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A curved bar structural analysis is developed for an n·degree e llipti ca l e lasti c ring with sinu soid
ally varying cross-section dimensions, where the n-degree e llipse is defin ed by 

II ;;' 2.0. 

A sequential grid constrained optimization method is used to search for a minimum weight des ign in 
s ix dimensional shape parameter space. Numerica l results indica te that rings of thi s s hape can be 
des igned to have co nsiderably less weight and greate r fl exibility than comparable c ircular rings with 
uniform c ross-section dime nsions. 

Key Words: C urved ba r a nalysis, e las tic it y, force transduce r, n-degree e lliptica l ring, nonlin ea r 
program ming, optimization, prov ing rin g, s tructural des ign, theory. 

1. Introduction 

Elastic ring force transduce rs (such as proving rings , load rings , ring dynamome ters, e tc.), 
for a wide range of load carrying capacities have most freque ntly bee n made circ ular in shape with 
uniform rectangular cross section. This shape has imposed limitations on the usefuln ess of this 
type device , particularly for higher capacities (i .e ., greater than 100,000 lbf) , du e to ove rall s ize, 
gross weight, limited deflection range, and size effect during heat treatm e nt. For the sa me force 
resisting capacity, rings of more complex shapes can be designed to have greater de fl ec tion ranges, 
less weight, and smaller maximum dimensions. This paper describes methods of analysis of a 
broad geometric class of complex shaped rings which result in improved de fl ection and weight 
c haracteris ti cs. 

Structural analysis and design optimization methods are developed for an n·degree elliptical 
e lastic ring with sinusoidally varyin g c ross-sec tion dimensions. The ring is analyzed as a thick 
c urved bar, assuming small de fl ec tions, plane strain, Winkler-Bach bending stress distribution , 

uniform normal stress distribution, and paraboli c shear stress distribution [IV A sequential grid 
co nstrained optimization method is used to search for th-e minimum weight ring design that will 
sati sfy the specific force capacity, deflection, and dimensional requirements of a force tran sdu cer. 

1 Figures in brac kets indicate the literature references 0 11 page 150. 
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x, y rectangular coordinates of ellipse, 
r, () polar coordinates of ellipse, 
n degree of ellipse, 

List of Symbols 

a, b semimajor and semiminor axes of ellipse, 
h ring cross-section width, 
t ring cross-section thickness normal to tangent of ellipse, 
c average of maximum and minilnum ring width, 
d average of maximum and minimum ring thickness, 
e dimensionless parameter of ring width variation, 
f dimensionless parameter of ring thickness variation, 
s arc length variable measured along ellipse, 
!/J counterclockwise angle from radius vector to tangent line, 
L total load applied to ring, 
P = L/2, load applied to one quadrant of ring, 
M moment, 
N normal force , 
V shearing force, 
a normal stress, 
T shearing stress, 
E strain, 
k c urvature of ellipse, 
f3 relative rotation of differential segment ends due to N, 
e curved bar rotation, 
o curved bar deflection, 
.l total ring deflection, 
U strain energy of curved bar, 
u strain energy per unit volume , 
1J Poisson's ratio, 
E modulus of elasticity, 
g integral defined by eq (19), 
S design maximum stress, 
A scale factor, 
W ring weight, 
'Y material weight per unit volume , 
gi constraint function, 
hi constraint bound, 
Xj variable of the optimization problem, 
z objective function_ 

2. Structural Analysis 

An elastic ring force transducer is loaded by two forces acting in opposite directions along 
a diameter , as shown in figure L Corresponding ring deflections are measured and related to 
applied forces by a calibration factoL 2 For a ring of the geometric class represented in figure 
1, the locus of centroids of ring cross sections is an n-degree ellipse defined by the equation 

(~)I/ + (~)' = 1, n;;'; 2_0, (1) 

2 Wilson, Tate, and Borkowski [2] have described the unifo rm cross sect ion, c ircular force transducer, its calibration, and performance under various conditions 
of use. 
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2P= APPLIED FORCE 

2a = CHANGE IN 
THIS DIMENSION 

2' 

J3 ROO IN , [ 

FIGU RE 1 . 1,000,000 lbf capacity n-degree elliptical ring with sinusoidally 
varying thickness. 

or In polar coordinate form 

r = ab(b ll cos" 6 + an sinn 6) - I / n. (2) 

Several n-degree ellipses are plotted in fi gure 2. Ring rectan gular cross-section width h a nd thic k
ness t are give n by 

h = c (l -ecos 26), (3) 

and 
t = d(l-jcos 26), (4) 

In which c and d are posItIve parameters and e and j are parame ters of absolute value less than 
unity. Us ing these equations, the shape of a ring within thi s geo metri c class can be s pecified by 
the seven parameters a, b, c, d, e,j, and n. If a = b, n = 2, and e= j = O, the ring shape is circular 
with uniform rectangular cross sec tion. 

One quadrant of the loaded ring is show n in fi gure 3. Due to symmetry there is no rotation at 
6 = 0 or at 6 = rr/2, no shear force Vat 6 = 0, and no normal force N at 6 = rr/2. Expressions for the 

b 

~= 1.5 
b 

F IGU RE 2. n·degree elliptical curves. 

a 
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FIGURE 3. Loads acting on one quadrant of a ring. 



resultant moment M and forces N and V acting on a typical normal cross section are derived by 
statics using formulas from calculus [3] as follows: 

and 

d(}_~_ 1 

ds - r - I? (dr) 2 ' 

-y r- + d(} 

M=Mrr/2 -Prcos (}=PM', 

N=P sin (()+ 1/1) = P (sin () ~: + rcos () ~:) =PN', 

v=-P cos ((}+I/I)=P(r sin () ~~ -cos () ~:)=PV'. 

