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This paper describes a mathematical analysis for determining the value of the substitution error
of a bolometer with a Wollaston-wire element (barretter). The analysis reflects all smmﬁcant non-
linearities in the heat flow, including some not covered before, and includes all appreciable heat

transport mechanisms simultaneously.

The values of substitution error thus obtained, in conjunction with efficiency data obtained by
microwave techniques, will be very useful in extending power meter calibrations to frequency ranges
where extremely accurate microcalorimeters are not available.
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1. Introduction

This paper describes a mathematical analysis for
determining the value of the substitution error of a
bolometer with a Wollaston-wire element (barretter).
The analysis reflects all significant nonlinearities in
the heat flow, including some not covered before, and
includes all appreciable heat transport mechanisms
simultaneously. The microwave current distribution
has been measured in a scaled model and found to be
approximately sinusoidal in shape with a current
maximum in the middle of the wire. Input data are
chosen so as to represent the operating bolometer
characteristics as nearly as possible.

The values of substitution error thus obtained, in
conjunction with efficiency data obtained by micro-
wave techniques [1],! will be very useful in extending
power meter calibrations to frequency ranges where
extremely accurate microcalorimeters are not avail-
able. A method of measuring substitution error in-
volves two distinct measurement techniques [1, 2],
and since agreement is quite good between the value
of substitution error thus measured and the value
calculated from this analysis, the two provide a cross-
check for each other.

2. Background

In the measurement of microwave and millimeter-
wave power (hereafter referred to as rf power) by
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substitution techniques, any substitution error is of
great concern. A common measurement technique is
to replace a known amount of d-c power with an
unknown amount of rf power in a bolometer. Un-
fortunately, the different current distributions generate
different temperature fields which give the bolometer
element slightly different values of total resistance
for equal amounts of power. For balanced-bridge
methods the resistance is maintained constant, which
causes some non-equivalence of power. In this case
Carlin and Sucher [3] defined substitution error as

= Wsus — Wi

er '
where W is the rf power dissipated in the barretter
element and Wgyg is the substituted d-c power which
yields the same value of barretter resistance. Although
a bolometer can be used to measure relative powers
without calibration, it must be calibrated to measure
absolute power. An accurate method of calibration
is by the use of a microcalorimeter [2], in which the
ratio of Wgyg to the net rf power flowing across an
arbitrary plane Wygr into the bolometer is measured.
This quantity is called the effective efhiciency,
Ne= Wsus/Wxer- Another calibration method (for
barretters only) is the impedance technique [1], in
which the ratio of W ; to Wygr is measured. This quan-
tity is called the efficiency, n= W /W ygr. By replacing
Wsus and W in the equation for £, an equivalent form
is given by
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This provides a way of measuring substitution error,
but with the substantial limitation that in typical cases
this necessitates subtracting two nearly equal numbers,
and the relative uncertainty of the result is very large.
Some results, comparisons, and comments will be
given later.

Another equation derived from the previous ones
is given by

This form provides a method of measuring the net
power from Wgyg, 1, and E. The substituted d-c power
is measured relatively easily, efficiency can be meas-
ured by the impedance technique (as mentioned
previously), and now with the results of the analysis
of this paper, substitution error can be calculated.
For frequency ranges where microcalorimeters are
not available, or for organizations to which they are
not accessible, this provides an accurate means of
calibrating barretters.

Previous work on determination of substitution
error has been done by Carlin and Sucher [3], Weber
[4], and Bleaney [5]. However, none of the previous
workers attempted to solve the total heat-flow problem
or to take into account all of the nonlinearities. Carlin
and Sucher have determined an upper bound of sub-
stitution error from a combination of solutions to
parts of the total problem. Weber has handled one
nonlinearity in a solution to part of the problem.

3. Description of the Barretter

The actual barretter as shown in figure 1 can be
represented by the model shown in figure 3. Partial
justification for this is based on results of a model
that used electric potential to represent temperature
potential (fig. 2). These results showed that flush sup-
ports in a model yield negligible difference in potential
from other common support structures. This is im-
portant, not only because flush supports give the
simplest mathematical model, but also because there
are large variations in the shapes and dimensions of
support structures, even for the same models by the
same manufacturer (fig. 4).

