the viscous
strain value at a corresponding time is a measure
of the combination of the instantaneous and retarded
elastic strain. However, a small error in the viscous
strain rate causes a large error in the difference value.
Therefore, the plot of the combination of elastic and
retarded elastic strain versus time as obtained from
the loaded creep curve is subject to large possible
error.

Using the approximation of Nakada’s general
formulation described by Leaderman, McCrackin,
and Nakada [7], the ordinates of the inverted recovery
curves as described above should be greater in the
early portion of the time scale than the ordinates of
the loaded portion of the creep curves minus the vis-
cous strain. The difference between the curves should
rise to a maximum within the first few minutes and
gradually decrease to zero as time increases. However,
as shown in figure 6, the loaded curves appear to lie

Nakada’s formulation would be very difficult. More-
over, the differences are not large and the method of
obtaining values for the loaded curves is subject to
considerable error because the loaded curves had to
be corrected by subtracting the viscous component.
Thus it is believed that the differences between the
curves are not significant and so the curves were
treated as though they are superimposable. Therefore,
the data reported for the combination of elastic and
retarded elastic strain were obtained from the recovery
portion of the creep curves.

The combination elastic strain (instantaneous and
retarded elastic strain) becomes asymptotic with
time in accordance with theory as seen in figure 5.
The combination elastic strain values were plotted
as a function of the various stress levels for cor-
responding time, as shown in figure 7. The combina-
tion elastic strain is seen to be a nonlinear function
of the applied stress. When the combination strain
values were divided by their corresponding stresses
and then plotted against the corresponding stress
for a fixed time, a linear plot was obtained for each
fixed time as illustrated in figure 8; this result indicated
that the combination elastic behavior of amalgam as a
function of applied stress under the test conditions
could be represented by an equation of the form:

€' =A(t)o+B*(t)o>, (13)

where

€' is the combination of elastic and retarded elastic
strain, and

.. o is the applied stress.
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FIGURE 5.

Strain recovery after release of tensile stress.

Each curve is an average of 2 to 7 runs.
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FIGURE 8. Relationships between recovery strain, stress and time.

Plotted points are averages of 2 to 7 determinations. Straight lines represent the con-
stants obtained by least-squares fit of the equation €'/o=A(t) +B*(t)o to the data with



A(t) and B*(t) are functions? of time but not of
stress. The value of A(¢) for any time value is the
intercept at =0 of the plot for that time value as
shown in figure 8 while B?*(t) is the slope of the
straight line for that time value. It is also noted in
figure 8 that as a function of stress the combination
strain divided by the stress is a straight line for all
values of t. This indicated that over all ranges of ¢,
the combination elastic strain obeys the same func-
tional relation to the stress. Since the recovery curves
were found to be superimposable upon the loading
curves minus the viscous portion, it appeared that
the nonlinear material did not obey the approximation
of nonlinear generalization previously noted [7]. It
was then questioned whether the retarded behavior
of amalgam was truly nonlinear or whether the non-
linear behavior could be attributed to the geometry
of the specimen being observed. However, longer
specimens were tested and found to give the same
result, also photoelastic specimens were made and
the stress distribution over the area observed was
found to be uniform. It is therefore concluded that
the observed nonlinear behavior of dental amalgam
is not a geometric artifact, but an intrinsic phenomenon
in the material. The difference between the recovery
curves and the loading curves minus the viscous
portion is given by [7]:

2002 [P (AT, T) —d(T,T)],

where AT is the time the specimen was under the
load 0. For amalgam, this difference is found to be
Z€ro, $0:

OAT, T)=d(T.T) (14)
for creep recovery from equilibrium, i.e., for AT large.
McCrackin [9] has suggested that this condition be
satisfied by assuming that the value of ® is only
dependent on the value of the least of its arguments.
That is,

ST, To) =B*(T,) if Ty < T (15)

With this condition, the quadratic term of eq (8)
is shown in the Appendix to reduce to

f " BT — 0)dlo2(6)] (16)

)

so, eq (8) reduces to:

E, (T) :f(rmA(T—())da(())
o(T)
+j B:(T—60)do*(0)].  (17)

2 The notation B*(t) rather than B(t) is used for consistency with the form of the
notation of Leaderman, McCrackin, and Nakada [7].