Differentiation of eq (2) gives 

dr (bn COS(,, - l) () sin ()- an sid,, - J) () cos (}) 

d(}=r (bl! cos" (}+a" sin" ()) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The assumption that ring cross sections remain plane leads to the Winkler-Bach bending stress 
formula, which has been written by Seely and Smith [1] in the following form, valid for a straight 
or curved bar: 

(11) 

The variable y is the distance from the cross-section centroid to a point in the cross section, positive 
in the outward direction. The curvature k, the inverse of the radius of curvature, is given by [3] 

(12) 

Differentiation of eq (10) gives the required second derivative 

d 2 
d(}: = (n+ l)ab[a" sid,,-l) () cos (}-b" cos(n - J) () sin (})2[a ll sin" (}+bn cosn (}] - (2 +1/n) 

+dn + l ) b[sinll ()- (n-l) sid n - 2) () cos2 (}][a" sin" (}+bn cos" (}] - (1+1/n) 

+ ab<" +J) [cos" (}-(n-l) cos(n - 2) () sin2 (}][a" sinn (}+bn cos" (}] - (1+1/,,). (13) 

It is assumed that stress due to the normal .force N is uniformly distributed over the cross 
section, that is 

N 
a-N= ht· 
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It is assumed that s hear stress is distributed parabolically over the rectangular cross section 
accordin g to the formula 

T V = V (~_ 6 y2). 
ht 2 t 2 

(15) 

Castigliano' strain energy theorem [l] is used to determine the ring bending moment and 
deflection a t () = 7T/2. The theorem stated symbolically as applied to this problem is 

aU 
871"/2=~' 

71"/2 

and 
aU 

071"/2 = aP' 

in which U = total strain e nergy of the loaded bar , 
8 1T/2 = bar rotation at 7T/2 , 

and 01T/2 = bar deflection at 7T/2 in direction of P. 
The strai n e nergy per unit volume due to bendi ng stress is 

in which EM = unit plane s train , 
v= Poisson's ratio, 

and E = modulus of elasticity. 

(16) 

(17) 

(18) 

Substituting eq (11) into (18) and integrating over a differential segme nt gives the corresponding 
strain energy of the segment 

O- V2)M2{][k Y J2
} O-v2 )M2 dU,\./= 2Eh t+ f 2 dy els = 2Eh gels. 

O +ky) y ely 
/ 1(1 + ky) 

The strain e nergy per unit volume due to the normal force N is 

and the strai n energy of a differential segment is 

Nt 
elU,v= 2Eht ds . 

The strain energy per unit volume due to the shear force V is 

(1 + V)T2 

uv = E 

and the strain energy of a differe ntial segment is 
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,---

The normal force N acting on a diffe re ntial segme nt causes rotation of one e nd cross section 
relative to the othe r, du e to the diffe rence in arc le ngth from inside radiu s to outside radiu s. The 
mean c hange in segme nt arc length is 

(24) 

in whic h f3 = rotation due to N. 

The be nding moment M ac ting during thi s rota tion contributes strain e nergy to the segment 
equal to 

kMNds 
dU II,v= Ehe . 

Adding eqs (19), (21 ), (23), and (25) gives the total strain e ne rgy of a differe ntial segme nt 

1 [N2 6 V2 1 M2g MNk J 
dU=- -+- (l+ v) -+- (1-v2 ) - +-- ds E 2he 5 ht 2 h he . 

Applying eq (16) and the boundary condition of no rota tion at (}=7rj2 gives 

au 1 !c 1T
/
2 [N aN 12 v aV gM aM kM aN kN aM ] 

- - =- - --+-(I+v)- -- -+(I-v2)---+--- +--- ds 
aM1T/ 2 E 0 he aM1T/ 2 5 ht aMrr./2 h aM1T/ 2 he aM rr/ 2 he aM1T/ 2 

_ ~ [ rr/2 [(1 - v2 )gM kN J _ 
- E }o h + he ds - O. 

S ubstitution of eqs (7) and (8) into (27) gives 

_ ---':hc---- ds - _ - h-l - dr- _ hl d() [f (1 - v2)gr cos () f k si n () f kr cos 8 ] 

Appl ying eq (17) to (26) gives 

P [rr/2 1 [ . 12 ] 
= E }o hl N'2 + 5 (1 + V )V' 2 - (1 - v2)gtr cos 8M' + kM' N' - kr cos 8N' ds. 

(25) 

(26) 

(27) 

(28) 

(29) 

The tange ntial s tress on the inne r surface is provis ionally assumed to be the limitin g stress 
that determin es the force resisting capacity of th e ring. The possibility of capacity being limited 
by so me other component of stress or combined stress should be c hec ked in any fin al design 
analys is. Substitutin g - l/2 for y outs ide the integral in eq (11) and adding to eq (14) gives the 
ta nge ntial stress on the inner surface of the rin g 

[
M'k M't N' ] 

(jT= P ~- f T +hi . 
h(2 - kt) t (1 + ky) dy 

(30) 
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For a circular ring of uniform c ross section the maximum value of (IT occurs at e = 7r/2. But for the 
more general geometry considered here the maximum may occur at e = 0 or a t so me point in 

between. 
The struc tural a nalys is thus far has been developed for one quadrant of the ring. F or the total 

ring , figure 1, the applied force is 

L = 2P, (31) 

and th e de flection at the point of load application is 

(32) 

3. Design Analysis 

The design analysis atte mpts to find the dimensions of the mll1lmUm weight ring that will 
satisfy the arbitrary force capacity, de flection , and dime nsional require me nts of a particular force 
transducer. The deflection range of the ring must be compatible with the deflection sensing de vice, 
and the inside dime nsions of the ring must be sufficie nt to accommodate the sensor. Outside di· 
me nsions of the ring must not inte rfere with its intended use. The thickness of the ring must pe rmit 
the heat treatme nt required for the ring material. All trial solutions are scaled up or down to 
coincide with the force capacity require ment. 

3.1. Scale Factors 

The procedure adopted he re for meeting the force capacity requirement is to scale all le ngth 
dimensions in the r-e pla ne by a fac tor A that will make the maximum stress (the maximum valu e 
of (IT fo r the entire ring) equal a prescribed maximum design stress S. The c ross-sec tion width h 
is not scaled. This gives the s pecialized equation for the maximum tangential s tress on the inner 
surface of the scaled ring 

in whic h 

and 

L (1) [M'k M't N'] 
S= 21. ~ . Tt- h(2- kt ) f y2 dy + ht 

t (l + ky) MAX . 

LAF 
2A ' 

S = design maximum stress, 

LA = design capacity, 

F = maximum value of bracketed function. 

This gives the scale factor 

Scaled ring dime nsions, A subscripted , are 

and 

A= LAF. 
2S 

rA = Ar, 
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Scaled forces and moment are 

and 

Scaled ring deflection is 

Scaled ring weight is 

in which y = material weight per unit volume. 