The rest of the justification for using the model
shown in figure 3 becomes clear in the discussion of
operation and different heat transport mechanisms
that follows.

The barretter is a small-diameter, platinum wire of
radius a and length [ (fig. 3). It is supported at each
end by a silver wire of larger diameter, and is normally
immersed in air. Possible external, forced-convection
currents are eliminated by a plastic shield of radius b
which is nominally transparent to the electromagnetic
fields.

For power measurements, this fine wire is usually
heated with a d-c current to a particular value of
resistance in the absence of rf fields, and then the d-c
current is reduced to maintain the previous value of
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resistance when the rf field of frequency f is applied.
The substituted d-c power is (I2—I%)R, where I, is the
d-c current without rf power, I, is the d-c¢ current with
rf power, and R is the value of resistance to which the
barretter is biased. The substitution error is caused
by the difference in temperature fields between the
two heating conditions. The solution of these two tem-
perature fields will then require the additional data
concerning thermal properties of the wire and the
surrounding fluid, usually air. The thermal conduc-
tivity of the wire, with its temperature coefficient,
may be represented by k;=ko+ ki T. Similarly the
thermal conductivity of the fluid may be represented
by ky=keo+ ko T. The resistivity of the wire and the
corresponding temperature coeflficient may be repre-
sented by p=po+p.T.

The previously mentioned parameters could all
be input data; however, as is mentioned later, it is
more judicious and accurate to arrive at some of these
parameters from other measurements taken under
operating conditions.

All heat-transfer mechanisms that can possibly act
in a barretter will have to be considered and evaluated.
Of conduction, convection and radiation, only conduc-
tion turns out to be significant. Radiation is negligible
since surface area of the wire is so very small. Power
radiated is given by

p=0oSFK(T3—T),

where p is power in watts,
o is the Stefan-Boltzman constant,
S is the surface area of the fine wire,
F is a surface emissivity factor and the 77s are
absolute temperatures in °K.

The diameter of the wire is of the order of magnitude
10-* c¢m, and typical calculations show the radiated
power to be less than 0.01 percent of the total power,
even if the wire were at its melting temperature.
Convection may also be shown to be negligible (0.01%)
by evaluation of the Grashof number which is some-
what proportional to convective heat transport. This
may also be confirmed by varying the orientation while
measuring d-¢c power. The Grashof number is

Bop* L3 (T, —T)

7

Nae=

where B is the cubical expansion coefficient,
g is the gravitational constant,
p is the density,
L is the width of the gas space inside the plastic
convection shield,
7 is viscosity, and
T’s are the absolute temperatures.

The Grashof number thus calculated for typical
bolometers is less than 10; if it is less than 1000,
convection may be considered negligible.

The only remaining heat transport mechanism,
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FIGURE 5. 8X 16 in Scale model of waveguide bolom-
eter for measuring rf current distribution in
element.

conduction, can be through both the fine wire and the
air (or other fluid). The thermal conductivities of both
media are functions of temperature over the rather
wide temperature range for normal operation.

It is essential to consider the current distribution
in the wire. The d-c¢ current distribution is considered
uniform both axially and radially. The rf current is
essentially uniform radially, even to frequencies as
high as 100 GHz (< 10% variation), primarily due to the
smallness of the wire. The axial rf current distribution
is of greater uncertainty, and has been investigated
extensively with a scale model (fig. 5). Details are
discussed in the following three paragraphs.

The measured values indicate a current maximum
near the middle of the wire and in general a sinusoidal
or parabolic shape. There is a frequency dependence
on the amount of curvature. There is great variation
in current magnitude but only slight variation in shape
with respect to relative position of the shorting end-
plate and with respect to position of tuning screws.

Some variation in the location of the current maxi-
mum may be introduced if the shorting end plate is
tilted only a few degrees from perpendicular. The
shape and size of the wire support structure cause
variations in the current shape, but to a large extent,
only insofar as the wire length itself is varied. An
extreme case not encountered in most bolometers is
when there is no support structure — the wire supported
only by the wide walls. In this case the current dis-
tribution is nominally uniform, with great susceptibility
to asymmetry introduced by varying angles in the
shorting end plate.

