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An oscilloscope deflector is described, which has a calculable transfer function. The deflector
is analyzed, leading to its transfer function, in terms of the complex frequency variables. A practical
strip line deflector, usable as a pulse standard, is designed; and its frequency response, sensitivity,
bandwidth, rise time, step function, and impulse response are calculated. The predicted deflection
is down to 70 percent of its d-c value at 2.82 GHz, while the step-response 10 to 90 percent rise time
is 148 picoseconds. The effects of a drift space on the oscilloscopic display is also discussed. Results
are compared with a well-known expression for the parallel plate deflector structure.
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1. Introduction

The cathode-ray oscilloscope is the most common
and most useful instrument for displaying voltage as
a function of time. It directly provides a graphical
presentation of a time function, y(t), which is related
to the voltage applied to the input terminals of the
oscilloscope by the oscilloscope transfer function,
H(w), providing we assume the oscilloscope is a linear
device. This concept is depicted by figure 1.
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FIGURE 1. Linear system representation of oscilloscope.
When using an oscilloscope to measure a sinu-
soidal input voltage, we generally assume or require
that the oscilloscope be calibrated so that the “true”
amplitude of the sinusoid may be read directly from
the display. This calibration can be made by measur-
ing the oscilloscope amplitude response, |H(w)],
from d-c to a suitable high frequency and either
adjusting the instrument to read correctly or provid-
ing appropriate calibration data to correct the dis-
play amplitude. If on the other hand, the input voltage
is a pulse or a pulse train, with high harmonic con-
tent, the oscilloscope must be calibrated to cor-

*Present Address: 3361 Vista Drive, Boulder, Colo. 80302.
'If a standard pulse is available, it may also be used to calibrate the oscilloscope for
pulse displays.

rect for both amplitude and phase distortion.! This
requires measuring both |H(w)| and ¢(w), ie.,
the amplitude and phase response of the oscilloscope,
from d-c to many gigahertz. This is a formidable
task owing to the lack of voltage standards above
4 GHz and the lack of a technique for measuring phase
distortion. A suitable alternative is to calculate
H(w) from knowledge of the physical characteris-
tics of the oscilloscope and verify the calculations,
insofar as possible, by sinusoidal measurements.
Once H(w) is found, an input pulse may be calcu-
lated from a knowledge of the output deflection,
y(t), by either Fourier series or integral methods.

2. Design Considerations

A system analysis of a typical oscilloscope, either
real time or sampling, is complicated by the nature
of the input probe and amplifiers and by the de-
flector used. Also the requirement of linearity must
be satisfied for a linear analysis. With these criteria
in mind, it was decided to select for analysis and
design an oscilloscope with a direct feed (no ampli-
fiers), feed through (no probe), 50-(), real time (non-
sampling) deflector system. It was further decided
to avoid slow wave (traveling wave) structure for
reasons to be discussed next.

Owaki [1]% designed and analyzed a traveling wave
cathode-ray tube and obtained a mathematical ex-
pression relating spot displacement to the input
voltage and geometry of this tube. Hollmann [2]
analyzed an elementary parallel plate deflector sys-
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tem and obtained the familiar deflector sensitivity
relationship for sinusoidal inputs of the form3

ati . o sin wt/2
relative dynamic sensitivity = ) 1)
where o is the angular frequency of the input voltage
and 7 is the time taken for the electron to pass be-
tween the plates. Talbot [3] considered the same
problem and applied convolution integral methods
in order to find various pulse response character-
istics of the elementary deflector. He applied the re-
sults to a direct feed, feed through, slow wave helical
deflector. The results of these three workers analyses
could be used to write approximate scope transfer
functions for their oscilloscopes. However, in the
case of Owaki’s and Talbot’s deflectors, some un-
certainties in the transfer function would be difficult
to estimate. These uncertainties stem from the
effects of coupling and field pertubations between
loops of the slow wave structures and resulting
specification of transit time. Because we want to
avoid significant uncertainties of this type, slow
wave structures have been eliminated from consider-
ation. The elementary parallel plate structure could
be used, but its sensitivity is extremely small and it
is difficult to terminate in its characteristic imped-
ance. Lee [4] showed that this structure can, how-
ever, be used in a microoscillograph with sufficient
sensitivity for pulse work. Nahman [5] gives an ex-
cellent survey of pulse oscilloscopes with a very
complete list of references.

