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A curved bar structural analysis is developed for an n-degree elliptical elastic ring with sinusoid-
ally varying cross-section dimensions, where the n-degree ellipse is defined by

x n ); n .
(5) +<5) =1, n=2.0.

A sequential grid constrained optimization method is used to search for a minimum weight design in
six dimensional shape parameter space. Numerical results indicate that rings of this shape can be
designed to have considerably less weight and greater flexibility than comparable circular rings with
uniform cross-section dimensions.
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1. Introduction

Elastic ring force transducers (such as proving rings, load rings, ring dynamometers, etc.),
for a wide range of load carrying capacities have most frequently been made circular in shape with
uniform rectangular cross section. This shape has imposed limitations on the usefulness of this
type device, particularly for higher capacities (i.e., greater than 100,000 1bf), due to overall size,
gross weight, limited deflection range, and size effect during heat treatment. For the same force
resisting capacity, rings of more complex shapes can be designed to have greater deflection ranges,
less weight, and smaller maximum dimensions. This paper describes methods of analysis of a
broad geometric class of complex shaped rings which result in improved deflection and weight
characteristics.

Structural analysis and design optimization methods are developed for an n-degree elliptical
elastic ring with sinusoidally varying cross-section dimensions. The ring is analyzed as a thick
curved bar, assuming small deflections, plane strain, Winkler-Bach bending stress distribution,
uniform normal stress distribution, and parabolic shear stress distribution [1].! A sequential grid
constrained optimization method is used to search for the minimum weight ring design that will
satisfy the specific force capacity, deflection, and dimensional requirements of a force transducer.

! Figures in brackets indicate the literature references on page 150.
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List of Symbols

rectangular coordinates of ellipse,

polar coordinates of ellipse,

degree of ellipse,

semimajor and semiminor axes of ellipse,

ring cross-section width,

ring cross-section thickness normal to tangent of ellipse,
average of maximum and minirnum ring width,
average of maximum and minimum ring thickness,
dimensionless parameter of ring width variation,
dimensionless parameter of ring thickness variation,
arc length variable measured along ellipse,
counterclockwise angle from radius vector to tangent line,
total load applied to ring,

=L/2, load applied to one quadrant of ring,
moment,

normal force,

shearing fotce,

normal stress,

shearing stress,

strain,

curvature of ellipse,

relative rotation of differential segment ends due to NV,
curved bar rotation,

curved bar deflection,

total ring deflection,

strain energy of curved bar,

strain energy per unit volume,

Poisson’s ratio,

modulus of elasticity,

integral defined by eq (19),

design maximum stress,

scale factor,

ring weight,
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vy  material weight per unit volume,

&gi constraint function,

b; constraint bound,

x;  variable of the optimization problem,
z  objective function.

2. Structural Analysis

An elastic ring force transducer is loaded by two forces acting in opposite directions along
a diameter, as shown in figure 1. Corresponding ring deflections are measured and related to
applied forces by a calibration factor.2 For a ring of the geometric class represented in figure
1, the locus of centroids of ring cross sections is an n-degree ellipse defined by the equation

& n _X n .
((l) +<b) =1, n=20, (1)

f2 Wilson, Tate, and Borkowski [2] have described the uniform cross section, circular force transducer, its calibration, and performance under various conditions
of use.

140



2P= APPLIED FORCE

28=CHANGE IN
THIS DIMENSION

13.800 IN

FIGURE 1. 1,000,000 [bf capacity n-degree elliptical ring with sinusoidally
varying thickness.

or in polar coordinate form
r=ab(b" cos™ -+ a" sin™ §) '/, (2)

Several n-degree ellipses are plotted in figure 2. Ring rectangular cross-section width A and thick-

ness t are given by
h=c(1—ecos 26), 3)

and

t=d(1—fcos 260), (4)

in which ¢ and d are positive parameters and e and f are parameters of absolute value less than
unity. Using these equations, the shape of a ring within this geometric class can be specified by
the seven parameters a, b, c, d, e, f, and n. If a=b, n=2, and e=f=0, the ring shape is circular
with uniform rectangular cross section.

One quadrant of the loaded ring is shown in figure 3. Due to symmetry there is no rotation at
0=0 or at §=m/2, no shear force V at §=0, and no normal force N at § = /2. Expressions for the
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FIGURE 2. n-degree elliptical curves.
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o

FIGURE 3.  Loads acting on one quadrant of a ring.
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resultant moment M and forces N and ¥ acting on a typical normal cross section are derived by
statics using formulas from calculus [3] as follows:

df_ sin §y 1
dS r dr 2’ (5)
“+(%)
dr_ ooy dr ds
ds Y dgds ©)
M= Mz, — Prcos 6=PM’, )
e o . dr de\ _ ..,
N=P sin (0+¢)—P<sm0ds+rcosOds)—PN, @®)
and
V=—P cos (9+\U)=P<r sin OQ—COS Oir>=PV'. )
ds ds
Differentiation of eq (2) gives
ﬂ: (b cos=V @ sin 6 —a™ sin”~V @ cos 6)
o " (6™ cos" O+ a" sin™ 0) ) (10)

The assumption that ring cross sections remain plane leads to the Winkler-Bach bending stress
formula, which has been written by Seely and Smith [1] in the following form, valid for a straight
or curved bar:

Ulmlz%[%-F 2 - ] an
040 [ T

The variable y is the distance from the cross-section centroid to a point in the cross section, positive
in the outward direction. The curvature £, the inverse of the radius of curvature, is given by [3]

dr\? d?r
2 o —
k_r +2<d0> 162
= (12)
[+(@)]
Differentiation of eq (10) gives the required second derivative
%922 (n+1)abla” sin®=V 6§ cos 0—b" cos'"=V @ sin 6]2[a" sin" O+ b" cos® §]-(2+1/n
+a"tV b[sin® §— (n—1) sin®=? 6 cos? 6] [a" sin™ 6+ b" cos™ §]~(1+1/n
+ab"+V[cos® 0— (n—1) cos"=? @ sin2 §][a” sin” §+ b cos™ §]-(1+1/n), (13)