The measured values seem to follow a sinusoidal
distribution with wavelength greater than free-space
wavelength and with some asymmetry (< 30° for com-
mon support structures). The sinusoidal distribution
has been used by previous workers [3, 4, 5], but effects
of asymmetry have not been previously considered.
Further investigation is being considered, but for
present calculations rf current is assumed to be sinus-
oidal with a free-space wavelength.
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There are several pitfalls in determining three of
the input parameters a, po, and p;.

First, the radius a or diameter d cannot be
measured directly with a microscope without
bringing the objective lens destructively close to
the barretter if sufficient magnification is used.

Second, the small diameter of the wire causes
po to vary from the bulk properties of the metal
[6] since the wire diameter approaches the mean
free path of an electron; p; does not vary this
way [7, 8].

Third, a set of three equations with a, py, pi
unknown is homogeneous and the determinant
vanishes; it is possible to solve only for two of the
unknowns in terms of the third.

The second circumstance indicates that if a value
for one of these three unknowns must be assumed,
assuming a value for p; causes the least uncertainty.
The equation

Rmaz—pol:pril, =1, 2

can then be solved for a and py if two sets of R and T
are given; [ can be measured accurately. One of the
R and T sets is for room temperature while the other
is for operating temperature. The average operating
temperature is calculated by the computer program,
as mentioned later.

4. Analysis

In this section, we give a description of the analysis
used to obtain the substitution error and of the approxi-
mations involved. Details are given in appendix A, to
which reference is frequently made.

Referring to the model shown in figure 3, the basic
mathematical problem is to solve two distinct cases
of the heat flow equation

Vo lko+ ki T)VT=S(r, x, T) 1)

for the temperature field T(r, x), where (ko, ki) are
conductivity coefficients (different for r<a, r>a)
and S is the local power dissipation. (A-2, A —3)

In the first case, the temperature distribution 7} is
generated by the source S; (A—1) due to dissipation of
the d-c¢ current .#; flowing uniformly in the wire with
resistivity linearly dependent on 7.

In the second case, the temperature distribution
Ty is generated by the source S;; (A—4) due to dissi-
pation of a d-c¢ current %,, as above, and also due to
the time-average dissipation of an rf current (A—9a):

Ir(x, t)= Froz(x) cos wt, (2)
where z(x), the current profile, is given, and the
amplitude #¢ is an unknown constant.

Boundary conditions on the temperature field 77(r, x)
in each case are:

T, (0, x)=T(b, x)=0, O=sx=<l);

I(r, 0)=1(
T9 T(r9 x)} (3)

r, [)=0, O0=r=<b);
{T(r7 x),

continuous across r=a, (0 < x < /).

The rf current amplitude #go is to be determined
by requiring that, given #, and .#,, the total wire re-
sistance Ry, be the same in each case (A—20):

1 1
Rnor=—— L dx(po+ p1T(0, x)). )

Because of the nonlinearities, the problem posed
above is not tractable, and several simplifying assump-
tions are introduced which lead to a linear system of
equations involving a single parameter, the mean
axial temperature:

T,-1 L " dxTy0, x). 5)

The linear system is solved iteratively and converges
rapidly.

Before making the simplifying assumptions, it is
useful to introduce the “quasi-temperatures” (A—5):

G(r, x)="T\(r, x) (l === i

2 ko T, x))

H(r, x)=Ty(r, x) (1 A= T"(r x))

g(r, x)=H(r, x)—G(r, x). 6)

These quantities simplify the heat flow equations,
since

V (ko + ki TYV T = koV2G,

D
V ° (k() + k]T[])vT]I == k()VZH.

The interface conditions at r=a are, of course, more

complicated:
k
{kOG, e <1 +7 (k; G) ) } ®8)

are continuous across r=a, (0 <x < /), with identical
conditions on H. Here 7(x) is the inverse function

(A=Tb):
hreld)n o

The three basic simplifying assumptions that are
made are the following:

First, the difference function g is assumed small:
|&(r, x)| < [G(r, x)|. (10)
This approximation appears to be adequately justified

by the fact that computed values indicate |g| < 0.15|G|
at worst, while the axial average g=0. Neglecting
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O(|g|?), we obtain equations of the form (A-8a, A—11):
V26 + A,G[1 + o1(C)] = A,
V2g+ Azg[1 + ¢2(G)] = €(x)