3.2. Thin Circular Ring 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

By making the appropriate simplifying assumptions, the thick ring equations developed above 
can be reduced to relatively simple thin circular ring equations. The thin circular ring equations, 
although they may be in error by several percent, can be used to determine a reasonable range of 
ring proportions for beginning an optimum search procedure. The equations also give a useful 
indication of the comparative efficiencies of different ring materials. 

A thin ring is here defined as one in which the ratio of thickness to radius of curvature is so 
small that, with negligible error: (1) the stress distribution due to bending can be assumed linear 
over a cross section, and (2) deflection due to shear V and normal force N can be neglected. By 
assuming zero effective curvature and no deflection due to V or N, the following thin ring equations 
for moment, maximum bending stress, and deflection at the point of load application can be 
obtained from eqs (28) through (32): 

M=Lr , 
7T 

(43) 

(44) 

and 
.:l = (37T _ 24) (1 - J)2)Lr3. 

7T Eht3 
(45) 

These equations, solved simultaneously, give 

(46) 

and 

(47) 
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The weight of a thin c irc ular ring is 

24EyLd 
(48) 

Note that the weight , for a particular Ld, is a function of the material properties E, v, crT, a nd y. 
Equation (48) s ugges ts the importance of maximum permissible design stress in a compari so n of 
different ring m aterials where weight is a significant factor. 

3.3. Optimization Method 

The optimization problem considered here is of the general nonlinear programming class . 
The goal of this type problem is to determine the set of values of the variables Xl, • •• , Xp which 
sati sfi es the con straint conditions 

g;(x t , . . . , xp){ :s.; , ;;;. }b; , i = 1, .. . , m , (49) 

and minimizes the objec tive fun ction 

(50) 

In the prese nt case the p variables are the six inde pendent ring s hape para meters a, c, d, e, 
f, and n. The s truc tural analysis is firs t done for a ring of unit value of mean radius , that is 

a +b 
- 2- = 1. (51) 

Thus the value of the parameter a de te rmines the value of b. The thic kness para me ter d is, for the 
unit size ring, the ratio of the mean of the extreme values of thickness to mean radius. After the 
structural equations are solved for the unit mean radius ring (using S impson nume rical integration), 
the results are scaled to full size using the scale factor >... The width parameter c is not scaled 
during the entire analysis, and the sha pe parameters e, j, and n are nondimensional and are not 
scaled. 

The m con straint functions gi and the corresponding constraint bounds bi are as follows: 

(1) Ring d eflection 

(2) Maximum thickness of ring cross sec tion 

(3) Outside width of ring 

(4) Outside height of ring 

g4 = >.. (4 - 2a+ d+ df) :s.; b4 , 
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(5) Maximum width of ring cross section 

(56) 

(6) Inside clear height of ring 

g6 = A ( 4 - 2a - d - df) ~ b6 • (57) 

The constraint bounds bi are the limits on ring characteristics imposed by use, fabrication, or 
material requirements. 

The objective function z to be minimized is the ring weight WI., eq (42). 
A sequential grid method was used with reasonable success to search for minimum weight 

solutions. The method requires several computer runs of moderate duration. Between computer 
runs changes are made in the input data based on the experience of previous runs. The "Elastic 
Ring Optimization Program" listed in the appendix was used for this search procedure. 

For the first computer run, one or more values of each of the six variables Xj are chosen as 
input data. If two or more values of a variable are chosen, they are widely spaced, but within a 
reasonable range for that variable. By nested do loops the computer generates all combinations of 
the variables. Each combination is a solution point in the six dimensional shape parameter space. 
The ring weight and the six constraint function values are computed and printed for each solution 
point. The best solution point for a computer run is the one with the least weight that also falls 
within all six constraint bounds. 

Subsequent computer runs are made using as input data variable values distributed about the 
best known solution point. The range of values of any variable should include the value of that 
variable for the best known solution point. Any results of previous computer runs may be useful 
as a guide for selecting input data. The process is repeated until a solution point with satisfactorily 
small weight is found, or until results indicate that a satisfactory approximation of a minimum 
weight solution has been found. 

Computer time required for each solution point is approximately one-half second on a UNIVAC 
1108 computer. Obviously there are practical limits to the number of variable combinations one 
would want to generate in one computer run. 

A second computer program (the "Detailed Ring Analysis Program" listed in the appendix) 
can be used to compute scaled dimensions, forces, moments, and stresses for a particular set of 
input shape parameters. The program prints r A, t A, h, k, NA, VA, MA, ar, and the value of the integral 
in eq (11) for each incremental value of e. These results can be used with eqs (11), (14), and (15) to 
determine whether ring capacity is limited by a stress condition other than the maximum value 
of ar. 

The following numerical example demonstrates the optimization method. 

3.4. Numerical Example 

The problem is to determine, for a ring of 1,000,000 lbf capacity and for the material constants 
and constraint bounds listed below: 

(1) The approximate weight of a circular ring of uniform rectangular cross section. 
(2) The dimensions of an approximately minimum weight n-degree elliptical ring of constant 

cross section width and sinusoidally varying thickness. 
(3) The dimensions of an approximately minimum weight n-degree elliptical ring of sinusoi

dally varying cross section width and thickness. 
The material constants are: 5 = 150,000 Ib/in2, E=30,000,000 Ib/in2, v=0.3 , and y=0.29 Ib/in3• 

The constraint bounds are: b l = 0.25 in , b2 = 4.5 in, b3 = 40.0 in, b4 = 40.0 in, b5 = 14.0 in, b6 = 9.0 in. 

o. Solution 1 

Thin circular ring equations were used to compute a rough approximation of ring weight and 
dimensions. Substitution of L, E, y, v, 5 for a,/" and bl for d into eq (48) gives an approximate ring 
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weight of 1365 lb . S ubs titution of th e same values, along with bs for h , into eq (46) and (47) give 
t = 3.66 in and r = 14.73 in. Th e ra ti o of thickness to radius is 0. 248. Th e more acc urate thick 
curved bar equations we re used for a ll subsequent co mputations. 