It is assumed that stress due to the normal force N is uniformly distributed over the cross
section, that is

_N
ht
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It is assumed that shear stress is distributed parabolically over the rectangular cross section
according to the formula
V(3 y?
v=-|53—6%3) 15
" he (2 ﬂ) e
Castigliano’s strain energy theorem [1] is used to determine the ring bending moment and
deflection at 6= /2. The theorem stated symbolically as applied to this problem is

U
e‘11'/2 - aMﬂ'/Z’ (16)
and
Snpp = dl] 17
/2 oP’ ( )
in which U= total strain energy of the loaded bar,
O,/ = bar rotation at /2,
and dz/2 = bar deflection at /2 in direction of P.
The strain energy per unit volume due to bending stress is
1 (1—=v?)o}
Um= B OMEM = T”, (18)

in which €)= unit plane strain,
v= Poisson’s ratio,
and E = modulus of elasticity.
Substituting eq (11) into (18) and integrating over a differential segment gives the corresponding
strain energy of the segment

1—v2)M? k ; 2 — ) M2
dUy= —(Vi) —aF g 5 dy|ds= M gds. (19)
2Eh £ 1+ hy) J’ > g 2Eh
The strain energy per unit volume due to the normal force N is
S (ﬂ) <i> __N 20
uv=5 ovev=9\ne) \mE) " 2ER® (o)

and the strain energy of a differential segment is

dUy ds. @1)

N
" 2Eht
The strain energy per unit volume due to the shear force V is

(402 (1+n? (3 .
S Ry <§—6§>’ )

and the strain energy of a differential segment is

ds. (23)

6 /1+v\ V?
=2 __)

dUl' = < E H

143



The normal force N acting on a differential segment causes rotation of one end cross section
relative to the other, due to the difference in arc length from inside radius to outside radius. The
mean change in segment arc length is

N 1
m ds= (Z) ,3, (24)
in which g=rotation due to N.

The bending moment M acting during this rotation contributes strain energy to the segment
equal to

kMNds
dUyy= “FEht (25)

Adding eqs (19), (21), (23), and (25) gives the total strain energy of a differential segment

1U1N261 Vll1 ,. M?g  MNk
‘ [2hz S e s ] 28
Applying eq (16) and the boundary condition of no rotation at §=1/2 gives
a(/_J N 8N 12 Voo gM oM kM 9N kN oM
oMz E [/u F) A S U iy 7 Sl Gt @ R Sy 7 A TRFY Y Sy 72 aMW]
1 1—v)gM kN
:E [#%— ht:l(l's— (27)
Substitution of eqs (7) and (8) into (27) gives
(1 —v?gr cos 0 k sin 6 kr cos 0
f 7 ds — i (r—fTrl()
Mz, =P — g (28)
f———(l Ll ds
h

Applying eq (17) to (26) gives

LU 1 (R[N GN 120 +v) oV gM oM kM N kY M7
32 =3P~ F ), [EW* she P T T Pt P TR a_P]”

J: /2 1 12
= i [N'l 5 1+ v)V'2— (1 —v*)gtr cos OM' + kM'N' — kr cos 0N'] ds. (29)
0

The tangential stress on the inner surface is provisionally assumed to be the limiting stress
that determines the force resisting capacity of the ring. The possibility of capacity being limited
by some other component of stress or combined stress should be checked in any final design
analysis. Substituting —¢/2 for y outside the integral in eq (11) and adding to eq (14) gives the
tangential stress on the inner surface of the ring

| Mt v w0
or= F-h(g—-/,-[)f 7 . +9r (30)
(A +ky) ¥
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For a circular ring of uniform cross section the maximum value of o7 occurs at = /2. But for the
more general geometry considered here the maximum may occur at §=0 or at some point in
between.

The structural analysis thus far has been developed for one quadrant of the ring. For the total
ring, figure 1, the applied force is

L=2P, 31)
and the deflection at the point of load application is
A=287,. (32)

3. Design Analysis

The design analysis attempts to find the dimensions of the minimum weight ring that will
satisfy the arbitrary force capacity, deflection, and dimensional requirements of a particular force
transducer. The deflection range of the ring must be compatible with the deflection sensing device,
and the inside dimensions of the ring must be sufflcient to accommodate the sensor. Outside di-
mensions of the ring must not interfere with its intended use. The thickness of the ring must permit
the heat treatment required for the ring material. All trial solutions are scaled up or down to
coincide with the force capacity requirement.

1. Scale Factors

The procedure adopted here for meeting the force capacity requirement is to scale all length
dimensions in the r-0 plane by a factor A that will make the maximum stress (the maximum value
of or for the entire ring) equal a prescribed maximum design stress S. The cross-section width A
is not scaled. This gives the specialized equation for the maximum tangential stress on the inner
surface of the scaled ring

PR A
2 \N/) | ht h(2— kt)f ht (33)
1+ ky) MAX.
_LiF
2\
in which S = design maximum stress,

L)= design capacity,
and F = maximum value of bracketed function.

This gives the scale factor

L\F
A=T5 34
Scaled ring dimensions, A subscripted, are
n=Ar, (35)
and
t=\L. (36)
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Scaled forces and moment are

Ly\=\L, (37)
Nyx=A\N, (38)
V}\ = )\V9 (39)
and
M= NM. (40)
Scaled ring deflection is
Ax=\A. 41)
Scaled ring weight is
/2
Wy=4y\* f htds = \2W (42)
0

in which y = material weight per unit volume.

3.2. Thin Circular Ring

By making the appropriate simplifying assumptions, the thick ring equations developed above
can be reduced to relatively simple thin circular ring equations. The thin circular ring equations,
although they may be in error by several percent, can be used to determine a reasonable range of
ring proportions for beginning an optimum search procedure. The equations also give a useful
indication of the comparative efficiencies of different ring materials.