TABLE 2. Values of A(t) and B2(t) in equation

€' = Ao + B (t)o*

Time — min A(t) X10-7 B(t) x 10-1
0.25 1.130 1.906
.50 1.120 2.468
1.00 1.132 3.065
2.00 1.183 3.548
3.00 1.206 3.876
5.00 1.248 4.285
10.00 1.356 4.737
20.00 1.518 5.100
30.00 1.598 5.364
40.00 1.626 5.636
50.00 1.648 5.839
60.00 1.668 5.970
70.00 1.693 6.031
80.00 1.727 6.050
90.00 1.761 6.064
120.00 1.812 6.223
150.00 1.877 6.224
200.00 1.952 6.210
300.00 2.074 6.082
600.00 2.103 6.290
1000.00 2,()@ 6.497

€' is combination of instantaneous and retarded
elastic strain.

o is stress.

A(t) and B*(t) are constants for any time and
are functions of time but not of stress.

Tbe values for A(t) and B*(t) were determined
by fitting curves to the data by the method of least
squares and were tabulated as a function of time
as shown in table 2.3 The A4(¢) values were plotted
as a function of the corresponding ¢ values as shown
in figure 9. The A(t) values are seen to approach an
asymptote, A, as t = o, Thus, the curve as shown in
figure 9 could be represented by the following equation
from linear viscoelastic theory since A(t) is the linear
term in stress:

A(t)Z,/“+fx,l'(r)(l—e"/’)(l'r, (18)

XI0'7L T L =] T — T

2.2r d

201 9
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FIGURE 9. Variation with time of the linear creep compliance
term, A(t), in the equation €' = A(t)o+ B (t)o2.

* Strain values for different stresses were obtained at each of the specific times listed
in table 2 (and for many other times not listed in the table) by interpolation between the
recorded values of strain along each of the 25 to 30 creep and recovery curves. Then the
strain values for a specific time were fitted to the equation €'/o=A(t) + B%(t)o to obtain
the values of A(¢) and B2(t) for that specific time.
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At) :J“+f0xj'(r)d7—ijf(T)e—t/rdT, (19)
A(t) = Ay — f ™ () emitrds, 20)
Ao —A(t) = f " ) (r)e-tdr, @1)

where

A(t) is the creep compliance term which is linear
in stress,

Jo  is instantaneous elastic compliance,

J'(7) is the retarded elastic compliance spectrum

as a function of the retardation time 7, and

is the asymptote value of A(¢) as t becomes

very large.

Aas

Thus, eq (20) does describe the behavior of A(#) as
a function of time as seen in figure 9. The linear creep
compliance term A(t) is plotted as a function of log ¢
to obtain a signoidal curve as shown in figure 10. The
first plateau of the signoidal plot at very small values
of t should correspond to J/, (the instantaneous elastic
compliance) [10]. The value of J  calculated from the
curve is 1.13 X 10-7 in?/lb, equivalent to a modulus of
elasticity of 8.9 X108 Ib/in?. This value is in good
agreement with a value of 9.1 X 106 reported for the
modulus of dental amalgam determined by an ultra-
sonic method [11].

The nonlinear creep. compliance term B2(t) was
plotted against log ¢ to obtain a sigmoidal curve as
shown in figure 11. Thus, in the nonlinear theory of
Nakada [6] the experimental B(¢) for amalgam might
be represented by the following equation:

B(t)=VBZ(t)=f:CB(v)(l—e*'/’)dv 22)

which would indeed describe the behavior of the curves
seen in figure 11. The combination elastic behavior
of dental amalgam in creep under the test conditions
used could then be described by means of the follow-
ing equation from viscoelastic theory [6, 10]:

€ =A(t)o+ B2(t) o2,
€ :j(‘0'+(rfx,]'(7') (1—eU")dr
0

T [ f Bv)(1 —e-'/wdv]z ot (24

and since the loaded portion of the creep curve for
amalgam is also composed of viscous strain €, as well
as combination elastic strain € then the strain on
the loaded portion is composed of the sum of the two
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FIGURE 10. Variation with log of time of the linear creep com-
pliance term, A(t), in the equation € = A(t)o + B%(t)o2.
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as follows:

e=¢€ +e€,. (25)

Thus

e=,/oa+ajx,l'(7)(] —e ") dr

+ [jx By) (1 —('*’/V)(ly]z o>+ Ka™t. (26)

Therefore, applying both linear and nonlinear visco-
elastic theory to the experimental behavior of amalgam
under the test conditions used, a general equation
describing the creep behavior of amalgam as given
by eq (26) above is obtained.