: [po+p1(;(1 +<P:l(("))], (11)

where the A4; are constants (different for r > a, r < a),

ki .
the functions ¢i(G) depend on 7 (—' (,>, and for cases

0
studied, we have again |¢:(G)| < 0.15.
The function e(x) depends on the difference in current
flows in the d-c and rf cases. The second (nonlinear)
interface condition is (A—14)

|G(1+ ¢4G))|a- =0,
(12)
lg(1 + ¢5(G)]4: =0,

with ¢i(G) as above.
The second simplifying assumption is that for
0 <r<a, we may put

@ilG) = @i(G(0, x)) (13)

using the axial average, while for r > a, we may put

0i(G)= pi(G*) (14)

where G* satisfies the interface condition in the mean

G*(1 + ps(G*)) = G(1 + ¢4(G)). (15)

This approximation makes use of the expected flatness
of the temperature distribution in x, and is clearly
better for large [/b. Numerical tests indicated the
results were very insensitive to the choice of G: a 5 per-
cent change in % gave a 0.06 percent change in £ in a
typical case.

The third simplifying assumption, used indirectly
above, is that we may put

G(r, x)=G(0, %) (16)
in the source term for g, (r < a). This is readily justi-
fied by the extremely small radial temperature drop
in the wire.

With these simplifications, the linear equations with
parameter (C in (g, G) (A-12, A-13, A-17, A-18) are
readily solved in terms of cylinder functions. With
the same simplifying assumptions, we find the balanced
bridge requirement (A—21):

g0, x)=0 (17)
which determines the unknown rf current amplitude
Fro implicit in €(x). =

After iteration to determine the parameter G, the

required power levels Wy and W, the substitution

error £ (A-27), and the temperature distributions
740, x) and AT = T},(0, x) — T(0, x) (A—34a, A-34b) are

readily found by numerical integrations involving
G(0, x) and the rf current profile z(x).

Details of the computer programs are available from
the authors. Further details for the sinusoidal rf
current distribution are given in (A-37, A-38, A-39).

5. Uncertainties

With given input data, the analysis and computation
described in the previous section is believed to yield
a substitution error which is correct for the cases
studied to within a few percent, though it has not
been possible to construct an error bound.

An evaluation of the total differential reflecting the
uncertainties of all the input data would seem to offer
a limit of uncertainty to the calculated value of substi-
tution error, so that one concerned with applying this
technique would have sufficient justification for doing
so. This figure is nominally 20 to 25 percent, which is
quite adequate for the typically small values of sub-
stitution error.

Unfortunately the shape of the rf current distribu-
tion (assumed sinusoidal with a free space wavelength
and with a current maximum in the middle) is known
no better than it can be measured with a scale model.
Uncertainties due to variation of wavelength and shift
in position of current maximum are partially reflected
in this total differential; phase shift variations cause
only 0.2-0.3 percent decrease in substitution error,
and are included in the above uncertainty, but the
uncertainty as to wavelength could cause 10 to 40
percent change either way and is in addition to the
above uncertainty. Even this is just a best-judgment
estimate.

This degradation could be substantially reduced if
a sound theoretical analysis of the current distribution
in the barretter were available. Since none is, further
investigation is certainly in order.

As to the input data, R.,q and Ry, may be measured
quite accurately, while only two of the four quantities
po, @, Reyq and Ry are independent. First, the follow-
ing relation must hold:

—

cold — 9
ma-

(18)

A second relation results as follows: Given the param-
eters a and xi={Recowa, p1» kij» b, L, F%, F2, [, tan ¢}
the temperature field 7(x, o) is determined in the wire,
as is the heated wire resistance R

R= L (p0+plT(X, 0))

Ta?
(19)
= R(a; xi)
and a substitution error is determined
E =& (a; xi). (20)
An iteration is made to find «® such that
R(a™; xi))= Rpot (21)
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which is the required second relation. Then also

E=&(a*; x) (22)
is the proper substitution error.

These forms are also used to determine the effect
on E of small uncertainties in the data x;. From small
changes in (x;, @), we compute the partial derivative
approximations:

fo o%. o ) ”
da’ da’ oxi Oy, (23]
With the bridge balanced
R oR
6Rhm=£5a+5;i§xi=0 (24)
while
OF = 2] da -I-"?—R dxi. (25)
o 0x;
Then
IR
o | 0
oF=oxi dxi (miR (26)
da

gives the error in E due to small input error dx;.