A thin ring is here defined as one in which the ratio of thickness to radius of curvature is so
small that, with negligible error: (1) the stress distribution due to bending can be assumed linear
over a cross section, and (2) deflection due to shear ¥ and normal force N can be neglected. By
assuming zero effective curvature and no deflection due to ¥ or N, the following thin ring equations
for moment, maximum bending stress, and deflection at the point of load application can be
obtained from eqs (28) through (32):

M= P 43)
_6M
T e e
and _ 24\ (1— )L
A=(37— ) Em 45)
These equations, solved simultaneously, give
_ 3 T2EL2A
= \/(ﬂA — 81— )0 (46)
and
ht?
- ”‘g 7L_. 47)
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The weight of a thin circular ring is

24EyLA
(w2—8)1—1%)02,

W =2zrhty= (48)

Note that the weight, for a particular LA, is a function of the material properties E, v, o7, and 7.
Equation (48) suggests the importance of maximum permissible design stress in a comparison of
different ring materials where weight is a significant factor.

3.3. Optimization Method

The optimization problem considered here is of the general nonlinear programming class.
The goal of this type problem is to determine the set of values of the variables x;, . . ., x, which
satisfies the constraint conditions

gilx1, . . "xl)){s’ ) B}b;, ISl 6 6 on s (49)
and minimizes the objective function
z=f(x1, . . ., xp). (50)
In the present case the p variables are the six independent ring shape parameters a, c, d, e,
f, and n. The structural analysis is first done for a ring of unit value of mean radius, that is

a+b
=ik (51)

Thus the value of the parameter a determines the value of b. The thickness parameter d is, for the
unit size ring, the ratio of the mean of the extreme values of thickness to mean radius. After the
structural equations are solved for the unit mean radius ring (using Simpson numerical integration),
the results are scaled to full size using the scale factor A. The width parameter ¢ is not scaled
during the entire analysis, and the shape parameters e, f, and n are nondimensional and are not
scaled.

The m constraint functions g; and the corresponding constraint bounds b; are as follows:

(1) Ring deflection

& =A\= b, (52)

(2) Maximum thickness of ring cross section

g=Nd(1+|f]) < b, (53)

(3) Outside width of ring
2=\ (2a+d—df) < bs, (54)

(4) Outside height of ring
Z&=N4—2a+d+df) < bs, (55)
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(5) Maximum width of ring cross section
g=c(l1+]e|]) <bs, (56)

(6) Inside clear height of ring

ge=\(4—2a—d—df) = bs. (57)

The constraint bounds b; are the limits on ring characteristics imposed by use, fabrication, or
material requirements.

The objective function z to be minimized is the ring weight W), eq (42).

A sequential grid method was used with reasonable success to search for minimum weight
solutions. The method requires several computer runs of moderate duration. Between computer
runs changes are made in the input data based on the experience of previous runs. The ‘‘Elastic
Ring Optimization Program” listed in the appendix was used for this search procedure.

For the first computer run, one or more values of each of the six variables x; are chosen as
input data. If two or more values of a variable are chosen, they are widely spaced, but within a
reasonable range for that variable. By nested do loops the computer generates all combinations of
the variables. Each combination is a solution point in the six dimensional shape parameter space.
The ring weight and the six constraint function values are computedand printed for each solution
point. The best solution point for a computer run is the one with the least weight that also falls
within all six constraint bounds.

Subsequent computer runs are made using as input data variable values distributed about the
best known solution point. The range of values of any variable should include the value of that
variable for the best known solution point. Any results of previous computer runs may be useful
as a guide for selecting input data. The process is repeated until a solution point with satisfactorily
small weight is found, or until results indicate that a satisfactory approximation of a minimum
weight solution has been found.

Computer time required for each solution point is approximately one-half second on a UNIVAC
1108 computer. Obviously there are practical limits to the number of variable combinations one
would want to generate in one computer run.

A second computer program (the “Detailed Ring Analysis Program” listed in the appendix)
can be used to compute scaled dimensions, forces, moments, and stresses for a particular set of
input shape parameters. The program prints ry, tx, k, k, Ny, V\, M\, or, and the value of the integral
in eq (11) for each incremental value of 6. These results can be used with eqs (11), (14), and (15) to
determine whether ring capacity is limited by a stress condition other than the maximum value
Of agr.

The following numerical example demonstrates the optimization method.

3.4. Numerical Example

The problem is to determine, for a ring of 1,000,000 lbf capacity and for the material constants
and constraint bounds listed below:
(I) The approximate weight of a circular ring of uniform rectangular cross section.
(2) The dimensions of an approximately minimum weight n-degree elliptical ring of constant
cross section width and sinusoidally varying thickness.
(3) The dimensions of an approximately minimum weight n-degree elliptical ring of sinusoi-
dally varying cross section width and thickness.
The material constants are: S= 150,000 lb/in2, £ = 30,000,000 Ib/in%, v=10.3, and y=10.29 Ib/in3.
The constraint bounds are: b; = 0.25 in, b= 4.5 in, b35=40.0 in, b4=40.0 in, b5=14.0in, bs= 9.0 in.

a. Solution 1
Thin circular ring equations were used to compute a rough approximation of ring weight and
dimensions. Substitution of L, E, y, v, S for or, and b, for A into eq (48) gives an approximate ring
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weight of 1365 1b. Substitution of the same values, along with b5 for A, into eqs (46) and (47) give
t=3.66 in and r=14.73 in. The ratio of thickness to radius is 0.248. The more accurate thick
curved bar equations were used for all subsequent computations.

Computer run No. 1 of the sequential grid search included nine uniform cross-section circular
rings with widths of 10, 12, and 14 in and thickness to radius ratios of 0.20, 0.25, and 0.30. For
these nine cases the ratios of weight to deflection differed by less than two percent, a result that
might have been anticipated from eq (48). The two cases with characteristics nearest the constraint
bounds had deflections of 0.234 and 0.277 in and weights of 1327 and 1587 Ib respectively. Linear
interpolation between these two cases gives an estimated weight of 1424 1b for a ring that would
deflect 0.250 in.

b. Solution 2

A sequence of five computer runs were used to seek the dimensions of a minimum weight,
constant width ring. The input shape parameter data and the resulting weight for the best point of
each run are given in table 1. The best point parameter values for each run are underlined. The
weight of 553 Ib for the fifth run is about 39 percent of the estimated weight of 1424 1b for a uniform
cross-section circular ring. The 553 Ib ring was accepted as a satisfactory approximation of the
minimum weight constant width ring. The ring shape is shown in figure 1. Critical ring dimensions
and a deflection of 0.257 in all fall within the constraint bounds.

