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Generalized Inverses and Solutions of Linear Systems *
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For an arbitrary complex matrix 4 we consider (1) the set of all matrices B such that ABA=A
and AB is Hermitian and (2) the set of all matrices B such that ABA = A and BA is Hermitian. It is shown
that if B is in (1) then x= By is a least-squares solution of Ax=y and that if B is in (2) then x=By is
the solution of minimum Euclidian norm of the consistent systems Ax=1y. The connection is exposed
between the properties of the generalized inverses in (a) and (b) and the fact that among all matrices
X satisfying AXA= A, that with minimum Euclidian norm is the Moore-Penrose inverse of A.
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1. Introduction

In this paper we discuss some properties of certain classes of generalized inverses, give some
new results and some enlightening connections between some known results.

It is shown how to construct (a) the set of all matrices B such that ABA= A and AB is Her-
mitian and (b) the set of all matrices B such that ABA= A and BA is Hermitian. The generalized
inverses in (a) include the normalized generalized inverse of Rohde [15]! and have been em-
ployed by Decell and Odell [3] in constructing the fixed point probability vector of regular or
ergodic transition matrices. The generalized inverses in (b) include the Goldman-Zelen weak
generalized inverse [4] and these authors have utilized a property of their inverse which we men-
tion in the next paragraph.

It is well known [12] that given Ax=y, with 4 and y a given matrix and vector respectively,
xo=A*y, where A+ is the Moore-Penrose generalized inverse, is the least-squares solution of
minimum Euclidian norm; in particular, the solution of minimum norm when the system is con-
sistent. In what follows, we show that if B is in (b), then xo = By is the solution of minimum Euclidian
norm when the system is consistent. It is further shown that if B is in (a), then x= By is a least-
squares solution of the system. We then show that the only matrix B such that xo= By is the least-
squares solution of minimum norm is B= A+. This is known [12]. The proof here shows the con-
nection between this property and the weaker classes of generalized inverses mentioned above.
All of the proofs assign a definitive role to a well-known property of perpendicular projections.
The connection is shown between the properties of the generalized inverses in (a) and (b) and the
fact that among all matrices B such that ABA= A, that with minimum Euclidian norm is A+.

2. Definitions and Preliminaries

We consider matrices with complex entries. For any matrix M we denote by p(M), R(M), N(M)
and M* the rank, range, nullspace and conjugate transpose respectively of M. By the norm, ||M]||,
of any matrix M, we mean the Euclidian norm: |M|2= trace (M*M)= trace (MM*). For any column
[x|[2= x*x, and we observe that ||M|? is the sum of the squared norms of the column vectors

vector x,

of M.

*An invited paper.
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! Figures in brackets indicate the literature references at the end of this paper.
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We use the terminology for generalized inverses previously employed [7, 8, 9]. For a given
matrix A, C,(A) is the set of all matrices B such that ABA= A; C»(A) is the set of all matrices B such
that BeC,(4) and BAB=B; C3(A) is the set of all matrices BeC»(A) such that AB is Hermitian; Cy3/(4)
is the set of all matrices BeC»(A4) such that BA is Hermitian; C,(A4) is the set of all matrices B such
that BeCs(A4) and BeC3(A). We call a matrix BeC;(4) a Ci-inverse of A, 1=1, 2, 3, 3", 4. We note that
C4(A4), the intersection of C3(4) and Cy3(4), is a single matrix, the unique Moore-Penrose generalized
inverse [11]. We observe that if BeCi(4) then AB and BA are projections and that p(4B)= p(BA)=p(A)
[15]. In particular, if i is 3, 3" or 4, then AB, BA or both, respectively, are perpendicular projections.
We reserve the notation A+ for the Cs-inverse of any matrix 4.

We consider the system of equations

Ax=1y, (1)

where A4 and y are given. If yeR(A), i.e., the system is consistent, then it is known [6] that there
exists a solution xpeR (A4*), which is uniquely determined and is the solution of minimum norm:
|lxo|| < ||Ix||, where x is any solution, with equality only if x = x,. The proof is rather simpler than that
[6] cited. Any solution x can be written x=u+ v, with ueR(4*) and veN(A). Then clearly u is a
solution. Let x; =u;+ v, and x»=u>+v» be any two solutions with weR(A*), vieN(A), i=1, 2.
Then x; —x2= (u1—u2) + (v1i—wv2) is in N(A), which implies that (x; —x2) — (v;—v2) = w1 —us
is in N(A). But (u1 —u2)eR(A*) and hence u; = us. Thus any solution can be written x =x,+v,
with x¢eR (4*) uniquely determined and veN(A). Clearly |x|[>= |lxo|[> + [[v][* = |xo[?>. In what follows,
we therefore refer to the solution of minimum norm of a consistent system.
It is well known that if (1) is inconsistent, then any solution of