Computer run No.1 of the seque ntial grid search included nine uniform c ross-section c ircular 
rings with width s of 10, 12, and 14 in and thickness to radius ratios of 0. 20, 0.25, a nd 0.30. For 
these nin e cases the ra tios of weight to de flection differed by less tha n two pe rce nt , a res ul t tha t 
mi ght have been anti cipated from eq (48). The two cases with characte ri sti cs neares t th e co ns traint 
bounds had de flec ti on of 0.234 and 0.277 in and weights of 1327 and 1587 Ib res pec tively. Lin ear 
inte rpolation betwee n these two cases gives an es timated wei ght of 14241b for a rin g th at wou ld 
deflect 0.250 in . 

b. Solution 2 

A seq ue nce of five computer runs were used to seek the dimensions of a mll1lmUm weight , 
constant width ring. The input shape parameter data and the res ulting weight for the best point of 
each run are given in table 1. The bes t point parameter values for each run are underlined. The 
weight of 553 Ib for the fifth run is about 39 percent of the es timated weight of 1424lb for a uniform 
cross-section circular ring. The 553 lb ring was accepted as a sati sfactory approximation of the 
minimu m weight co nstant width ring. The rin g s hape is show n in fi gure 1. Critical rin g dimens ion s 
and a de fl ec tion of 0.257 in all fall within the constra int bound s. 

Plots of aT versus 8 for the 553 Ib rin g a nd for a 1587 lb uniform circ ul ar ring (c = 14.0 in , 
d = 0. 25 in , Ll = 0.277 in in co mputer run No. 1) are s hown in figure 4. The high s tress level over a 
greate r portion of the 553 lb ring is an indica tion of more e ffi cie nt use of mate ri al in thi s more 
complex ring s hape. 

c. Solution 3 

Co mpute r runs 6 a nd 7 in cluded many cases with variation of cross-section width. But for both 
run s th e bes t points we re co nstant width cases. The seventh run inc lud ed a va riable width case 
with paramete r values c = 13.6 in , e = 0.025 , a nd/= 0.45, a nd a res ultin g we ight of 539.18 Ib whi ch 

TABLE 1. Sequential grid search data for numerical exampLe 

W eigh l 
for best 

point 

Lb 
802 .00 

828 .42 

639.84 

572.90 

553.06 

564.55 

539 .08 
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is only slightly greater than the best point weight. Additional searching might result in a slight 
weight reduction due to width variation. But the weight savings would probably not be enough 
to justify the additional complexity of shape. 

4. Summary 

A structural analysis method has been developed for an n-degree elliptical elastic ring with 
sinusoidally varying cross-section dimensions. A sequential grid constrained optimization method 
has been used to search for the minimum weight ring of this geometric class that would be suitable 
as the load supporting element of a force transducer. 

Limited numerical results were obtained for one-million pound force capacity n-degree ellip
tical rings with nonuniform cross-section dimensions. The results indicate that such a ring with 
constant cross-section width and sinusoidally varying thickness can be designed to weigh as little 
as 39 percent of the weight of a comparable uniform cross section, circular ring. Outside dimensions 
of the more complex ring are also significantly less than those of the uniform, circular ring. The 
results for an n-degree elliptical ring with sinusoidally varying cross-section width and thickness 
suggest that the weight savings due to variation of width may not be great enough to justify that 
additional complexity of shape. 

The Elastic Ring Optimization Program (given in appendix) can be used directly for design 
optimization by the sequential grid method described in this paper; or the program could be used 
in combination with some other optimization procedure. In either case, the Detailed Ring Analysis 
Program (see appendix) or another comprehensive stress analysis should be used for a detailed 
examination of stresses for the entire ring. 

The analysis was coded in FORTRAN V for the UNIVAC n08 computer by R. M. Slesser 
of the National Bureau of Standards Center for Computer Sciences and Technology. 
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6. Appendix 

The two FORTRAN V computer programs used in the elastic ring design analysis are listed 
below. The Elastic Ring Optimization Program is used to search for the optimum set of shape 
parameters a, c, d, e, J, and n. The Detailed Ring Analysis Program is used to compute scaled 
dimensions, forces, moments, and stresses for a particular set of input shape parameters. Table 
Al lists the computer symbols used to represent mathematical symbols appearing in the equations 
of the text. Sample input data is included at the end of each program. 
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TABLE AI. Corresponding symbols in text, computer programs, and 
computer output 

Text 

a 
c 
d 
e 
f 
n 
L. 
5 
£ 
1/ 

y 
h 

r 
0 
k 
g 
M ' 
N' 
V' 
F 
A 
W. 
g , 
g2 
g3 
g, 
g5 
gs 
y 
AN 
AV 
A2M 
Ar 
At 
UT 

o for max. UT 

W./!l. . 
Integral in eq (11) 
ds 
dr 

rIO 
d'r 
dO' 
dO 
ds 
dr 
ds 

Programs 

Cl 
C3 
C5 
C7 
C8 
XN 
XLLAM 
S 
E 
XNHU 
GAMMA 
B(IJ) 
T(IJ) 
R(ll) 
THETA(IJ) 
RHO(lJ) 
G(lJ) 
PM(IJ) 
PN(lJ) 
PV(lJ) 
DMAX 
XLAM 
WLAM 
DELAM 
TCON4 
TCON5 
TCON6 
TCON7 
TCON8 
Y 
XLN(I) 
XLV(I) 
XLM(I) 
RLAM 
TLAM 
SIGTL(I) 
JMAX 
RATIO 
YlNT(IJ) 
DS 

DRDT(lJ) 

SDRDT(IJ) 

DTDS 

DRDS 
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A 
C 
D 
E 
F 
N 

Output 

L LAMBDA 
S 
E 
NU 
GAMMA 
L 
T 
R 
THETA 
K 

LAMBDA 
WEIGHT 
Gl 
G2 
G3 
G4 
G5 
G6 

LAMN 
LAMV 
LAM**2*M 
LAMR 
LAMT 
SIGMA 
TM 
WT/DEFL 
INT 



Elastic Ring Optimization Program 

~ RUN MITCHE,lbb50,02,60 
~Tl FOR MAIN1,MAINl 

CO~MON IINTEG/F(lOO),AREA 
O~MENSION YINT(91) 
D1MENSION PV(9l> 
UIMENSION Cl(20),C3(20),C5(20),C7(10),C8(10),XN(40),B(91),T(91), 