Plots of or versus 6 for the 553 Ib ring and for a 1587 Ib uniform circular ring (¢c=14.0 in,
d=0.25 in, A=0.277 in in computer run No. 1) are shown in figure 4. The high stress level over a
greater portion of the 553 lb ring is an indication of more efficient use of material in this more
complex ring shape.

c. Solution 3
Computer runs 6 and 7 included many cases with variation of cross-section width. But for both

runs the best points were constant width cases. The seventh run included a variable width case
with parameter values ¢ =13.6 in, e = 0.025, and f= 0.45, and a resulting weight of 539.18 Ib which

TABLE 1. Sequential grid search data for numerical example

Independent ring shape parameters® _Wrighl
Computer | - — S — . for l_u-sl
run No. point
a (s d e f n
Inch Inch Inch Lb
1 1. 10. 2 0. 0. b 802.00 20 T = T T T T T T
1.2 12. 25 2 3.
1. 3 . s ]
: & 25 2.5 828.42 <
o :l; :: -i’ 0. 1 3 d 310 UNIFORM CIRCULAR RING T
- - 35 3 3.5 °
o= 5 J
3 1.15 13.5 .28 0 E2 3. 639.84 .
1.25 14 3 3 3.5 ﬁ o com:nfssnfw ) )
=32 4 4 3 TENSION
I
4 1.23 13.4 31 0. 3 4, 572.90 st _
1.25 13.7 33 35 4.5 g
1.27 4 B = ol i
=
5 1.22 13.6 .305 0. 1 4.5 553.06 <
1.23 13.8 .31 45 5. 5 ' NONUNIFORM n-DEGREE ELLIPTICAL RING
1.24 315 5% (n=55)
20 L 1 L L L i 1 1
6 1.21 23 3 =1 15 5.5 564.55 0 10 20 30 40 50 60 70 80 90
1.2: 12.7 -305 Q-l D 6. ANGULAR  LOCATION, O, DEG
. ’ 205 — 095 ; cag . . . .
7 S 2 £ “'M') : & R FIGURE 4. Tangential stress on inner surface of
:'.:‘,; ~025 = nonuniform n-degree elliptical ring and uniform
3.2 025 S . A
3.6 05 = circular ring.
14. 075
2l

 Best point values for each computer run are underlined.



is only slightly greater than the best point weight. Additional searching might result in a slight
weight reduction due to width variation. But the weight savings would probably not be enough
to justify the additional complexity of shape.

4. Summary

A structural analysis method has been developed for an n-degree elliptical elastic ring with
sinusoidally varying cross-section dimensions. A sequential grid constrained optimization method
has been used to search for the minimum weight ring of this geometric class that would be suitable
as the load supporting element of a force transducer.

Limited numerical results were obtained for one-million pound force capacity n-degree ellip-
tical rings with nonuniform cross-section dimensions. The results indicate that such a ring with
constant cross-section width and sinusoidally varying thickness can be designed to weigh as little
as 39 percent of the weight of a comparable uniform cross section, circular ring. Outside dimensions
of the more complex ring are also significantly less than those of the uniform, circular ring. The
results for an n-degree elliptical ring with sinusoidally varying cross-section width and thickness
suggest that the weight savings due to variation of width may not be great enough to justify that
additional complexity of shape.

The Elastic Ring Optimization Program (given in appendix) can be used directly for design
optimization by the sequential grid method described in this paper; or the program could be used
in combination with some other optimization procedure. In either case, the Detailed Ring Analysis
Program (see appendix) or another comprehensive stress analysis should be used for a detailed
examination of stresses for the entire ring.

The analysis was coded in FORTRAN V for the UNIVAC 1108 computer by R. M. Slesser
of the National Bureau of Standards Center for Computer Sciences and Technology.
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6. Appendix

The two FORTRAN V computer programs used in the elastic ring design analysis are listed
below. The Elastic Ring Optimization Program is used to search for the optimum set of shape
parameters a, c, d, e, f, and n. The Detailed Ring Analysis Program is used to compute scaled
dimensions, forces, moments, and stresses for a particular set of input shape parameters. Table
A1 lists the computer symbols used to represent mathematical symbols appearing in the equations
of the text. Sample input data is included at the end of each program.
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TABLE Al. Corresponding symbols in text, computer programs, and
computer output

Text Programs Output
a Cl1 A
c @3 C
d C5 D
e Gy E
f C8 F
n XN N
L\ XLLAM L LAMBDA
S} S S
E E E
v XNHU NU
Yy GAMMA GAMMA
h B(1J) L
t T(J) T
r R(1J) R
0 THETA()) THETA
k RHO(1J) K
g G(1))
M' PM(1))
N’ PN(1J)
4 PV(1])
F DMAX
A XLAM LAMBDA
W\ WLAM WEIGHT
& DELAM Gl
&2 TCON4 G2
83 TCONS5 G3
& TCON6 G4
&8s TCON7 G5
86 TCONS G6
y Y
AN XLN(I) LAMN
AV XLV(I) LAMV
M XLM(I) LAM**2*M
Ar RLAM LAMR
At TLAM LAMT
or SIGTL(I) SIGMA
6 for max. or JMAX ™
WA\ RATIO WT/DEFL
Integral in eq (11) YINT()) INT
ds DS
dr
b DRDT(1))
d*r .
pTe SDRDT(1J)
db
& DTDS
dr DRDS
ds i
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Elastic Ring Optimization Program