A*Ax= A*y 2)

is a least-squares solution of (1). For, let x be any vector, x, satisfy (2), d=Ax—y and d, = Ax, — y.
Then, by (2), dfA=0 and since di —d= A (x;—x) we have d¥(d, —d) =0. Thus d}d, = d¥d=d*d,.
From the Cauchy inequality, (d*d) (d}d,) = (d}d)?, we then have d*d = d*d;, with equality if and
only if d= d,. If equality is the case, then d*4=0 and x is also a least-squares solution. Conversely,
if x and x; are least-squares solutions then d= d,, for then (x—x1)eN(A*4) = N(A) which implies
Ax= Ax;. Thus every solution of 12) gives the same vector of deviations d = Ax—y, and, of necessity,
the same minimum sum of squares. By what has been said in the last paragraph above, there exists
a unique least-squares solution of minimum norm. Penrose [12] calls this least-squares solution the
“best approximate solution” of (1), but he applies this concept and definition to more general sys-
tems than (1).

If (1) is consistent, any solution is a least-squares solution (zero sum of squares) and the
solution of minimum norm is the least-squares solution of minimum norm. Thus the Penrose
definition of “best approximate solution” is meaningful, and always exists for the system (1),
without reference to the consistency of (1).

Lemma 1 gives a well-known property of perpendicular projections and Lemma 2 is an easy
consequence of Lemma 1. We include both for ready reference and clarity.

LEMMA 1. Let E be a projection. Then ||x|| = |[Ex|, for every x, if and only if E=E*. In that
case, |x|=Ex|| if and only if xeR(E).

PROOF. The first statement is a known theorem [5, p. 147]. To see the second statement,
let x=u+v with ueR(E) and veN(E). Then ||Ex|?= x*Ex=u*u. But |x|?=x*x=u*u if and only
if xeR(E).

LEMMA 2. Let X be any matrix and E and F be Hermitian projections. If Xo= EXF, we have
[ Xol| < |[X]|, with equality if and only if X = X,.

PROOF. Define Y=EX. Then by Lemma 1, ||yi|| <|xi| where y; and x; are the ith column of
Y and X respectively. Thus we have ||Y||<|X| with equality if and only if Y=X. Now X#=FY*,
and by the same argument [[X,|| < [Y]|, with equality if and only if Xo=Y. Hence, ||X,|| < ||Y] < |X|,
with equality only if X,=X.
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3. Generalized Inverses and Solutions of Linear Systems

In what follows we will be interested in and make use of matrices BeC,(A) such that either
AB or BA is Hermitian. The next lemma gives conditions which such C;-inverses must satisfy and
in fact a method of constructiong them.

LEMMA 3. Let A be an arbitrary, fixed matrix. Then every solution, B, of

A*AB=A* (3)

is in Ci(A) and is such that AB is a uniquely determined Hermitian projection. Conversely, every
BeCi(A) such that AB is Hermitian satisfies (3). Similarly every solution, B, of

AA*B*= A (4)

is in Ci(A) and such that BA is Hermitian. Conversely every BeC,(A) such that BA is Hermitian
satisfies (4).

ProoF. Define = AB. Then (3) reads 4*E = A* and left multiplication by B* gives E*E=F,
which shows £'= E*=E? But then (3) can be written A*B*4*= A* which implies that BeC,(A4).
Since E=E* and it is known that p(4) =p(E), we have R(E) =R(A) and E is completely deter-
mined by A. Conversely, if ABA=A and AB is Hermitian we have B*¥*4*4=A which gives (3).
The statements regarding the solutions of (4) are proved in the same way.

In the proof of his Theorem 1, Penrose [11] includes the second part of Lemma 3. Bose [2]
has previously shown, for the real case, that if B is any solution of (3) then AB is a unique Hermitian
projection. The proof is quite different (cf. Rohde [14]) and neither Bose nor Rohde drew the
conclusion that BeC,(A). As before ([9]), we call a matrix B a strict C,-inverse of A if BeC, (A) and
B¢C>(A), or equivantly ([7, 15]), if BeC,(A) and p(B) > p(A). There exist strict Ci-inverses of
A which satisfy (3) or (4) or both. For, if we write

D 0
A=Q R (5)
0 0
with Q and R unitary, where D is square, nonsingular and p(4) =p(D), then [9] any BeC;(A4)
must have the form
D1 U
B=R* @ (6)
V /4

where the entries of U, V, and W are arbitrary. It is readily verified that 4B is Hermitian if and
only if U=0; that BA is Hermitian if and only if = 0; and that when either or both of these con-
ditions are satisfied, p(B) > p(A) if W # 0. Thus there exist solutions of (3) which are not in
C3(A), solutions of (4) not in Cy (A) and solutions of both (3) and (4) other than the Cys-inverse of A.