Keeping all the criteria mentioned above in mind,
as well as Lee’s microtechniques, the vacuum-
filled strip-line deflector shown in figure 2 was selected.

( ELECTRON BEAM

f
A d >3 > D> D> D> D> D> D> D> DD D> DD

FIGURE 2. Strip-line deflector.

The electron beam travels between the two con-
ductors in the region where fields, as shown by
Brooke [6], are almost uniform if the center con-
ductor is made sufficiently wide.

In order to make a reasonably simple analysis of
the relationship between a voltage applied between
the two conductors and the resultant deflection of
the electron beam, the following design criteria and/or
assumptions were made:

a. The deflector characteristic impedance is 50

2Figures in brackets indicate the literature references on page

3 Hollmann’s result does not include the small displ t within the defl sp!
It considers only the transverse velocity change within the deflector and the effects of (he
drift space. Also Hollmann assumes the electromagnetic field between the plates is spa-
cially invariant and ignores the traveling wave nature of the voltage applied to the plates
and the attendant reflections at the open ends of the plates.

and can be terminated in 50Q so that any standing
waves are negligible.

b. The electric fields in the region where the elec-
tron beam travels are uniform, i.e., not a function of
vertical position.

c. The fringe fields at the ends of the deflector are
negligible.

d. Energy transfer from the beam to the field is
negligible, i.e., the beam density is small.

e. Only the TEM mode is propagated down the
deflector.

f. The conductor and dielectric losses are negligible.

g. The length of the deflector is sufficiently short and
the magnetic forces sufficiently small so the effect
of the magnetic fields on the electron displacement
and on the longitudinal velocity may be neglected.
Hutter [7] and Spangenberg [8] discuss the magnetic
effects involved in this assumption.

h. The electron beam radius is assumed to be small
compared with the distance between the deflector
conductors and compared with the displacement of
the electrons due to the voltage applied to the deflector.

3. Analysis of the Deflection System

We desire to obtain a transfer function that relates
the input voltage to the resultant deflection of the
electron beam at the end of the deflector. Since we
wish to find the entire effect of the deflection system,
we will consider initially only the displacement in
the deflector and take up the effects of any possible
drift space later. We note that the electrons travel
at a velocity less than the velocity of propagation of
the electromagnetic wave so that an individual elec-
tron slips behind the electromagnetic wave as the
electron and the wave travel down the deflector. As
a result, the system might be referred to as a slip-
ping traveling wave structure. The slip will neces-
sarily have to be accounted for in the final expression.

A modified phasor approach will be used to find the
oscilloscope transfer function. This involves finding
the sinusoidal steady state output of the deflector

y(t)=|H(w)|Vm cos [wt+¢(w)] 2)
caused by the sinusoidal input voltage
v(t) =V cos wt. 3)

Once (2) is found, the system transfer function can
be written directly since it is

H(w) = |H () |e/. @)

The output and the input are related through two
physical phenomena, which occur simultaneously.
These are the force and the resultant acceleration on
the electrons due to the electromagnetic field and the
effect of the traveling wave nature of the field. First,
considering the force due to the electric field and using
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FIGURE 3. Cross-sectional representation of deflector.
the Lorentz force expression and Newton’s Second d*y e Vo
Law, we get drr " md" t_vA,,([_t“)]' 08
Fp=ekE (5)  If we specify the input voltage as a sinusoid,
and v(t) =Vn cos wt, (11)
ﬂzﬁ ©) then (10) becomes
dt* m™"
(12)/ Vo
where Fy is the force in the y direction due to the elec- iz KV cos @ [_E (1=1to) (12)

tric field E in the y direction, and y is the displacement
of the electron in the y direction; e and m are the charge
and mass of the electron. The coordinate system used
is shown in figure 3.

From the solution of the wave equation, we know that
the electric field is a function of the position variable
x and time ¢ and is of the functional form

X
N o
E(x, ) =———"~ @

for a uniform field, where d is the distance between
the conductors, v is the input voltage and v, is the
velocity of the electromagnetic wave, which is, through-
out the discussion to follow, the velocity of light in a
vacuum. The x displacement of the electron is a func-
tion of the velocity in the x direction, v,. If we assume
the electron velocity is constant,

dx
U.r:E:(fnnslam. 8)

Then,
x=v:(t—to) 9)
where t, is the time an electron enters the deflector

at x=0. If we substitute (9) into (7) and (7) into (6),
we get

where K=e/md. The initial conditions at x=0 are

dy_y,

t=ty, y=0, 7

(13)