6. Results, Comparisons, and Evaluation

Values of substitution error have been calculated
for several common barretters and where possible
comparisons are made with some measured values
(see table 1). Although the agreement is reassuring,
the uncertainty in the measurement makes the com-
parison inconclusive in itself.

A number of variations of input data lead to several
interesting observations concerning the calculated
values of substitution error.

Based on calculated results which use sinusoidal
current distribution with free-space wavelength,
substitution error varies approximately as the square
of the frequency.

The effect of asymmetry in the current distribution
(induced by asymmetries in the physical structure) is
to slightly reduce the substitution error, typically of
the order of magnitude of 0.1 to 0.3 percent.

The use of helium, a gas with higher thermal con-
ductivity than air, greatly increases the power han-
dling capacity of the barretter. It also increases the
heat “coupling” to the surroundings and thus reduces
the substitution error approximately 10 percent. The
same effect is obtained (but without increasing the
power handling capacity) by increasing the bias cur-

rent (e.g., so that the resistance increases from 200
to 267 ().

A change in rf power level causes virtually no change
in substitution error.

The nonlinearity due to the temperature dependence
of the thermal conductivity of the air causes an ap-
proximate 15 percent increase in substitution error
over what would have occurred if that nonlinearity
had not been present. The temperature dependence
of the thermal conductivity of the metallic element
causes only slight variation (=1%) in substitution
error as only about 5 percent of the heat escapes the
element by metallic conduction.

TABLE 1. Comparison of measured and calculated values of
substitution error
NBS Effective Measured | ()1 ulated
Freq barretter efficiency Efficiency No. of Som G substitu-
(GHz) unit (me) (n) meas. 7?;' —n tion error
P
n

8.2 18 0.9920 0.002 | 0.9906 +0.005 12 0.0014 0.0020
1252 23 9709 +0.002 9644 +0.005 3 .0067 L0056

It is also of interest to compare results with those
of previous workers, in particular Carlin and Sucher
[3]. Although they obtained an upper bound for sub-
stitution error, and this upper bound is typically
20—-25 percent higher than our calculated results, a
closer examination of their work points to a flaw in
one of their conclusions, namely that nonlinearities
have little effect in these cases. The margin of safety
in their upper limit comes from the fact that they solve
two related linear problems, calculate the substitution
error for each case and add the results together to
obtain a safe upper limit. It happens that both of these
related problems resemble the real problem, their
equation (15), quite closely, and the results of their
equation (15) should be a good solution to the linear
approximation to the real problem. The corresponding
results of equation (15) are about 40 percent lower than
our results in most typical cases; this indicates the
magnitude of the error made in assuming that non-
linearities can be neglected.

Appendix A. Analysis

A wire of radius a and length [ terminates on me-
tallic surfaces at z=0 and z=/, the whole enclosed
in a shield of inner radius b, as shown in figure 3. The
wire is heated by current sources uniform in
r, (0 <rsa), and the temperature T above ambient
is assumed to vanish on the shield r=56, (0 sx=</)
and on the end surfaces z= (0, /), (0<r=<2b).

Let T be the temperature field in the d-c-only case,
in which the source strength S; in the wire due to d-c
current S, is

Slzﬂlz(;—)o'f‘;lTl) (A-1)
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where (po, ;_)I)E(po/Az, pi/A* and A is the cross-

sectional area of the wire.
The heat flow vector is

— (/f,'()‘f‘ /f“TI)VT] (A—2)
and governing equation for heat flow is
Voq=5§ (A-3)

with subscript i referring to 0<r<a and a<r<yb
(hg. 1).

Let T be the temperature field in the rf-substitution
case. The source strength Sy(x) is taken to be a time
average due to a d-c current £, and an rf current

ﬂk(x, t)l

Su=([F2+Ir(x, ) ]*) (po+p1Ty). (A-4)
Equations analogous to (A-2, A—3) hold for the heat
flow in this case.

The fields (T}, Ty) and the heat flow vectors (g, qu)
are to be continuous across r=a(0<x<1/[).

