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For an arbitrary complex matrix A we consider (1) the set of all matrices B such that ABA =A 
and AB is Hermitian and (2) the set of all matrices B such that ABA = A and BA is Hermitian. It is shown 
that if B is in (I) then x = By is a least- squares solution of Ax = y and that if B is in (2) then x = By is 
the so lution of minimum Euclidian norm of the consistent sys tems Ax = y. The connection is exposed 
between the properties of the generalized inverses in (a) and (b) and the fact that among all matrices 
X satisfying AXA = A, that with minimum Euclidian norm is the Moore-Penrose inverse of A. 
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1. Introduction 

In this paper we discuss so me properti es of ce rtain classes of gene ralized inverses, give some 
ne w results and some enlightenin g connections betwee n so me known results. 

It is shown how to construct (a) the set of all matri ces B such that ABA = A and AB is He r­
mitian and (b) the set of all matrices B such that ABA = A a nd BA is He rmitian . The ge neralized 
inve rses in (a) include the normalized generalized inverse of Ro hde [15] I and have been e m­
ployed by Decell and Odell [3] in constructing the fixed point probability vec tor of regular or 
e rgodic transition matrices . The generalized inverses in (b) include the Goldman-Zelen weak 
generalized in verse [4J and these authors have utilized a prope rty of their inve rse which we me n­
tion in the next paragraph. 

It is well known [12] that give n Ax = y, with A and ya given matrix and vector res pectively , 
Xo = A +y, whe re A + is the Moore-P e nrose gene ralized inverse, is the leas t-squares solution of 
minimum Euclidian norm ; in particular , the solution of minimum norm whe n the syste m is con­
sistent. In what follows , we show that if B is in (b), the n Xo= By is the solution of minimum Euclidian 
norm when the system is consistent. It is furthe r shown that if B is in (a), the n x = By is a least­
squares solution of the system. We the n 'show that the only matrix B such that Xo = By is the leas t­
squares solution of minimum norm is B = A+. This is known [12]. The proof here shows the con­
nection between this property and the weaker classes of generalized inverses mentioned above. 
All of the proofs assign a definitive role to a well-known property of perpendicular projections. 
The connection is shown between the properties of the generalized inverses in (a) and (b) and the 
fact that among all matrices B such that ABA = A, that with minimum Euclidian norm is A+. 

2. Definitions and Preliminaries 

We consider matrices with complex e ntri es. For any matrix M we de note by p(M ), R(M) , N(M) 
and M* the rank, range, nulls pace and conjugate transpose res pectively of M. By the norm, IIMII, 
of any matrix M, we mean the Euclidian norm: IIMI12 = trace (M*M) = trace (MM*). For any colu mn 
vector x, 1p: 112 = x*x, and we observe that IIMI12 is the sum of the squared norms of the column vec tors 
of M . 
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We use the terminology for generalized inverses previously employed [7, 8, 9]. For a given 
matrix A, CI(A) is the set of all matrices B such that ABA = A; C2 (A) is the set of all matrices B such 
that BECI(A) and BAB=B; C3(A) is the set of all matrices BECz(A) such that AB is Hermitian; CdA) 
is the set of all matrices BECAA) such that BA is Hermitian; C4(A) is the set of all matrices B such 
that BEC3(A) and BEC3, (A). We call a matrix BEC;(A) a C;-inverse of A , i = 1, 2, 3, 3',4. We note that 
C4(A), the intersection of C3(A) and C3,(A), is a single matrix, the unique Moore-Penrose generalized 
inverse [11]. We observe that if BECi(A) then AB and BA are projections and that p(AB) = p(BA)= p(A) 
[15]. In particular, if i is 3, 3' or 4, thenAB, BA or both, respectively, are perpendicular projections. 
We reserve the notation A + for the C4 -inverse of any matrix A. 

We consider the system of equations 

Ax = y, (1) 

where A and yare given. If YER (A) , i.e., the system is consistent, then it is known [6] that there 
exists a solution XoER (A *), which is uniquely determined and is the solution of minimum norm: 
Ilxoll ~ Ilxll, where x is any solution, with equality only if x = xu. The proof is rather simpler than that 
[6] cited. Any solution x can be written x=u+v, with uER(A*) and vEN(A). Then clearly U is a 
solution. Let XI = UI + VI and X2 = IlJl + V2 be any two solutions with llJiER (A *), ViEN (A), i = 1, 2. 
Then XI-X2 = (UI-UZ)+(VI-Vt) is in N(A), which implies that (XI - Xt)-(VI-V2)=UI-UZ 
is in N(A). But (UI-U2)ER(A*) and hence UI = UZ' Thus any solution can be written x = xo+v, 
with xoER (A *) uniquely determined and vEN (A). Clearly IIxl12 = IIxol12 + IlvUZ ~ IlxuW. In what follows, 
we therefore refer to the solution of minimum norm of a consistent system. 