By integrating (12) twice and satisfying the initial con-
ditions, we find

KVIN .
y(t) = gt | cos ol — (t —to) wo sin wty

—CO0S W (0’[ + ty :})—I)] (14)
])
where

Sigma is a measure of the slip of the electron with
respect to the electromagnetic field. Commonly, elec-
tron velocities are described by a ratio B=1v./vp. The
slip parameter o is seen to be o=1— 8. Examination
of (14) shows the electrons follow a straight-line path
with a sinusoid superposed, oscillating at an angular
frequency o' =ow, the slip frequency. If we could
make B approach one by increasing v., the slip fre-
quency would approach zero, and we would have a
true traveling wave structure as described by Owaki

[1] and Talbot [3].
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Equation (14) is plotted in figure 4. It shows the
normalized displacement

—y .
el (t—to) wo sin wio
m,

v
—Cos w <o-t+ to —x>
Up

plotted versus w(t—ty). Each curve represents the
path an electron follows after entering the deflector
at the indicated value of wt,. Since a practical deflector
would only be, at most, a few centimeters long, i.e.,
fractional nanosecond transit time, the oscillatory
character of the electrons paths would normally not
be observed except for extremely large .
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FIGURE 4. Electron path within deflector versus w(t—to) for sinu-

soidal input.

Transit time of the electron, 7, is given by

T=—
Uz’

thus t=to+7 at the end of the deflector. If we solve
(14) for displacement at the end of the deflector, we get

S Vm Ly
v (o) = g7 [cos wto— Two sin wty

—cos (woT+ wto) ]. (16)
Equation (16) shows the displacement at the end of
the deflector is a sinusoidal function of the time the
electrons enter the deflector, ¢,. Since we desire the
electron displacement as a function of changing ¢,
let us set

to—=t' (17)

where ¢’ is a variable time at the end of the deflector.

Replacing ty by ¢’ yields the sinusoidal steady state
response expressed as follows:

m

w?o0?

y(t') = [cos wt' —wTo sin wt’

—cos (wt' + wro) ]. (18)

If we write (18) in phase and magnitude form, we
will have the deflector output in the proper form for
finding H(w) as specified in (2) and (4), providing we
properly account for the transit time delay between
input and output. The identity

cos (wt' +wro) =cos wt' cos wro—sin wt’ sin wTo

19)
allows us to write (18) as follows:
y(t") :QIE—IZZ [(1—=cos wro) cos wt’
+ (sin wro —Two’) sin wt'] (20)
which may be written as
yt')= RY /T B cos (' +¢), 1)

w?0?

A= (1—cos wro)

B = (sin w0 — T00)
e naB.
@=—tan 1

Equation (21) provides the necessary information for
writing the oscilloscope transfer function except for
the problem of accounting for the delay. Without the
delay factor, we get from (21)

e
HlEE—— VA% + B2 eie, 22)

The delay is provided by introducing the delay factor
e o7 giving the complete oscilloscope function

K —— .
H(w)=—5 VA*+B* &=,

poc; (23)
where A4, B, and ¢ are specified in (21).
4. S-Domain Transfer Function

While it is true that (23) is the desired oscilloscope
transfer function, it offers little insight into character
of the system. The S-domain (Laplace) transfer func-
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tion, which can be derived from (23), is more compact
and is in a more familiar Laplace transform. If we write
(23) in rectangular form, with the delay term left in
exponential form, it becomes

K
H(w) =——= e (A—jB)

w?’o

K'efjun'

2

[(1—cos wro) —j(sin wro —Tw0) ],
(24)

where K' = o Writing the trigonometric terms of (24)

in exponential form, we get:

K e—iot eJoto e~j(ur(r
= 1 = |

w?

ejmnr — (,—jumr
=

% = TwO')]' (25)

If we set w=s/j and simplify, (25) becomes

(I 0 15— 1]

H(s)ZK’e*s’[ &

or

‘,—sr(l—(r) — 70'30*“ — e 5T
Y — K/ .
H(s)=K [ -

p (26)

Equation (26) provides immediate information on
the response of the deflector to various inputs. For
example, if the input is a step function, the output is
the sum of two parabolic terms and one linear term.
One of the parabolic terms and the linear term are
both delayed by 7 seconds after the start of the step
input; the other parabolic term is delayed (1 —o)r
seconds after the step input. This demonstrates a re-
sult which physical reasoning indicates, i.e., that the
output response starts at

P P e D e

Up Up Ur Up’

Up — Ur Uy Ur l l
= (meyre(1-22)

Up

which is the transit time of the electromagnetic wave
and not t =7, the transit time of an electron.