1 k(91),DRDT(91),SDRuT(91),RHO(91),G (91),PM(91),PN(91), 
2 C2(20),THETA(91) 

44 RlAD(5, 10) Nl,N3,N5,N7,N8,NN,IGO 
10 FvRMAT (2014) 

C IGO.NE.O MEANS ANOTHER SET OF DATA FOLLOWS THIS SET. 
Rt:.Au(S ,20) (C1(1) rI=I,Nl> 
Rt::Ai)(S ,20) (C3<1) rI=I,N3) 
RlAu(S ,20)(CS(I),I=I,NS) 
Rt:.AD(5 ,20)(C7(I),I=1,N7) 
RlAD(S ,20)(C8(I),I=I,N8) 
RiAu(5,20)(XN(I),I=I,NN) 

20 FORMAT (10E8.0) 
R~AU(5 ,30) XNHU,XLLAM,S,E,GAMMA 

30 FuRMAT (5E1S.0) 
C INSERT INITIAL wRITE CARDS HERE. 
C PRINT OUT ALL INPUT DATA AT START OF RUN. PROGRAM 1. 

wRIT£(6,1000) Nl,N3,NS'N7,N8,NN,IGO 
1000 FORMAT (19HIINTEGER PARAMETERS 1118IS» 

~RlT~(6'lOlO)(Cl(I),I=1,Nl) 
wRITE(6,1020)(C3(I),I=I,N3) 
~RIT£(6'1030)(C5(I)'I=1,N5) 
WklT£(6,1040)(C7(I),I=1,N7) 
wkIT£(6,10S0)(C8(I),1=I,N8) 
wRIT£(6,1060)(XN(I),I=1,NN) 

1010 FORMAT ( 3HOCI 11(8E1S.S» 
1020 FORMAT (3hOC3 11(8£15.5» 
1030 FuRMAT (3HOC5 11(8£15.S» 
1040 FORMAT (3HOC7 11(8£15.S» 
1050 FORMAT (3HOCd 11(8£15.S» 
lObO FORMAT (2HON 11(8£15.5» 

t.lkITE (f,,1070) 
1070 FOKMAT(lHO llX,3H NU,lSX,7H LAMBDA,18X,lHS,19X,lHE,14X,5HGAMMA 

wklT~( 6,1080) XNHU,XLLAM,S,£,GAMMA 
1080 FORMAT (lHO,5E20.8) 

JCOUNT=O 
PI =3.141S9'654 
Dv 1 I=I,Nl 
Ccd 1) =2. O-Cl( 1> 
DO 1 J=I,N3 
Ou 1 K=l,NS 
D0 1 L=1,N7 
Dv .1. M=1,N8 
Ju 1 N=l,NN 
A=Cl ( 1> 
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Elastic Ring Optimization Program [continued) 

D= C2(I) 
C ~I GO~S FROM 0 TO 90. 

ou 2 I~ =1,91 
Jl= I~-l 
ThETA(I~)=FLOAT(~I)*PI/180.0 
b(I~)= C3(J)*(1.-C7(L)*COS(2.*THETA(IJ») 
T(I~)= C~(K)*(1.-C8(M)*COS(2.*THETA(IJ») 
TERM = A **XN(N)*SIN(THETA(IJ»**XN(N)+D **XN(N)* 

1 C05(THETA(IJ»**XN(N) 
R(IJ)= A*O ITERM**(l./XN(N» 
TPl= 0 **XN(N)*COS(THETA(IJ»**(XN(N)-1.0)*SIN(THETA(IJ» 
TP2 = A **XN(N)*SIN(THETA(IJ»**(XN(N)-1.0)*COS(THETA(IJ» 
OKDT(IJ)= R(IJ)*(TPI-TP2)/TERM 
IF(XN(N).EQ.2.0.AND.THETA(IJ).EQ.O.0) GO TO 121 
TP3 = A ** XN(N)* 

1 (SIN(THETA(IJ»**XN(N)-(XN(N)-l.Q)*SIN(THETA(IJ»** 
2 (XN(N)-2.) * COS(THETA(IJ»**2 ) 

IF(XN(N).EQ.2.0.AND.IJ.EQ.91) GO TO 122 
GO TO 125 

121 TP3 = A**2*(-1.0) 
125 CONTINUE 

TP4= u ** XN(N)* 
1 (CuS(THETA(IJ»**XN(N)-(XN(N)-1.0)*COS(THETA(IJ»** 
2 (XN(N)-2.)* SIN(TH£TA(IJ»**2 ) 

GO Tv 123 
122 TP4 = D**2 * (-1.0) 
123 CONTINUE 

SDROT(IJl= A*D *(XN(N)+1.0)*(TP2-TPl)*TERM** 
1 (-2.-(I./XN(Nl»*(TP2-TPl)+ A*D*TERM**(-1.-(1./XN(N»)*(TP3+TP4) 
RHO(IJ)=(R(I~)**2+2.0*DRDT(IJl**2-R(IJ)*SDRDT(IJ»1 

1 (R(IJ)**2+DRDT(IJl**2)**(3./2.) 
C RHO IS NOw K. 

IF(T(IJl*RHO(IJ).GE.2.0) GO TO 1 
DO 1971 JMA=1,11 
V=-T(I~)*.5 + (T(IJl*.5) * (FLOAT(JMA-ll/5.0 

1971 F(JMA)=V**2/(1.0+RHO(IJl*Vl 
CALL VSIMP(10.0/T(IJ» 
Y .I. NT( IJ)=AREA 
QIV= RrlO(IJl/T(IJ) 
DO 1'J72 JMA=l r11 
Y=-T(IJl*.5 + (T(IJ)*.5) * (FLOAT(JMA-ll/5.0 ) 
SUM = (1.+ RHO(IJ)* Y) 

1972 F(JMA)=OIV**2+2.0*DIV*Y/(SUM*YINT(IJ»+V**2/(SUM*YINT(IJ»**2 
CA~L YSIMP(10.0/T(I~» 
G(lJ)= AREA 
DTuS = 1.1 SQRT(R(IJ)**2+0RDT(IJ)**2) 
DkUS = DRDT(lJ)*OTDS 
PV(IJl= R(IJ)*SIN(TrlETA(IJ»*DTDS-COS(THETA(I~»*DRDS 
PN(IJ)= SIN(THETA(IJ»*ORDS+R(IJ)*COS(THETA(IJ»*DTDS 

2 CONTINUE 
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Elastic Ring Optmization Program (continued] 

C NOW ~E WANT MPRIME(CALLED PM). 
C WE DO SOME SIMPSON INTEGRATION. 