The generalized inverses required by the theorem of Decell and Odell [3] are precisely those
matrices satisfying (3), i.e., those matrices of the form (6) with U=0.

Penrose [11] has shown that KXM =P is consistent if and only if P=KLPNM, where L is
any matrix in C;(K) and N is any matrix in C;(M). In that case, Xo=K+*PM+ is the solution of
minimum norm [12]. The following theorem shows that, in the consistent case, the solution of
minimum norm can be obtained by the use of generalized inverses in a weaker class than the
C,-inverse.

THEOREM 1. Let K, M, and P be given matrices such that KXM= P is consistent. Then the
solution of minimum norm is Xo= LPN, where L is any matrix in C,(K) such that LK is Hermitian
and N is any matrix in C;(M) such that MN is Hermitian.
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ProOF. Let X be any solution. Then Xo=LPN=LKXMN is also a solution. Since LK and MN
are Hermitian projections, we have by Lemma 2, that |[Xy| < ||X||, with equality if and only if X = X,.

Ben-Israel and Wersan [1] have shown that the solution of (3) with minimum norm is the
Cy-inverse of A. We show how this follows from Theorem 1.

COROLLARY 1. If A is a given matrix, the solution of A*AX= A* of minimum norm is the Cy-
inverse of A.

ProoF. Let KeC,(A*A4) and KA*A be Hermitian. Then, by Theorem 1, X,= KA* is the solu-
tion of minimum norm. It is known [9] that X,eC3(A4). Since Xo4 = KA*A is Hermitian, we have
X()€C4 (A ) -

In view of Lemma 3, Corollary 1 shows that among all matrices BeC,(A) such that AB is Her-
mitian, the Cs-inverse of A has minimum norm. In fact among all matrices in C;(A4), the C,-inverse
of A has minimum norm. A proof of this has been indicated by Kalman [10]. We give this result
below as a corollary of Theorem 1.

COROLLARY 2. If A is a given matrix, the solution of AXA= A of minimum norm is the Cy-
inverse of A.

Proor. Clearly AXA=A is consistent. By Theorem 1, the solution of minimum norm is
Xo=BAB, where B, and B, are in C,(A) and are such that B;4 and 4B, are Hermitian. By a
known theorem [7], X¢eC:(A), and plainly AXo=A4B> and Xo4=B;A are Hermitian. Hence
X()€C4 (A ) 5

REMARK. One construction of the C;-inverse of 4 given by Penrose [11] is in fact B=B,AB.,
where B, and B: are any solutions of (4) and (3), respectively. This is a special instance of the
theorem [7] that B=B 4B, is in C»(A) when B, and B> are arbitrary elements of C;(A4). In par-
ticular, if 4B, is Hermitian, then BeC3(A4) and if B4 is Hermitian, then BeCs/(A) ([cf. 9]). We
could also prove Corollary 2 by observing that among all matrices of the form (6),

D0
TE: 0*
0 0

has minimum norm and that, according to the discussion after (6), this matrix is A*.

The next theorem gives a subset of C(4) such that elements of this subset select the solution of
minimum norm when (1) is consistent. It also gives a subset of C;(A4) which selects a least-squares
solution of (1) and shows that the Cs-inverse of 4 is the only matrix which enjoys both properties.

THEOREM 2. Consider the system

Ax=y (s)

where A and y are a given matrix and vector respectively.

(i) Let BeC,(A) and BA be Hermitian. If (s) is consistent, then xo= By is the solution of mini-
mum norm. Conversely, if xo=By is the solution of minimum norm for every y such that (s) is
consistent, then BeC,(A4) and BA is Hermitian.

(i1) Let BeCi(A) and AB be Hermitian. Then x= By is a least-squares solution. Conversely,
if x=By is a least-squares solution for every y, then BeC,(4) and AB is Hermitian.

(iii) Let B be the Cy-inverse of A. Then xo= By is the least-squares solution of minimum norm.
Conversely, if xo= By is the least-squares solution of minimum norm for every y, then B is the
Ci-inverse of A.