If we set l/v,=17', an alternate form of the s-domain
transfer function may be written, giving

()7.8'7' — rose 5 — e—.\"r:I

H(s)zK'[ X @7)

S
5. The Impulse and Step Function Response

The impulse response of the deflector can be found
by either finding the inverse Fourier transform of (23)
or by finding the inverse Laplace transform of (27).

The latter method leads directly to
ht)=K'[(t—7"ult—1")—roult —7)— (t —Du(t —7)]
(28)

where u(t—7) is the unit step function delayed =
seconds.

In the previous section, we discussed qualitatively
the system step function response. Now, we would
like to write an expression for the response to the step
input voltage, v(z)=Vu(t), by taking the inverse
Laplace transform of

Y(s)=V(s)H(s) (29)

where

(30)

and H(s) is as specified in (26), which yields

(t=70)2

y(t)ZK'V[ 5 u(lt—7")—ro(t—71)u(t—7)

—(—‘?zl)—zu(z—ﬂ] 31)

as the step function response. Figure 5 shows a sketch
of the step function response.

KVTt2
2

yT

—_— t

FIGURE 5. Step function response of deflector.

Equation (31) shows that the display at the end
of the deflector (due to a step function of voltage
applied at the deflector input) starts at t=17', ie.,
the transit time of the electromagnetic wave, and
increases parabolically until =17, the electron transit
time. After t=r7, the displacement becomes the sum
of a positive going parabola, a negative going parabola
and a negative going ramp. This sum term is simply
KV7?/2, which is the steady state response and is,
as would be expected, the deflection due to a d-c
input voltage, V. The slip parameter o=1—uv,/v,
appears in the transit part of the response and cancels
out in the steady state part. This is as would be ex-
pected since the concept of slip applies to a traveling
wave phenomenon and not to a steady d-c voltage
applied to the deflector.
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6. Frequency Response Function

The frequency response function for the deflec-
tor is simply H(w) as expressed in (23) where the
amplitude response is

|H(w)|= 0_5)2 V (1—cos wro)?+ (sin wro —wT0)?
(32)
and the phase response is
(@) =—wr+ tan-T WTo — sin wTo _ (33)

1—¢os w70

The linear phase term w7 simply delays all components
of the signal an amount 7 and causes no phase dis-
tortion; therefore, it is omitted in the plot shown in
figure 6, where the

normalized amplitude = |H (w)|/|H (0) | (34)
and the phase ¢ (w) are plotted versus
normalized angular frequency = wro. (35)

The bandwidth of the deflector may be defined as
the frequency where the normalized amplitude drops
to 0.707, which occurs at wro = 1.127, which gives

f _wmr_ 11271 _0.56
T 9 T 210 100

(36)

This result shows that the bandwidth is inversely
proportional to o7 where

or=L (1_&>:1 (L_l>’
Vx Up Vx Up
which indicates that the bandwidth is proportional
to the electron velocity, v;, and inversely propor-
tional to the length of the deflector, /. In the next
section, we see that exactly the inverse is true for
deflector sensitivity.

Actually, the concept of bandwidth is of little con-
cern in this discussion since with closed expressions
for |H(w)| and ¢(w), we may determine exactly the
contribution of harmonic components to as high a
frequency as we please. Notwithstanding, since
bandwidth and its counterpart, rise time, are the usual,
but approximate, figures of merit used to describe
oscilloscopes, we will give them suitable emphasis.

7. Design of a Practical Deflector

In designing a practical deflector of the type shown
in figure 3 with a calculable transfer function, we must
consider the length, [, conductor spacing, d, and the
velocity of the electrons, v,. Since a d-c voltage
gives the maximum deflection, as shown in figure 6,
it will be used as the basis for design. The d-c deflec-
tion is the steady state value of (31), which is

KV

y(%) = 5T (37)

where V' is the amplitude of the d-c input voltage or

KViz eV [?
Y ) =5 2 = omd 2

(38)

where m is the relativistic electron mass, mo/V1— g2
The sensitivity then, is

Deflector Sensitivity =

yg/w) :el2 V'1— 3% meter (39)