DO 101 JJ=lr91 
FlJJ)= R(JJ)*COS(THETA(JJ»*SQRT(R(JJ)**2+DRDT(JJ)**2)*G(JJ)/B(JJ) 

1 *(1.0-XNHU**2) 
101 CONTINUE 

CALL. SIMP(1.0) 
PARl =AREA 
DO 102 JJ=1,91 
F(JJ)= SIN(THETA(JJ»*DRUT(JJ)* RHO(JJ)/(B(JJ)*T(JJ» 

102 CONTINUE 
CALL SIMP(l.O) 
PAR2 =AREA 
DO 103 JJ=1,91 
F(JJ)= COS(THETA(JJ»*R(JJ) * RHO(JJ)/(B(JJ)*T(JJ» 

103 CONTINUE 
CALL SIMP(1.0) 
PAr{3= AREA 
DO 104 JJ= 1,91 
F(JJ)= SQRT(R(JJ)**2 +DRDT(JJ)**2) *G(JJ)/B(JJ) 

1 *(1.O-XNHU**2) 
104 COi'H INUE 

CALL. SIMP(1.0) 
PARit = AREA 

C NOW INTEGRATE TO GET W SUB LAMBDA. 
DO 105 JJ=1,91 
F(JJ)= SQRT(R(JJ)**2+DRDT(JJ)**2)*B(JJ)*T(JJ)*PI/180. 

105 CONTINUE 
CALL SIMP(1.0) 
PARt) = AREA 

C USE PAR5 TO COMPUTE W SUB LAMBDA LATER ON. 
e NOW (;iET PM. 

DO 106 JJ=1,91 
PM(JJ)= (PAR1-PAR2-PAR3)/PARit -R(JJ)* eOS(THETA(JJ» 

106 CONTINUE 
C FORM NEW LOOP TO GET BMIN. 

JMAX=O 
Di;jAX =0.0 
DO 8811 IJ =1,91 
DIV = PM(IJ)*RHO(IJ)/(B(IJ)*T(IJ» 
DENOM = DIV- PM(IJ)*T(IJ)/(ti(IJ)*(2.-RHO(IJ)*T(IJ»*YINT(IJ» 

1 + PNlIJ)/lB(IJ)* T(IJ» 
IF (ABS(uENOM).GT.DMAX)JMAX=IJ-l 
DMAX = AMAXl (ABS(UENOM), ABS(OMAX» 

8811 CONTlNU£ 
BMIN = 2.0/DMAX 
XL-AM = XLLAM /(BMIN*S) 
WL.AM = 4.*XLAM**2*GAMMA*PAR5 

e NOW COMPuTE SOME VALUES TO COMPARE WITH CONSTAINTS. 
TCON4 = XLAM*C5(K)*(1.+AtiS(C8(M») 
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Elastic Ring Optimization Program [continued] 

TCONS = XLA~*(2.*C1(I)+T(1» 
TCON6 = XLAM*(2.*C2(I)+T(91» 
TCON7 = C3{J)*(1.+A~S(C7(L») 
Te ON8 = XLAM*(2.*C2(I)-T(91» 

C NOW GO TO DOOPS IF CONSTRAINTS ARE NOT SATISFIED. 
Du 107 ..1..1=1,91 
T~l = (1.-XNHU**2)*G(.JJ)*T(~J)*PM(JJ)*R(JJ)*COS(THETA(JJ» 
T~2 = RHO{JJ)*PM(JJ)*PN(~J) 
OS= SQRT(R(J.J)**2+DRDT(JJ)**2) 
TM3 = RHO(JJ)*PN(JJ)*R(JJ)*COS(THETA(JJ» 
F(JJ)=1./(B(JJ)*T{JJ»*{PN(JJ)**2+12./5.*(I.+XNHU)* 

1 PV(JJ)**2-TM1+TM2-TM3)*DS *PI/180. 
lU7 COI~T INUE 

CALL SlMP<1.0) 
AsTAR=AREA 
0~LAM=XLAM*ASTAR*BMIN*S/E 
RATIO=wLAM/uELAM 

C COMPUTE SOME OUTPUT ITEMS. 
IF{MOD(JCOUNT,25).NE.O) GO 10 7 
wRITE (6,,+) 

4 FoRMAT(lHl 1X 'WT/OEFL''+X'WEIGHT'6X'G1'6X'G2'5X'G3'6X'G4'6X'G5' 
1 7X'G6'3X'LAMBDA'4X'A'7X'C'6X'D'7X'E'7X'F'7X'N'2X'TM'II) 

7 wKITE(6,5)RATIO'WLAM'DELAM'TCON4,TCO~5,TCON6,TCON7,TCON8,XLAM, 
1 C1<I) ,C3(J) ,C5(K) ,C7(U ,CalM) ,XN(N) ,JMAX 

5 FoRMAT{lHO,2F9.2,F9.3,12F8.3,I3) 
JCOUNT=JCOUNT+1 

1 CONTINUE 
IF(IGO.NE.O) GO TO 44 

C ~E HAVE NOW FINISHED MAJOR LOOP. 
SlOP 
END 

~TI FOR SlHT,SlNT 
SuBROUTINE SIMP(HHH) 
C0~MON IINTEG IF(100),AHEA 
H = 1./(3.*HHH) 
Ar~EA=O. 0 
OwD=O.O 
EVEI~=O. 0 
D0 21 1 =2,90,2 

21 EVEN =EVEN + F(l) 
00 22 1 =3,ti9,2 

~2 OUO =OOu+ F{I) 
AKEA = H* (F{1)+F(91)+4.*EVEN+ 2.*ODD) 
RETURN 
END 

~TI FOR YSUB,YSUB 
SUbROUTINE YSIMP(HHH) 
COMMON IINTEG IF(100),AREA 
H = 1. I (;3. *rlHH) 
AREA=O.O 
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22 

III XIlIT 
1 

1.21 
12.7 
• 305 
-.025 
.~ 

6 • 
• 30 
lei EOF 
Iil FIN 

Elastic Ring Optimization Program (continued] 

01,)0::0.0 
EVEI-J=O.O 
DO 21 1=2,10,2 
EvEN =EVEN + F(I) 
DO 22 1=3,9,2 
0",0 =ODO+ F(I) 
AkEA :: H*(F(1)+F(11)+4.0*EVEN+2.0*ODO) 
RETuRN 
END 
MldNl 
~ 1 6 3 1 0 0 

13. 