W RUN MITCHE»16650¢r02¢60
wlil FOR MAIN1,MAIN1
COMMON /INTEG/F(100) »AREA
UIMENSION YINT(91)
ODIMENSION PV(91)
DIMENSION C1(20),C3(20)+C5(20)¢C7(10)+C8(10) ¢ XN(40)+B(91)+T(91),
1 k(91)»DRDT(91) »SDRUT(91) rRHO(91)+»G (91) vPM(91) v PN(91) »
2 C2(20) »THETA(91)
44 READ(Se 10) N1sN3eNSeN7eN8¢NNeIGO
10 FURMAT (201%)
C IGO.NEsU MEANS ANOTHER SET OF DATA FOLLOWS THIS SET.
ReAL(S »20) (C1(I)rI=1,N1)
REAOD(S »20) (C3(I)rI=1eN3)
READ(S »20) (C5(1) v I=19,NS)
READ(S »20) (CT7(I) e I=1eN7)
REAL(S »20) (C8(I)eI=19N8)
READ(S 220) (XNC(I)rI=1+NN)
20 FORMAT (10E8.0)
READ(S »30) XNHU¢ XLLAM?S»E» GAMMA
30 FURMAT (5E15.0)
C INSERT INITIAL WRITE CARDS HERE.
C PRINT OUT ALL INPUT DATA AT START OF RUN. PROGRAM 1.,
NRITE(62,1000) N1eN3+NS*N7eN8¢NNeIGO
1000 FORMAT (19H1INTEGER PARAMETERS //(815))
WRITE(601010) (C1(I)eI=1/,N1)
WRITE(601020) (C3(I)»I=1rN3)
WwRITE(601030) (C5(I)rI=1,N5)
WRITE(601040) (C7(I)rI=1eN7)
WRITE(60,1050) (C8(I)rI=1/,N8)
WRITE(601060) (XN(I)»I=1yNN)
1010 FORMAT ( 3HOC1 //(8E15.5))
1020 FORMAT (3H0C3 //(8E15.5))
1030 FURMAT (3HOCS //(8E15e5))
1040 FORMAT (3HOC7 //(8E15.5))
1050 FORMAT (3HOC8 //(BE15.5))
1060 FORMAT (2HON //(8EL15+5))
wRITE (601070)
1070 FURMAT(1HO 11Xe3H NUr15Xe7H LAMBDA¢»18Xr1HS?»19Xr 1HE 14X+ SHGAMMA )
wR1TE( 601080) XNHU»XLLAM?S»E» GAMMA
1080 FORMAT (1HO0»5E20.8)
JCOUNT=0
PI =3.141592654
Du 1 I=1,N1
Ce(I)=2.0-C1(I)
DO 1 J=1eN3
DU 1 K=19NS
DU 1 L=1eN7
DU 1 M=1r,N8
JU 1 N=1¢NN
A=Ci(I)
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Elastic Ring Optimization Program (continued)

D= Ce(I)
C JI 60cS FROM 0 TO 90.
DU 2 IJ =1,91
Jil= [J=-1
THETA(IJ)=FLOAT(JI)*PI1/180.0
B(IJ)= C3(J)*(1e=C7(L)*COS(2.*THETA(IU)))
T(Iu)= CH(K)*(1e=C8(M)*COS(2.*THETA(IJ)))
TERM = A *kXN(N)*SINC(THETA(IJ) ) *xXN(N) +D *xkXN(N) *
1 COS(THETA(IJ) ) %xxXN(N)
R(IJ)= AxD /TERM*%x(1./XN(N))
TPl= D *%kXN(N) *COS(THETA(IJ) ) ** (XN(N)=1.0)*SIN(THETA(IJ))
TP2 = A *xXN(N)*SIN(THETA(IJ) ) %% (XN(N)=1+0)*COS(THETA(IJ))
DRDT(IJ)= R(IV)*(TP1-TP2)/TERM
IFOCXNCN) eEQe2¢0+ANDTHETA(IUJ) ¢EQe0+0) GO TO 121
TP3 = A *x XN(N)=x*
(SINC(THETA(IU) ) %xxXN(N)=(XN(N)=1¢0)*SIN(THETA(IJ) ) *x*
2 (XN(N)=2,) * COS(THETA(IJ))*%x2 )
IF(XN(N) ¢EQe2+:0sANDeIJ+EQ.91) GO TO 122
60 TO 125
121 TP3 = Ax¥2%(=1,0)
125 CONTINUE
Tr4= L *x*% XN(N)x*
1 (CUSCTHETAC(IJ) ) *xXN(N)=(XN(N)=1.0)*COS(THETA(IJ) ) *xx
2 (XN(N)=2¢)* SIN(THETA(IJ) ) *x%2 )
6O TO 123
122 TP4% = Dx%x2 x (=1.0)
123 CONTINUE
SDRDT(IU)= AX*D *x(XN(N)+1.0)*(TP2=-TP1) *TERM*x*
1 (=2.=(1e/XN(N)))%(TP2=TP1)+ AXDXTERM*%x(=1e=(1+/XN(N)))%(TP3+TP4)
RHO(IJ)=(R(1IJ) *%x2+2 ., 0%*DRDT(IJ) *%2=R(IJ)*SDRDT(IJ))/
1 (ROIV)**2+DRDT(IJ) *%x2) **(3¢/24)
C RHO IS NOW Ko
IF(T(IJ)*RHO(IJ) eGEs2.0) GO TO 1
DO 1971 UMA=1,11
Y==T(IJ)*.5 + (T(IJ)*,5) % (FLOAT(JUMA=1)/5.0 )
1971 F(JIMA)=Y*%2/(1.0+RHO(IJ) *Y)
CALL YSIMP(10.0/T(IJ))
YANT (IJ)=AREA
IV RAV(IJV)/T(IJ)
DU 1972 UMA=1»,11
YE=T(IJ)*.5 + (T(IJ)*.5) % (FLOAT(UMA=1)/5.0 )
SUM = (le+ RHO(IJ) % Y)
1972 F(JUMA)SDIV**2+2.0%DIV*Y/ (SUMXYINT(IJ))+Y*%x2/ (SUMRYINT(IJ) ) **%2
CALL YSIMP(10.0/T7(IV))
6(IJu)= AREA
DTUS = 1e/ SQRT(R(IJ)*x*2+DRDT(IJ)%*2)
DRUS = DRDT(1J)*DTDS
PV(Ig)= ROIJ)*SIN(THETA(IJ) ) *DTDS=COS(THETA(IJ))*DRDS
PNCIJ)= SIN(THETA(IJ))*DRDS+R(IJ)*COS(THETA(IJ))*DTDS
2 CONT INUE
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Elastic Ring Optmization Program (continued)