2modr? volt

The symbol m, is the rest mass of the electron, and
B is the ratio of the velocity of the electron to the
velocity of light, which is the same as the B8 discussed
in the paragraph following (15) for an air-filled strip-
line. We must consider the effect of relativity since
we want to minimize the slip, i.e., use relatively large
electron velocities, in order to increase the bandwidth.
This, of course, decreases the sensitivity since (39)
shows that the sensitivity is directly proportional to
the length squared and inversely proportional to the
electron velocity squared if the effect of B2 is ignored.
It also shows that a compromise is necessary between
length and conductor spacing in order to optimize
the sensitivity and avoid the problem of electrons
striking the wall of the deflector before reaching the
end. Some practical upper limit of v; and some usable

10, T T
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0 . . . .
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0 1 ! | !
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wTto
FIGURE 6. Amplitude and phase response of deflector.
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FIGURE 7. Slipping traveling wave deflector (r=429 ps for =0.42).

lower limit to the deflector sensitivity are the govern-
ing criteria in the design, although the other oscillo-
scope criteria such as light-output intensity, writing
speed, and size of screen display are also of primary
importance.

An example of a usable deflector, where Lee’s [4]
microoscillographic techniques must be used, is
shown in figure 7 which is designed for an accelerating
potential of 50 kV, i.e., 8=0.42. The structure is de-
signed with a characteristic impedance of 50 () based
on Metcalf’s [9] design curves of characteristic im-
pedance for the rectangular strip lines. The calculated
deflector sensitivity from (39) is 9.64 X 10-¢ m/V or
about 0.01 mm/V. The lowest TM mode cutoff wave-
length is approximately twice the ground plane spac-
ing according to Howe [10]

)\C()TM:2(0~15) == (0.30) in=0.662 cm,
which is equal to a cutoff frequency of 39.3 GHz.
The lowest TE mode cutoff wavelength equals approxi-
mately the mean circumferential path

=2(0.15) 4 2m(0.15) = (2+ 1 77) (0.15)

=0.53 in=1.346 cm

}\COTE

which is equal to a cutoff frequency of 22.3 GHz.
The bandwidth of this design from (36) is

0.56 0.56
o 429X 102X 0.48

faor= =2.82 GHz.

It is interesting in this case, to calculate, using the
derived transfer function, the actual rise time of the
deflector to a step input. This is easily done using (31).
Equation (31) leads to the oscilloscope display shown
in figure 5, which has a 10 to 90 percent rise time

tlr=0T \/@ —oT \/6—1_ =0.63407= 148 ps.

8. Drift Space Considerations

Thus far in our discussion, we have considered an
oscilloscope with no drift space beyond the deflector.
In general, some drift space will be involved; if we
include a drift space, the oscilloscope transfer function,
(27), must be modified accordingly. As shown in the
appendix, the total oscilloscope transfer function in
the S-domain is

“Lee [4] describes the nature of the appropriate beam size and focusing techniques
as well as suitable methods of recording for a microoscillographic deflector.

7K e —8(7' +7") — e—(7+‘r")

Hr(S)=H(S)e ’s+— S

(A-8)

where 7" is the transit time of the electrons in the drift
space

where L is the length of the drift space. The drift space
has the effect of increasing the sensitivity. D-C sen-
sitivity, for example, is increased by 2L/l X 100 per-
cent. Thus, if L= [, the deflector sensitivity is increased
by 200 percent.

In the appendix the expression for the relative sen-
sitivity of the slipping strip line deflector is developed
for the drift space contribution of displacement only,
i.e., the deflection within the deflector space is ignored.
The result is shown in (A-12).

O'(A)T

Y(w)| 5"

Y(0)| owr (A-12)
2

It is interesting to compare this result with Holl-
mann’s expression for parallel plate deflector given

in (1).

YO)| wr 1)

We see that the results are identical except for the
slip factor o.

Hollmann’s result is based on the assumption of a
space invariant electromagnetic field within the de-
flector while (A-12) includes the effect of a slipping
traveling wave. We see, since

vp_UJr
vp

o=

(15)

that under Hollmann’s assumption, i.e., infinite wave
velocity, the slip approaches one and (A-12) ap-
proaches (1) as it should if this work and Hollmann’s
results are to be compatible.

9. Conclusion

Knowledge of the oscilloscope transfer function
makes it possible to predict the response charac-
teristics of the oscilloscope to the extent that the
physical parameters in the expression can be measured
and to the extent that the assumptions employed lead
to errors in the calculated transfer function. Uncer-
tainties of these types can be held to a minimum by
careful construction and measurement methods. Also,
the accuracy of the transfer function can be approxi-

123



mately verified experimentally from sinusoidal meas-
urements. A thorough error analysis would contribute
to knowledge of the magnitude of uncertainties in the
oscilloscope transfer function.