O. 
.45 

.025 

.5 

1000000. 

14 • 

.05 .075 

150000. 

.1 

30000000. 
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Detailed Ring Analysis Program 

W HUN M1TCHE,16650,02,60 
~lT FuK MAII~2,MAIN2 

CO~MON IINTEG/F(100),AREA 
L>l:-1t.I~SION XLN(91) ,XLV(91) ,XLM(91) 
Dl~lNSION YINT(9l) 
Dli'<iENSION PV (91) 
OH1t.NSIor~ 6(91) 
Dl~ENSlUN B(91),T(91),R(91),DRDT(91),SDRDT(91),RHO(91), 

1 PM(9l),PN(91),SIGTL(91),THETA(91) 
10 H~AU(5'20) Cl,C3,C5,C7,C8,XN 
20 FuRMAT (10E8.0) 

IF (Cl.EG.9999.) STOP 
KEAU(5,30) XNHU,XLLAM,S,E,GAMMA 

30 FoRMAT (5EI5.0) 
C INSEKT INITIAL PRINT HERE. 
C PHINT OUT ALL INPUT DATA AT START OF RUN. PROGRAM 3. 

wRIT~(6'IOOO) Cl,C3,C5,C7,C8,XN 
1000 FORMAT ( IH1, 5X,2HC1,8X,2HC3,8X,2HC5,8X,2HC7,8X,2HC8,8X,lHN,11 

1 bFIO.3) 
WRITt: (6,1070) 
WRITE (6,1080) XNHU,XLLAM,S,E,GAMMA 

C INSERT FORMATS 1070 AND 1080 HERE. 
1070 FuRMAT(lHO 10X,3H NU,15X,7H LAMBDA,18X,lHS,19X,lHE,14x,5HGAMMA 
1080 FORMAT (lHO,5E20.8) 

PI =3.141592654 
C2=4::.0-C1 
Cit = C3*C7 
Cb = C5*C8 
A =0 
D=C~ 
DO 2 1 =1,91 
JI = I-I 
TH~lA(I)=FLOAT(JI)*PI/180. 
8(1) = C3 * (1.-C7 *COS(2.*THETA(I») 
T(l) = C5 * (1.-C8 *COS(2.*THETA(I») 
TtkM = A ** XN *SIN(THETA(I»**XN+D **XN * 

1 CQS(THETA(I»** XN 
R(I)=A*D/(T£RM **(l./XN) ) 
TP1 = D **XN* COS(THETA(I»**(XN-l.0)*SIN(THETA(I» 
TP2 = A **XN* SIN(THETA(I»**(XN-l.0)*COS(THETA(I» 
DRDT(I):R(I) *(TPI-TP2)/TERM 
IF(XN.EQ.2.0.AND.I .EG.l) GO TO 121 
TP3 = A **XN*(SIN(THETA(I»** XN-(XN-l.0)* SIN (THETA(I» •• 

1 (XN-2.0)*COS (THETA(I».*2 ) 
IF(XN.EG.2.0.AND.I .EG.91) 60 TO 122 
G0 TO 125 

121 TP3 = A**2*(-1.0) 
125 COi'H INUE 

TP4 = D**XN *(COS(THETA(I»** XN-(XN-l.0)* COS (THETA(I» •• 
1 (XN-2.0).SIN (THETA(I»**2 ) 
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Detailed Ring Analysis Program Icontinued) 

Gv TO 123 
1~2 TP~ = 0**2 * (-1.0) 
1,3 corHlNUE 

SuRuT(I)= A*D * (XN+1.0)* (TP2-TP1)* TERM.* 
1 (-2.-(1./XN»*(TP2-TP1l+ A*D*TERM**(-1.-(1./XN»*(TP3+TP4) 

RnO(ll = (R(Il**2+2.*DRDT(Il**2-R(I)*SDRDT(I» 
1 I (R(I)**2+DRDT(Il**2)**(3.0/2.0) 

l.)() 1971 ..J=1, 11 
Y=-T(I)*.5+ T(I)*.5*(F~OAT(..J-1)/5.0l 

1971 FlJl=Y**2/(1.0+RrlO(ll*Y) 
CAL~ YSIMP(10.0/T(I» 
Y .LiH (1) =AREA 
DIV = RHO(I)/T(I) 
OU 1972 ..J=1,11 
Y=-T(I)*.5+ T(I)*.5*(F~OAT(..J-1)/5.0) 
S0~=(1.0+RHO(I)*Y) 

1972 F(J)=DI~**2+2.*DIV*Y/(SUM*Y!NT(I»+Y**2/(SUM*YINT(I»**2 
CALL YSIMP(10.0/T(I» 
GlI) = AREA 
DTDS =1./SQRT(R(I)**2 +DRDT(!)**2) 
DKuS = DRDT(I)* DTOS 
PV(I)= R(I)*SIN(THETA(I».OTDS-COS(THETA(I»*DRDS 
PN(.i.l = SIN(THETA(I»*DRDS +R(I)*COS(THETA(I» *DTDS 

2 COiH INUE 
C NOW WE INTEGRATE TO GET MPRIME (CAL~ED PM). 

DO 1U1 J =1,91 
F(J)=R(~)*COS(THETA(J»*SQRT(R(J)**2+DRDT(J)**2) 

1 *~(..J)/a(..J)*(1.0-XNHU**2) 
.1.01 COIHINUE 

CALL SIMP(1.U) 
PkR1=AREA 
DO 102 ..J =1,91 
FlJl= SIN(THETA(..J»*DRDT(J)*RHO(J)/(S(J)*T(J» 