C NOW WE WANT MPRIME(CALLED PM).
C WE DO SOME SIMPSON INTEGRATION.
DO 101 JUJ=1,91
F(JJ)= R(JJ)*COS(THETA(JJ) ) *SART(R(JJ) *%x2+4DRDT (JJ) %x%x2) %G (JJ) /B (JJ)
1 *(1e0=XNHU%%2)
101 CONTINUE
CALL SIMP(1,0)
PAR1 =AREA
DO 102 Ju=1,91
F(JJ)= SIN(THETA(JJ) ) %xDRUT(JJ)* RHO(JJ)/Z (B(JIJ)*T(JJ))
102 CONTINUE
CALL SIMP(1.0)
PAR2 =AREA
00 103 Ju=1,91
F(JU)= COS(THETA(JJ) I *R(JJ) * RHO(JJ)/(B(JJ)*T(JJ))
103 CONTINUE
CALL SIMP(1.0)
PAR3= AREA
DO 104 JJ= 1,91
F(JJU)= SQRT(R(JJ) %x%x2 +DROT(JJ) *%2) *xG(JJ)/B(JJ)
1 *(1e0=XNHU%%2)
104 CONTINUE
CALL SIMP(1.,0)
PAR4 = AREA
C NOW INTEGRATE TO GET W SUB LAMBDA.
DO 105 Ju=1,91
F(JJ)= SQRT(R(JJ) **x2+DRDT(UJ) **2) *B(JJ) *T(JJ)*PI1/180.,
105 CONTINUE
CALL SIMP(1.0)
PARS = AREA
C USE PARS TO COMPUTE W SUB LAMBDA LATER ON.
C NOW GET PM.
D0 106 Ju=1,91
PM(UJ)= (PAR1=PAR2=PAR3)/PAR4 =R(JJ)* COS(THETA(JJ))
106 CONTINUE
C FORM NEw LOOP TO GET BMIN,
JMAX=0
DMAX =040
DO 8811 IJU =1,91
DIV = PM(IJ)*RHO(IJ)/(B(IJ)*T(IJ))
DENOM = DIV= PM(IU)xT(IUV)/(B(IJ)*(2s=RHO(IJ)*XT(IJ))*YINT(IJ))
1 + PN(IJ)/Z(B(IJ)* T(IJ))
IF (ABS (DENOM) ¢ GT e DMAX) UMAX=1U=1
DMAX = AMAX1 (ABS(LDENOM)» ABS(DMAX))
8811 CONTINUE

BMIN = 2.0/DMAX
XLAM = XLLAM 7/ (BMIN%*S)
WLAM = 4 xXLAM*%2XGAMMAXPARS

C NOW CUMPUTE SOME VALUES TO COMPARE WITH CONSTAINTS.
TCON4 = XLAM*CS(K)*(1,+ABS(C8(M)))
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C NOw

107

Elastic Ring Optimization Program (continued)

TCONS = XLAM*(2.*CL(I)+T(1))

TCONG = XLAM*(2.*C2(1)+T(91))
TCONT7 = C3(J)*(1.+ABS(CT(L)))
TCON8 = XLAM*(2.%C2(I)=T(91))

GO TO DOOPS IF CONSTRAINTS ARE NOT SATISFIED.
OV 107 JJ=1,91
TMl = (1e=XNHU**2) %G (JJ)*T(JJ)*PM(JJ) *R (JJ) *COS(THETA (JJ))

Tme = RHO (JJ) *xPM(JJ) *PN(JJ)
DS= SGRT(R(JJ)**Z*DRDT(JJ)**Z)
™3 RHO (JJ) *PN(JJ) *R (JJ) xCOS(THETA(JJ))

F(JJ) 1o/ (BOUJ)*T(JJ) )X (PN(UJ) *%k2+124 /5% (1« +XNHU) *
1 PV(JJ) *x%2=TM1+TM2=TM3) *DS *PI1/180,

CONT INUE

CALL SIMP(1.0)

ASTAR=AREA

DELAMEXLAMXASTAR*BMIN%®S/E

RATLO=WLAM/DELAM

C COMPUTE SOME OUTPUT ITEMS.

4

7

)
1

C wE

IF (MOD (JCOUNT»25) «NE«0O) GO TO 7

WRITE(604)

FORMAT(1HL 1X "WT/DEFL'4X'WEIGHT'6X'G1'6X'G2'S5X'G3'6X'GU'6X G5!
1 TX'GO'"IX'LAMBDA'YUXYA'TXYCYEX DY 7XYEYZXFY7XIN'2X?TM?//)
WRITE(6¢S)RATIO» WLAM»DELAM» TCONU» TCONS» TCONE» TCON7» TCON8B» XL AM»
1 CL(I)»C3(JU)»CS(K)»C7(L)»CB(M)»XNIN) » JMAX
FORMAT(1HO0?2F9+2¢F9.3¢12F8.3¢13)

JCOUNT=JUCOUNT+1

CONTINUE

IF(IGO.NEO) GO TO 44
HAVE NOW FINISHED MAJOR LOOP.