Let us introduce new variables

1
G(r,x) = Tl(l +§ r;T,)

. 1
H(r,x)= 7”<1 +§ r,'T”> (A-5)
g(r,x)=H(r,x)—G(r, x),
where
ri = kir/kio, (A-6)

so that the definitions differ in the regions r = a. The
relations in (A—5) may be inverted to give, e.g.:

=G(1+7(rG)), (A-7a)
1
=5 X
2 (A-7b)

In terms of the Laplacian

We shall suppose the form of the rf-wave is given,
but its amplitude #, is determined (for given .#,, %)
to balance the bridge after substitution

I r(x, t) =Froz(x) cos wt. (A—9a)
Then taking time average
([F2+ Froz(x) cos wt]?) = .92 + I}z (x)

Let () denote the average on (0, /) and define
e e O
22(x)
so that
g+1 5 Pkt (x) —s3+1 JJ;“,ZZ(QC)(lJrz1 x).  (A-9c)

In the long wave-length limit, z2(x) is a constant,

z1(x) =0, so that if ﬂ?+lﬂ;mzz(x)

=42, the sources

S; and Sy are identical, so are the fields 7}, 7, and
there is no substitution error. We shall assume then
that

-ﬂi\’ozz( )[)jz =dA)Ar iR, (A-9d)

and thus that

=[F+ (B —I3+P) (1+2(x)) 1 (po+piTy),

(A—9e¢)

where [2/(#%— #2%) and z(x) are assumed small com-
pared with unity. We must expect g(r, x) to be
small also when1?/(.#2—23) and zl(x) are small, and
we linearize (A—8b) accordmgly in g:

kiuogg:—ﬁ,'l [.f‘:f[fg-f- BCg+ AC] S
where
A:ﬁ(]—i_ﬁ](l‘(] +T(r10))
B=p,(1+7(rnG+rGr' (nG))

19 o o C=P+ (I2—=I)z(x) + O (I2z(x)). (A-10)
_fE—,_rT\ L)
ror or ox
" G Fi8iulpo+piG(1+71(rG))] (A—8a)
i0=2 ==
H Sit((F2+Ir(x, t))*) [po+piH(1+7(riH))] |, (A—8b)

and in the region r>a, (i=2) Laplace’s equation
holds exactly. This is the critical region for heat loss.

292-251 O-68—2
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Now C is assumed small by virtue of I?/($2—.42) and
z1(x) being small, so that

BCg < $2Bg.

Also since
pig < po+piG,

BCg < AC.

Thus we can neglect the second source term. We
shall also neglect O(I?z,(x)) in C. Then we have

kL g=—81{g2p: (1 +7(nG)
+n6G7' (nG)) + [Po+piGA+7(rG))]-

(24 (S1— Dz (x)]} (A-11)

We shall deal only with G(A-8) and g(A-11) to
which must be appended boundary conditions:

r=0:20-98_0 (0<x<);
— adr oar

r=b:6=g=0, (0sx=<l);

0,l: G=g=0,(0=<r=<b);

X

(A-12)

while the interface continuity conditions become

a+
r=a: kioa—g =0,
or |a-
a+
kiOQg =09
ar la- (A-13)
for continuity of heat flow, and
r=a: |G(1+7(riG))|gi= ,
lg(1+7(rG) +riGT'(riC))|gi=0,
(A-14)

where we have again used |g| < |G| in the second
condition in (A—14).

Now even in the region of the wire where the tem-
peratures are highest, 7(r,G) = 0.1, so that the non-
linearity is small. Furthermore, because of the high
conductivity of the wire compared to the air, the
radial temperature gradient in the wire is negligible,
and

G(r,x)=G(0, x) (A-15)
inside the wire.

The equations are still nonlinear in a way prevent-
ing the easy use of linear methods of solution. Extend-
ing the assumption that 7(r;G) is only a small correc-

tion at worst, we assume that the average axial value
of G may be used to evaluate 7(riG):

7(riG) = 7(riG) (A-16)
Then we shall use the differential equations
[kmg(wr I1(1+71)8uG=— I podis
k,ofg-l- f%[-h (1 =+ 72)851g
=—[P+ (F}—SFF)z(x)]
“[po+piG(x,0)(A+7)]8n  (A-17)
where 7,= T(rla) , =71+ nGr (1G).
On r= a, we have the interface condition:
G(a_v x) = G(a+9 x)O'I
r=a
g(a-? x)zg(a+ax)("29 (A_IS)
where
_1+7(nG*)
Lo 1+ T1

_1+7(nG*) +nG* (13G*)
g2 =
1+T2

where G* is the number which gives continuity of
temperature at r= a* in the mean by (A—7a):

GC*(1+7(nG*))=6(1+7(rnG)). (A-19)

The system of equations we solve then, (A—17),
subject to conditions (A-18, A-13, A-12), are linear
when G is given. From the solution, a new G is com-
puted, and the solution iterated to make G stationary.
With a reasonable guess, say only 25 percent off, five
iterations brought G to within 1 percent.