102 CONTINUE 
CALL SIMP(1.0) 
PAK2 =AREA 
DO 103 ..J=1,91 
FlJ)= R(J)*COS(THETA(J»*RHO(J)/(B(J).T(J» 

103 CONTINUE 
CALL SIMP(1.0) 
PAR3= AREA 
DO 104 ..J=1,91 
F(J)=SQRT(R(J)**2+DRDT(J)**2) *G(J)/B(J)*(1.0-XNHU**2) 

104 corn .1NUE 
CALL SIMP(1.0) 
PAR4 = AREA 

C NOW ~~ INTEGRATE TO GET w SUB ~AMBDA. USE PAR5 ~ATER ON. 
OU 105 .;=1,91 
F(J)=SQRT (R(J)**2 +DRDT(J)**2)* B(J)*T(J)*PI/180.0 

105 cOin .I.NUE 
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Detailed Ring Analysis Program [continued) 

CALL SlMP<1.0) 
PAR5 = AREA 

C NOW GET PM. 
DO 106 J=1,91 
PM(J)= (PARI-PAR2-PAR3)/PAR4 -R(J)*COS(THETA(J» 

100 CuNTINUE 
C FORM LOOP TO GET BMIN AND SIGTL. 

Di"IAX = 0.0 
00 8811 1=1,91 
DIV = PM(I)* RHO(I)/(B(I)*T(I» 
SIGTL(I)= DIV - PM(I)*T(I)/(B(I)*(2.-RHO(I)* T(I»*YINT(I» 

1 +PN(I)/(B(I)*T(I» 
D~AX = AMAXl(ABS(SIGTL(I»,ABS(DMAX» 

8811 CONT INUE 
BMIN = 2.0/0MAX 
X~AM= XLLAM /(BMIN*S ) 
FACTOR=BMIN*S*.5 
DO 8833 I =1191 
SlGTL(I)=FACTOR*SIGTL(I) 
X~N(I)=XLAM*FACTOR*PN(I) 
XLV(I)=XLAM*FACTOR*PV(I) 
XLM(I)=XLAM**2*FACTOR*PM(I) 

8833 CONTINUE 
00 107 JJ=1,91 
TMI = (1.-XNHU**2)*G(JJ)*T(JJ)*PM(JJ)*R(JJ)*COS(THETA(JJ» 
T~2 = RHO(JJ)*PM(JJ)*PN(JJ) 
OS= SQRT(R(JJ)**2+0ROT(JJ)**2) 
TM3 = RHO(JJ)*PN(JJ)*R(JJ)~COS(THETA(JJ» 
F(JJ)=1./(8(JJ)*T(JJ»*(PN(JJ)**2+12./5.*(1.+XNHU)* 

1 PV(JJ)**2-TMl+TM2-TM3)*DS *PI/180. . 
107 CONTINUE 

CALL SIMP <1. 0) 
ASTAR=AREA 
D£LAM=XLAM*ASTAR*BMIN*S/E 
WLAM = 4.* XLAM **2* GAMMA *PAR5 

C NOW COMPUTE SOME OUTPUT ITEMS. 
TCON~=XLAM*C5*(1.+AdS(C8» 
TCON5= XLAM * (2.* A +T(1» 
TCONo= XLAM * (2.* D +T(91» 
TCON7= C3 * (1.+ ABS(C7» 
TCONti=XLAM*(2.0*C2-T(91» 

C NOw COMPUTE STRESS.FOR EACH THETA. 
C NOW wE PRINT OUT DESIREU OUTPUT, THEN READ ANOTHER DATA SET. 

O"IKlT£<o,ltO) 
~o FOKMAT(1HO 1X 'WT/D£FL'ltX'W£IGHT'6X'Gl'6X'G2'5X'G3'6X'GIt'6X'G5' 

1 7X'G6'3X'LAMDA'5X'A'7X'C'~X'D'7X'E'7X'F'7X'N'/) 
RA"CIO=wLAM/DELAM 
WRITE(o,70)RATIO,WLAM,DELAM,TCONIt,TCON5,TCON6,TCON7,TCON8,XLAM, 

1 Cl,C3,C5,C7,C8,XN 
70 FoRMAT(lHO,2F9.2,F9.3,12F8.3) 
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Detailed Ring Analysis Program [continued] 

80 
wRITE (6,80) 
FORMAT(lHO'THETA'6X'R'9X'LAMR'9X'T'8X'LAMT'9X'L'9X'K'9X'INT' 

1 7X'LAMN'7X'LAMV'~X'LAM**2*M'6X'SIGMA'II) 
DO 6~ 1 =1,91 
J =1-1 
RLAM=R(I)*XLAM 
TI...AM=T(I)*XLAM 
WRIT~(6,90)J'R(I)'RLAM'T(I),TLAM'B(I)'RHO(I)'YINT(I)'XLN(I), 

1 XLV(I),XLM(I),SIGTL(I) 
90 FORMAT(1H 15,11El1.~) 

IF(MOO(J,5).EG.O.AND.J.NE.0) WRITE(6,110) 
6~ CONTINUE 
110 FURMAT (lH 

GO TO 10 
STOP 
Ei\jD 

fi1N FOR SINT,SINT 

21 

22 

SuBROUTINE SIMP(HHH) 
COMMON IINTEG IF(100),AREA 
H = 1.0/(3.0*HHH) 
AK£A=O.O 
Oi,;O=O.O 
EIiEN=O.O 
DO 21 I =2,90,2 
EvEN =EVEN + F(I) 
DO 22 I =3,89,2 
OuiJ =OOD+ F(I) 
AK£A = H* (F(1)+F(91)+~.*EV£N+ 2.*000) 
Rt:TURN. 
Ei\ju 

fi1N FOR YSUB,YSUB 

21 

22 

SudROUTINE YSIMP(HHH) 
COMMON IINTEG IF(100),AREA 
H = 1./(3.*HHH) 
At(£A=O.O 
000=0.0 
EVEt'l=O.O 
DO 21 I =2,10,2 
EVEN =EVEN + F(l) 
DO 22 1 =3, 9,2 
000 =000+ F(l) 
AREA = H* (F(1)+F(11)+~.*EVEN+ 2.*000) 
RETuRN 
E,\iO 

(II XiH MAIN2 
1.22 13.8 
• 3 
1. 
• 3 
Ie) t;OF 

1~. 

.305 
1000000. 

• 2~8 
1000000. 

o • 

o. 

.~5 

150000. 
O • 

150000. 

5.5 

2. 
30000000. 

30000000 • 
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