STOP

END

WTI FOR SINTeSINT

21

ce

SUBROQUTINE SIMP (HHH)
CUMMON /INTEG /F(100)»AREA
H = 1¢/(3¢*HHH)

AREA=040

0ubD=0«0

EVEN=040

DO 21 I =2¢9002

EVEN =EVEN + F(I)

DU 22 I =3189+2

0LV =0DL+ F(I)

AKEA = H* (F{1)+F(91)+4xEVEN+ 2.%0DD)
RETURN

END

WTI FOR YSUB»YSUB

SUBROUTINE YSIMP (HHH)
COMMON /INTEG /F(100)rAREA
H = 1e¢/(3¢%HHH)

AREA=0.0
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21

W XaT
1
1.21
12.7
¢305
-e025
o4
6,
«30
@ EOF
@ FIN

Elastic Ring Optimization Program (continued)

ouD=0.0

EVEN=0,0

DO 21 I=2,102

EVEN =EVEN + F(I)

DO 22 I=319¢2

OuD =0DD+ F(I)

AREA = HX(F(1)+F(11)+4.0%EVEN+2,0%0DD)

RETURN
END
MAINL
5 1 6 3 1 0 0

13, 13.3 13.6 14,

0. «025 «05 +075 ol

45 5

1000000+ 150000. 30000000+«
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Detailed Ring Analysis Program

W RUN MITCHEr16650902r60
wlT FUR  MAIN2'MAINZ
COMMON  /Z/INTEG/F (100) »AREA
DIMENSION XLN(91) XLV (91)»XLM(91)
DIMENSION YINT(91)
DIMENSION PV(91)
DIMENSION 6(91)
OIMENSION B(91)T(91)»R(91)+DRDT(91) ¢+SDRDT(91) vRHO(91) »
1 PM(91) vPN(91) »SIGTL(91) ¢ THETA(91)
10 RcAD(5020) C10C3/CS59C7rC8r XN
20 FURMAT (10E8.0)
IF (C1l.E£Qe9999.) STOP
READ(5030) XNHU» XLLAM»SrEr»GAMMA
30 FURMAT (5E15,0)
C INSERT INITIAL PRINT HERE.
C PRINT OUT ALL INPUT DATA AT START OF RUN. PROGRAM 3.
WRITE(601000) C10C3,C5¢C70C8¢ XN
1000 FURMAT (  1H1» SXr2HC1e8Xr2HC3»8X12HC5¢8Xr2HCT7¢8Xe2HC898X? 1HNe//
1 oF10.3)
WRITE (601070)
WRITE (601080) XNHU»XLLAM¢S»E»GAMMA
C INSERT FORMATS 1070 AND 1080 HERE.
1070 FURMAT(1HO 10Xe3H NU»15Xe7H LAMBDA»18X9»1HS» 19X 1HE»14X» SHGAMMA )
1080 FOURMAT (1H0+5E20.8)
Pl =3.141592654
C2=2,0-C1
C4 = C3xC7
Co = C5x(C8
A =Cl1
D=Cg
Do 2 I =1,91
JiI = I=-1
THETA(I)=SFLOAT(JI)*PI/180.
B(I) = C3 * (1+=C7 *COS(2.*THETA(I))
T(l) C5 * (1e=C8 *COS(2+*THETA(I))
TERM A x* XN *SIN(THETA(I))*x%kXN+D kXN *
1 COS(THETAC(I) ) *x XN
RCI)=A*%D/ (TERM **(1./XN) )
TPl = D *x*%XN* COS(THETA(I))*%x(XN=1.0)*SIN(THETA(I))
TP2 = A *%XN* SIN(THETA(I))**(XN=1¢0)*COS(THETA(I))
DRDT(I)=R(I) *(TP1=TP2)/TERM
IF(XNeEQes2+0+ANDeI +EQe1l) GO TO 121
TP = A *%XN*(SIN(THETA(I))**x XN=(XN=1,0)% SIN (THETA(I))x*x
1 (XN=2+0)%C0S (THETA(I))*x2 )
IF(XNeEQe2+0sANDeI «EQe91) GO TO 122
GU TO 125
121 TP3 = A%%x2x(=1,0)
125 CONTINUE
TP4 = DxxXN *(COS(THETA(I))*%x XN=(XN=1.0)% COS (THETA(I))*x
1 (XN=2+0)%SIN (THETAC(I))*x2 )

)
)
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Detailed Ring Analysis Program (continued)

Gu TO 123
122 TP4% = Dx*2 x (=1,0)
123 CONTINUE
SURDT(I)= A*xD * (XN+1.0)* (TP2=TP1)* TERMxX*
1 (=2¢=(1e/XN))*(TP2=TP1)+ AXD*TERM**(=1¢=(1./XN))*(TP3+TP4)
RAO(I) = (R(I)*%2+2,%DRDT(I)*%2=R(I)*SDROT(I))
1/ (R(I)**2+DRDT(I)*x2)**(3,0/2.0)
DO 1971 JU=1,11
Y==T(I) %5+ T(I)*.5%(FLOAT(U=1)/5,0)
1971 F(J)=Y*%2/(1,0+RHO(I) *Y)
CALL YSIMP(10.,0/T(I))
YiNT(I)=AREA
DIV = RHO(I)/T(I)
DO 1972 J=1,11
Y==T(I)*¢5+ T(I)*e5%(FLOAT(U=1)/5,0)
SUM=(1,0+RHO(I)*Y)
1972 F(J)=DIV*%2+2 . *DIVXY/ (SUMKYINT(I))+Y*%2/ (SUMXYINT(I))*%*2
CALL YSIMP(10.0/T(I))
G(I) = AREA
UTDS =1e/SQRT(R(I)*%x2 +DRDT(I)*%2)
DRUS = DRDT(I)* DTDS
PV(I)= R(I)*SIN(THETA(I))*DTDS=COS(THETA(I))*DRDS
PN(i) = SIN(THETA(I))*DRDS +R(I)*COS(THETA(I)) =DTDS
2  CONTINUE
C NOW Wt INTEGRATE TO GET MPRIME (CALLED PM).
DO 101 J =1,91
F(J)=R(J)*COS(THETA(J) ) *SQRT(R(J) %x*2+DRDT (J) *%2)
1 *6(J)/B(J)*(1s0=XNHU**2)
101 CONTINUE
CALL SIMP(1.0)
PAR1=AREA
DO 102 J =1,91
F(J)= SIN(THETA(J))*DRDT(J)%xRHO(J)/(B(J)*xT(J))
102 CONTINUE
CALL SIMP(1.0)
PAR2 =AREA
DO 103 J=1,91
F(J)= R(JI*COS(THETA(J) ) *RHO(J) /(B(J)xT(J))
103 CONTINUE
CALL SIMP(1.0)
PAR3= AREA
DO 104 J=1,91
F(J)=SQRT(R(J) *xx2+DRDT(J) *x*2) *G(J)/B(J) %x(1,0=XNHU*%2)
104 CONTINUE
CALL SIMP(1.0)
PAR4 = AREA
C NOW wt INTEGRATE TO GET w SUB LAMBDA. USE PARS LATER ON.
DO 105 J=1,91
F(J)=SQRT (R(J)%%2 +DRDT(JU)*x%2)x B(J)*T(J)*PI1/180.0
105 CONTINUE
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Detailed Ring Analysis Program (continued)

CALL SIMP(1.0)

PARS = AREA
C NOW GET PM.