No attempt has been made to bound the uncertainty
of the substitution error due to the assumptions made.

Possibly a better choice for the constant G than that
given in (A—16) might be made. If a 5 percent increase
in G is used to compute the (r;, o), the substitution
error changes by 0.06 percent in a typical case. The
approximation is clearly better for large //b, for which
the temperature profile is flat for most of the wire
length.

The constant [ in the source of (A-17) for g is deter-
mined by the requirement that the total bolometer
element resistance be unchanged when the d-c current
&, is replaced by the current ((Fs+ Zx(x, t))).
Equating these resistances:

f ' dxlBo+ 5160, x:)(1+ 7(rG(0, X))
0

= f l dx[po+ p:H(0, x)1 +r(r:H(0, )] (A-20)
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Expanding H to 1st order in g, and again assuming
G (0, x) is flat enough to be replaced by its average in
7(riG), we find

!
f“ dxg(0, x) =0; (A-21)

for the balanced bridge this relation determines
I in (A-17).

When no rf power is introduced, the d-¢ power
developed in the bolometer element is

l
WDc1=7m2ﬂ$f dx[po+p1G 0, x)(1+7(rG))] (A-22)
0

When the d-c¢ current is reduced to .#, and rf current
is added to rebalance the bridge, the total power
developed is

l
WTOT:wazf dx [.ﬂer% Fio2 ()]

0

“[po+piH O, x)A+7(riH))] (A-23)
=Wpeat+ Wy
b i A (AL
We2= C*Woer,

(=S5, (A—24)

The substituted power is defined as
Wsis=Wner —Wpee= (1— 2 )VWDCI (A-25)
The change in power developed AW (with 4, B, C
as before (A—10), and using the same approximations

and the bridge balance relation (A-21)) is found to be:

AW =Wror— Woci=Wy— W sus

!
=7m2j dx(AC + #:Bg)
0

=1r(12jldx[;_)u+f)1(;(0, x)(1+71)]
(P +92— 52 (x)].  (A-26)

Then the substitution error is

AW
AW _ W

E=—4 —a (A-27)
WSUB

Let x9(x, r; ¢, n) be Green’s functions for the sys-
tems (A—17) with the superscript (j=1, 2) referring to
(t1, o) for G and (72, o2) for 8. The Green’s function is
symmetric in (x, £¢). Let:

l a ’
CO@W=—(1+ )77 f de [“dmoe, 05 .
0 0
(A-28)

We define the numbers

Ay, z—f dx(1+ GW(x)) [ o )]
u 1
B1,2=f0 dx(1+ GD(x))z;(x) [G‘z’(x)]' (A-29)
The bridge balance condition (A—21) leads to

P _ B
Fi—F; A

(A—-30)

In terms of the (4;, B;), the power terms can be writ-
ten as

Wsus = (1 — p)ma*pos3A, (A-31)

2

AWZ'n'azﬁoﬂ%(l—pz) [ﬂzl A1+Bl], (A-BZ)

ng

so that the substitution error is

A]BZ_BIAZ [1 ~A182

e

= ‘AZ]” (A-33)

A|A2

The axial temperature distributions themselves are
found from

_po & . nmX
Tl(a\:)~51 nzl*go(,}) sin == (A—34a)
AT(x) = Ty(x) — Ty(x)
_TP0 oy o X _§> B
7 ,,21 Y2 sin ] (1 5 (A—34b)

where £* is a sum over odd n only, the coefficients
¢) are given in Appendix B, and

2

llf(z) = n‘P(Z) [f2 ] jZ A’;n + B3n]

(2)
Zn:;: (Bsn Z_ASnBZ)’ (A_35)
Asn : . nmx [1
= (1) — . _
':an] de(l-l—C (x)) sin ] [ZI(x):I (A—36)
Our primary concern is with a sinusoidal current
distribution

z(x)= cos [/{l (%—%)-Hp]

from which we compute z;(x) by (A—9a).