Proor. (i) It follows from Theorem 1 that xo= By is the solution of minimum norm if BeC,(A)
and BA is Hermitian. Conversely, suppose xo= By to be the solution of minimum norm for each
yeR(A). Then Axo=ABy=1y, for all yeR(A) implies ABAz= Az, for arbitrary z, and so BeC,(A4).
Thus far we have only used the fact that By is a solution. For any z, let y= Az, then we have By= BAz
and ||By||=||BAz|. If By is the solution of minimum norm, ||By||=||BAz|| < ||z||, and that B4 is Her-
mitian follows from Lemma 1.
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(ii) The least-squares solutions of (s) are the solutions of 4A*4x= A*y. We show that x= By
with B as in (ii) satisfies this equation. We have A*4Ax=A*4By= A*B*A*y= A*y, since AB=B*A*
and ABA=A. Conversely, if A*4By= A*y for every y, we have A*4B=A* and, from Lemma 3,
BeC,(A) and AB is Hermitian.

(iii) First, let B=A*. Then by (ii), xo is a least-squares solution. Now let x be any least-squares
solution. Then A*4Ax= A*y from which BB*4A*Ax= BB*A*y. But B*4*=AB and we have BAx
= By=x¢. Since BA is Hermitian, |x)|| < ||x|| follows from Lemma 1. Conversely, suppose that for
every vy, xo=By is the minimum norm solution of 4*4x=A*y. By Theorem 1 we then have x,
= By= KA*y for all y, where KeC,(A*A) and KA*A is Hermitian. Thus B= KA*, which as in the
proof of Corollary 1 is the Cy-inverse of A.

REMARK. In the proof of (i) we have essentially proved that if BeC,(A4), then x= By is a solu-
tion of (s) whenever yeR (4) and that, conversely, if x= By is a solution of (s) for every yeR (4) then
BeC,(A). This was proved by Bose [2] (cf. [14]) and in fact Rao [13] takes this as a definition
of Ci(A).

The content of (iii) of Theorem 2 is known. For, Penrose [12] shows that Xo=A+C is the least-
squares solution of minimum norm of AX=C. By observing that A* is the least-squares solution
of minimum norm of AX=1 he shows that A+ is the only matrix with the required properties. We
prove (iii) here to show how the result stems directly from the Hermitian character of 44 and
AA+ and to show the relation of (iii) to (i) and (ii).

It is clear that any BeC3(A) meets the conditions of (i) of Theorem 2. It is precisely that
property of the Cy-inverse which was exploited by Goldman and Zelen [4]. Their proof however
is essentially different in character.2 With Theorem 2 in hand, we can give a rather brief version
of their proof of the Gauss theorem (Theorem 1 of [4]) utilizing a weaker class of generalized inverse
than the Cy-inverse. The term estimable is used here as it is used in [4].

THEOREM 3. Let y be a vector of random variables such that the variance-covariance matrix
is o2l and the expected value of y is AZ. The minimum variance unbiased linear estimate  of any
estimable function 0= ¢*{ is given by 0= ¢*By= ¢*x, where B is any matrix in C,(4) such that
AB is Hermitian and x is any solution of (2).

PROOF. A linear estimate 0= p*y of 6 is unbiased if and only if the expected value () of 0 is
I?((A}):p*AC:O for all £, i.e., A*p=gq. Thus 6 is estimable if and only if geR(4%), and since the
variance of 6 is (p*p)o?, 6 gives the minimum variance unbiased estimate if and only if p is the
minimum norm solution of the consistent system 4*p=¢q. According to (i) of Theorem 2, this is
equivalent to p= B*q where B*¢C(4*) and B*4* is Hermitian, i.e., BeC(4) and AB is Hermitian.
Thus 6= p*y= ¢*By. But for any qeR(4*) we further have ¢*By= ¢*x, where x is any solution of (2).
For, by (ii) of Theorem 2, By is a solution of (2) and any solution of (2) can be written x=By+v
with veN(A4).

It is of interest to note that the general solution of (2) can be written as x = KA*y+ (I — KA*A)z,
where K is any C;-inverse of A*4 and z is arbitrary.? This, in a different notation, is eq (3.3) of
Goldman and Zelen [4], except that they require that KeC»(4*4). As noted previously in this paper,
and shown in [9], KA*eC3(4). Thus Goldman and Zelen in fact employ both the Cs-inverse and
the Cy-inverse and these are included in the set of all matrices which meet the conditions of
(i1) and (i) of Theorem 2, respectively.
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