DO 106 J=1,91

PM(J)= (PAR1=PAR2=PAR3)/PAR4 =R(J)*COS(THETA(J))
106 COUNTINUE
C FORM LOUP TO GET BMIN AND SIGTL.

DMAX = 0.0

DO 8811 I=1,91

DIV = PM(I)* RHO(I)/Z(B(I)*T(I))

SIGTL(I)= DIV = PM(I)*T(I)/(B(I)%x(2¢=RHO(I)*x T(I))%YINT(I))

1 +PN(I) /7 (B(I)*T(I))

DMAX = AMAX1(ABS(SIGTL(I))rABS(DMAX))
8811 CONTINUE

BMIN = 2.0/DMAX

XLAM= XLLAM / (BMIN%S )

FACTOR=BMIN*S*,5

DO 8833 I =1,91

SIGTL(I)=FACTOR*SIGTL(I)

XLN(I)=XLAM*FACTOR*PN(I)

XLV (I)=XLAM*FACTOR*PV(I)

XEM(I)=XLAM*x*2%xFACTOR*PM(1)
8833 CONTINUE

DO 107 Ju=1,91

TMl = (1e=XNHU*%2) %G (JJ) *T(JJ) *PM(JJ) %R (JJ) *COS(THETA(JJ))

TmMe = RHO (JJ) *PM (JJ) *PN(JJ)
0S= SQRT(R(JJ) **2+DRDT (UJ) *%2)
TMd = RHO (JJ) *PN (JJ) *R (JJ) *COS(THETA (JJ) )

FOIU)=1e/ (B(UJIRT(JJ) ) ¥ (PN(JJ) *%2+124 /5% (1« +XNHU) *
1 PV(UJ)*%2=TM1+TM2=TM3) *DS *PI1/180.
107 CONTINUE
CALL SIMP(1.0)
ASTAR=AREA
DELAM=XLAM*ASTAR*BMIN*S/E
WLAM = 4% XLAM **2%x GAMMA *PARS
C NOw COMPUTE SOME OUTPUT ITEMS.
TCON4=XLAM*CSx(1.+ABS(C8))
TCONS= XLAM * (2.% A +T(1))
TCON6= XLAM * (2.% D +T(91))
TCONT= C3 * (1.+ ABS(C7))
TCONB=XLAM*(2.,0%C2=T(91))
C NOW COMPUTE STRESS.FOR EACH THETA.
C NOW WE PRINT OUT DESIRED OUTPUT: THEN READ ANOTHER DATA SET.
WRKITE(6040)
40 FORMAT(1HO 1X *WT/DEFL'4X'WEIGHT'6X'G1'6X"'6G2'5X'G3*6X'GL4'6X 165"
1 7X'G6'"3X'LAMDA'SXYA'TXICY*8X'DI7XEYTX'F'7X'N/ )
RAT10=WLAM/DELAM
WRITE(6+70)RATIO»WLAMeDELAM? TCON4» TCONS» TCON6» TCONT7» TCONB ¢ XLAM?
i C10C3¢C5¢C70CB2 XN
70 FORMAT (1H0?»2F9¢2¢/F9.3+12F8.3)
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Detailed Ring Analysis Program (continued)

WRITE (6080)
80 FORMAT (LHO'THETA'O6X'RYIX'LAMR'OX*T'8X'LAMTYOX'L'OX*K'OX* INT"
1 T7X'LAMN'7X'LAMV'4X'LAM*%2xM'6X?*SIGMA'//)
DO 64 I =1,91
J =I=-1
RLAM=R (1) *XLAM
TLAM=T (1) %xXLAM
WRITE(6r90)JrR(I) PRLAMYT(I) v TLAM/B(I)»RHOCI) pYINT(I) e XLNC(I)»
1 XLVOI) e XLM(I)»SIGTL(I)
90 FORMAT(1H ISe11E11.4)
o4 CONTINUE
110 FORMAT (1H )
GO TO 10
STOP
END
BN FOR SINT»SINT
SUBROUTINE SIMP(HHH)
COMMON /INTEG /F(100)»AREA
H = 1.0/(3¢0%HHH)
AREA=0.,0
0ub=0.0
EVEN=0.0
DO 21 I =2090r2
21 EVEN =EVEN + F(I)
DO 22 I =3+89r2
22 Quu =0DD+ F(I)
AREA = H* (F(L)+F(91)+4,*EVEN+ 2.%0DD)
Re TURN.
EnD
WN FOR YSUBrYSUB
SUBROUTINE YSIMP (HHH)
COMMON /INTEG /F(100)»AREA
H = 1e¢/(3e¢%HAH)
AREA=0.0
QuUbD=0.0
EVEN=0.0
DO 21 I =201002
21 EVeEN =EVEN + F(I)
DO 22 I =3» 9¢2
22 OuD =0DD+ F(I)
AREA = Hx (F(1)+F(11)+4.*EVEN+ 2.%0DD)

RETURN

END
® XQT MAINZ
l.22 13.8 «305 0. 45 5.5
3 1000000 150000. 30000000 29
1. 140 .2“8 0. 0' 2.
3 1000000, 150000, 30000000, «29
W EOF
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