(A-37)
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Then

; : 1 x
A= (e 2 7 _
22(x)= cos? ¢ cos? kl (2 1)

+ sin? ¢ sin? kl G—{)%-Jz/(x),

] (A—38)

where

= L inoosinog (L%
K (x) = 5 Sin 2¢ sin 2kl (2 1>

does not contribute since it is anti-symmetric on (0, /)
while G (x) are symmetrlc
We find, averaging and noting 537( )=

[ sin —k[ cos —kl}
= 1 ) 2
2 —— 2 = =
z%(x)= cos? ¢ 2+ i

|: sin Al COS Iil}
L 2 "2 (A-39)
2 2 i s e
+sin? ¢ 5 i

We obtain z(x) from (A-38, A-39) using (A-9b).

In Appendix B, details of the calculation of the
GY9(x) by Fourier series, description of a program used
to compute the (4;, B) and the temperature distribu-
tions are presented.

Appendix B. Green’s Function

We are to determine the Green’s function
X9(x, r; &€, m) satisfying the system
ki XD+ 23p:(1 + 'rj)x‘j)=l dx—&)-8(r—m)- 6i
4 (B-1)
subject to the conditions
) =b,0sx<|;
O o = _
Xj(la”f’ﬂ) 09 { _(O’Z)’0<r<b’ (B 2)
XY _
6—r(x7 (); §a 7’)_07 (B_3)
L) @0
o ( ar )r:a*_lm) ( ar >r=a+, Eat)
XP)r—a== 05X D )pa* (B-5)

A Fourier sine series for the solution is obtained by
taking the finite Fourier transform.

l

X" (a, 13 &, n)ZJ dxx(x, r; £, m) sin ax,
0

ez, 73 & n)=72 (an, 13 €, M),

(B-6)

which satisfies the conditions (B—2) at x= (0, [). We
obtain the equations (dropping the superscript (j)):

1d d )
k1o — e r i%— (Z2p1(1 +7) — koa®)x”
=sin af 8(——71), (r<a) (B—7a)
1d dx"
b TXr—kmaZx =0, (r>a). (B-7b)
For r > «, the solution satisfying (A—2) is
X, =Dy [ bl =128 Kyap) |- (B-3)

For 0 < r <, the solution satisfying (A—3) is:

xna,r»=lbjo<§e), (B-9)
where
e=p>— (al)?,
B =72 p X1+ 1)/ kio. (B-10)
For n < r < a, the general solution is:
X' (a, )=DsJ, (% €>+D4yo (% €>' (B-11)

The four constants D; are readily found from con-
ditions (B—4, B—5) at r=a, and from jump conditions
at r=mn:

X", m7) =x"(e, n*),
(')X _6 a§‘ 3
o (e, n7)="gp (@, n*)— nkm (B-12)
We obtain for the axial value
. _m &1, (n 1 ﬂ
X076 m= 3 | (Fea) +¥o (Fe
. mné . mnx
- sin —>sin ——, (B-13)
) l
where
1 ( €n> C*+Qﬂﬂf_m‘]0< €n)
k1o l
Ru= anlk
nth20o
n(fe) i gz (f o)
C;‘: I()(aan)K()(ban) _I(l(ban)K()(aan) (B—14)

Il(aan)K()(ban) - I()(ban)Kl(aan)
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All that is required in the text is the integral of this
on 7. We obtain

J;) dnmxW(x, 0; &, n)=2k . E n@? sin —i sin s

Ju 0

(B-15)
48: | e
o =28 1
jn a O'jfjnkl() (g ) )
Jo (l €_;n> ar S Ji I €jn
(B—-16)

Note that the integral (B—15) is symmetric in (x, &).
From (A-15), we obtain

(
GO (x) =—p1F3(1+75) [) (lfﬁ dnmx) (x, 05 €, M)
l a
:—5,f%(l Sisa)) J dgf dmxW (€, 0; x, m)
0 0

. nNTX
Sll’l-_

(B-17)

The Bessel functions occurring in ¢4’ are computed
from polynomial approximations [9].
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