Once the transfer function and its uncertainties
are known, it can be used to calculate the actual time
function of either a periodic or nonperiodic input pulse
from a knowledge of the output display. An analog-
to-digital conversion of the output can be used for
fast and accurate machine calculations. An instrument
of this type, which requires microoscillographic tech-
niques and machine calculations, is not practical for
normal laboratory measurements of pulses. It can be
used as a standard oscilloscope for measuring pulse
parameters such as rise time, overshoot, duration and
so forth. It also may be used to determine the input
voltage amplitude as a function of time to a stated
accuracy.

A significant result is found by comparing the rela-
tive sensitivity of the slipping traveling-wave strip-line
deflector (for the drift space only) with Hollmann’s
[2] results for the parallel-plate structure. It is con-
cluded that the strip-line results provide a more general
expression for the parallel-plate deflector than
Hollmann’s expression.

The author acknowledges the many helpful sugges-
tions, counsel, and encouragement received from
A. R. Ondrejka, and the careful manuscript prepara-
tion by Mrs. Toni Hooper.
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11. Appendix

The addition of a drift space whose length is L

meters introduces an additional electron displace-
ment, Y, such that

Y= _’)’I’T" (A_].)
where 7" is the time the electron is in the drift space,
i.e., drift space transit time, and y' is the vertical

velocity of the electron at the end of the deflector.
Assuming the x velocity is constant,

o _L.
u = (A-2)
The total deflection, yr, is
yr=Y+y. (A-3)

Once the electron leaves the deflector, the dis-
placement force due to the traveling electromagnetic
field stops, i.e., ¥ becomes constant. Thus to find
yr, we need only to find the expression for Y. This
requires that we obtain an expression for the vertical
velocity at the end of the deflector. The vertical
velocity within the deflector is found by integrating
(12) and evaluating the arbitrary constants using
(13). The vertical velocity at the end of the deflector,
y', is found in the same manner as (18) was found,
giving

f—

[sin (0t +woT) —sinwt']  (A-4)

KV
o
where t'=t— (to+7) for t=1ty+7. Equation (A—4)
can be written in phase and magnitude form giving
}"z%n[\/CZ-FDZ cos (wt'—0O)] (A-5)
where
C= (—1+cos wor)
D= sin wort
0= Tan-1 = 1+ cos woT
sin woT

The transfer function due to the drift space is then

"

Ho(w) =2 NG T D e
wo

(A-6)

which must be combined with (23) to give the total
transfer function:

Hy(w) = H(w)eTo + 8 /T DR ¢-i0+0ran
wo e,

where e ™ and €77 provides the delay caused by
the drift space, and deflector respectively.

The S-domain transfer function may be found by
setting w=3S/j in (A-7) which can be shown to yield

H1(S) — H(S)e—T”s+ WIIK [e_S(T’+1”) —e_(T+T”)s:|
o S

(A-8)
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While (A-8) is the transfer function for which we
are searching, it is interesting to compare this re-
sult for the strip line deflector with the work of Holl-
mann for the parallel plate deflector, as expressed
in eq (1). The comparison can be made by consider-
ing only the Y deflection since Hollmann’s equation
includes only this part of the total deflection. The
comparison is made by finding the relative sensitivity,
as defined by Hollmann (which is |Y(w)|/|Y(0)]),
for the strip line.

The expression for |Y(w)| may be found from
(A—6) since

_Y(w)
Hl)((u) V(w)
or
Y(w)= Hp(o)V(w). (A-9)

Substituting the magnitude of (A—6) into (A-9) gives

) VuK7"
Y (w)] :w—o:r V(= 1+ cos wor)?+ (sin wor)?  (A-10)

since V (w)=Vnel®, i.e., the input voltage is V', cos wt.
It can be shown that

125

Y(0) = KV 71" (A-11)
which is the displacement due to a d-c input, ¥,,. The
desired ratio is then found from (A-10) and (A-11),
giving

Y (w)| V(=1 cos wor)2(sin wo)?

1Y (0)] woT

or
9 /1 —cos wot

[Y(@)|_ 2

|Y(0)] woT
or finally

4 Y
¥(w)| _ sin =
1Y (0)] woT G
2
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