Applying the nonlinear generalization of the Boltz-
mann superposition principle as developed by Nakada
[6], to the above creep equation for amalgam, the
stress-strain curves for various stress rate conditions
were calculated for amalgam from the creep data and
compared to the experimental stress-strain curves
obtained under those conditions. The stress-strain
curve corresponding to the experimental stress rate
was calculated from the following equation:

Er(nAt) = 2 (01— 0i-1) (4_;'_3%/’*; )

i=1

+arS K (‘1——"*‘ o) @)

2

i=1

which is a finite difference approximation to eqs (17)
and (12). For the experimental data, the testing
machine was run at a constant head speed which
produced a varying stress rate over a total time of
32 min. From the stress versus time curve, observed
stress values were obtained at 15-s intervals. Using
the values of A(¢) and B(t) calculated for 15-s intervals
from the creep data and also the viscous constants
from these data, a curve was calculated for comparison
with the experimental curve. Figure 12 shows the
contribution of instantaneous elastic, retarded elastic
and viscous components to the total calculated strain.
It is seen in figure 13 that good agreement is obtained
between the calculated and experimental stress-strain
curves. Thus, it is concluded that in the case of dental
amalgam the results of creep tests can be related to
those of stress-strain tests by use of viscoelastic

theory [6, 10].

6. Conclusion

Dental amalgam was found to exhibit three types of
viscoelastic phenomena: (1) instantaneous elastic
strain, (2) retarded elastic strain (transient creep),
and (3) viscous strain (steady state creep).

The combination of elastic plus retarded strain

< 3 5 By +B;, i in tension was found to be a nonlinear function of
+2 (of—07 ) T
i=1
1 l Ll ] 1 T T
x10°
ET
5.0 = d
/
4.0 -
‘»
(ol
|
m —
A w
w
(a4
.—
Yo i
I.UL ]
0.0 1 L 1
12 4x107*

STRAIN

FIGURE 12. Calculated instantaneous elastic strain E,, retarded elastic strain Eg,
viscous strain Ey, and total strain Eq occurring during a stress-strain test of dental

amalgam.

Head speed of testing machine was constant, and total time was 32 min.
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stress and could be represented by an equation of

the following form:
€' =Ao+ B?0? where A and B are functions of time,
but not of stress.

The viscous strain rate is also a nonlinear function
of stress and can be represented by an equation of the
form:

= Ko™ where K and m are constants of the material.

An equation describing the creep behavior of

The first integral is

[ -0 [ a6 |aro)
_ f )‘"”Bz(r— 0)o(6)dor(6)

a(T)
f BT — 0)d[ o*(6)].

amalgam was obtained by the application of nonlinear Applying Dirichlet’s formula [12] to the second
viscoelastic theory to the experimental behavior of integral,
amalgam under the test conditions used. By applying
the nonlinear generalization of the Boltzmann super- o g B*(T—¢) 2Z2\2) do(¢) do(0) do | d
position principle to this equation the results of 0=0lJe=06 dep de
creep tests were related to results of stress-strain tests.
gives
7. Appendix T ¢ -
[l o 2450 o]
The derivation of eq (16) is as follows [9]: d=oLJ0
- do (0
o(T) [o(T) _
| O(T— 0,7~ ¢)dor(6)dor () =[] (- G [ o) ao
0 0
o1 (o d(T((b)
(1) [ a(6) _
=f f B*(T—0)do(¢p)do () f B*(T—¢) a(¢) do
0 0
o(T) [ o(T) _1_ T 2 T d[02(¢)]
[T B (= 4)da (6)do(6). 2], BI—¢) =g do.
x10° T I T I T I T | T | I [ I I
X
50— =d
o
L - -
o
4,0— =
5 | |
| X
3.0~ =i
w
n o
w L 4
(a2
'—
20— -
é EXPERIMENTAL
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X BACK GAGE
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o o 4
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STRAIN

FiGURe 13. Comparison of calcula

ted and experimental stress-strain curves.
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However, this is the same as the first integral as
0 and ¢ are dummy variables of integration so the sum
of the integrals is

f BX(T—9) ‘”" (6)' f"mBz(T—a)dw(e)].

)
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