It is well known that if (1) is inconsistent, then any solution of 

A*Ax = A*y (2) 

is a least-squares solution of (1). For, let x be any vector, XI satisfy (2), d= Ax - y and d l = AXI - y. 
Then, by (2), d~ A = 0 and since d l - d = A (XI - x) we have d~( d l - d) = O. Thus d~dl = d~d= d*dl . 
From the Cauchy inequality, (d*d) (d~dtl ~ (d~d)2, we then have d*d~ d~dl, with equality if and 
only if d = d l . If equality is the case, then d* A = 0 and x is also a least-squares solution. Conversely, 
if x and XI are least-squares solutions then d=dl , for then (x-xl)EN(A*A) =N(A) which implies 
Ax = AXI. Thus every solution of (2) gives the same vector of deviations d = Ax - y, and, of necessity , 
the same minimum sum of squares. By what has been said in the last paragraph above, there exists 
a unique least-squares solution of minimum norm. Penrose [12] calls this least-squares solution the 
"best approximate solution" of (1), but he applies this concept and definition to more general sys­
tems than (1). 

If (1) is consistent, any solution is a least-squares solution (zero sum of squares) and the 
solution of minimum norm is the least-squares solution of minimum norm. Thus the Penrose 
definition of "best approximate solution" is meaningful, and always exists for the system (1), 
without reference to the consistency of (1). 

Lemma 1 gives a well-known property of perpendicular projections and Lemma 2 is an easy 
consequence of Lemma 1. We include both for ready reference and clarity. 

LEMMA 1. Let E be a projection. Then Ilxll ~ IIExll, for every x, if and only if E = E*. In that 
case, Ilxll = IIExl1 if and only if xER(E). 

PROOF. The first statement is a known theorem [5, p. 147]. To see the second statement, 
let x=u+v with uER(E) and vEN(E). Then IIExW = x*Ex=u*u. But 11x112=X*X = U*u if and only 
if xER (E). 

LEMMA 2. Let X be any matrix and E and F be Hermitian projections. IfXo= EXF, we have 
IIXol1 ~ IIXII, with equality if and only if X = Xo. 

PROOF. Define Y=EX. Then by Lemma 1, IIYil1 ~ Ilx;!1 where Yi and Xi are the ith column of 
Y and X respectively. Thus we have IWII ~ IIXII with equality if and only if Y=X. Now Xt=FY*, 
and by the same argument IlXuli ~ IIYII, with equality if and only if Xo = Y. Hence, IlXull ~ IIYjI ~ IIXII, 
with equality only if Xo = X. 

304 



3. Generalized Inverses and Solutions of Linear Systems 

In what follows we will be interested in and make use of matrices BECI (A) s uch th at eithe r 
AB or BA is Hermitian. The next lemma gives conditions which such CI-inverses must sati sfy and 
in fact a method of constructiong them . 

LEMMA 3. Let A be an arbitrary, fixed matrix. Then every solution, B, of 

A*AB = A* (3) 

is in etA) and is such that AB is a uniquely determined Hermitian projection. Conversely, every 
BEe (A) such that AB is Hermitian satisfies (3) . Similarly every solution, B, of 

AA*B* = A (4) 

£s W C (A) and such that BA is Hermitian. Conversely every BEe (A) such that BA is Hermitian 
satisfies (4). 

PROOF. Defin e £=AB. Then (3) reads A*£=A* and left multiplication by B* gives E*E = E , 
which shows £ = E* = E2. But then (3) ca n be written A*B*A* = A* whic h implies that BECI (A) . 
Since £ = E* a nd it is known that p (A) = p ( E), we have R (E) = R (A) and £ is com pletely deter­
mined by A. Conversely, if ABA = A and AB is Hermitian we have B*A*A = A whic h gives (3). 
The s tate me nts regarding the solution s of (4) are proved in the same way. 

In the proof of hi s Theore m 1, P e nrose [ll] includes the second part of Lemma 3. Bose [2] 
has prev iously shown, for the real case, that if B is any solution of(3) thenAB is a uniqu e He rmitian 
projection . The proof is quite different (cf. Rohde [14]) and ne ithe r Bose nor Rohde drew the 
conclusion thatBECI(A ). As before ( [9] ) , we call a matrixB astrict CI -inve rseofA ifBEC (A) and 
B~C2(A), or equivantly ([7, 15] ), if BECI(A) and p (B) > p (A). There exist s tri c t CI-inverses of 
A which satisfy (3) or (4) or both. For, if we write 

(5) 

with Q and R unitary , where D is square , nonsingular and ptA) = p (D) , the n [9] any BECI (A) 
must have the form 

[
D- I 

B = R* V (6) 

where the entries of U, V, and Ware arbitrary. It is readily verified that AB is Hermitian if and 
only if U = 0; that BA is Hermitian if and only if V = 0; and that when either or both of these con­
ditions are satisfied, p(B) > ptA) if W ¥- O. Thus there exist solutions of (3) which are not in 
C3 (A), soluti ons of (4) not in Cl' (A) and solutions of both (3) and (4) other than the C4 -inverse of A. 

The generalized inverses required by the theorem of Decell and Odell [3] are precisely those 
matrices satisfying (3), i.e., those matrices of the form (6) with U = O. 

P enrose [11] has shown that KXM = P is consis tent if and only if P = KLPNM , wh ere L is 
any matrix in CI(K) and N is any matrix in CI(M). In that case,Xo = K+PM+ is the solution of 
mlllJmum norm [12] . The following theorem shows that , in the consiste nt case, the solution of 
minimum norm can be obtained by the use of generalized inverses in a weaker class than the 
C4 -inverse. 

THEOREM 1. Let K, M, and P be given matrices such that KXM = P is consistent. Then the 
solution of minimum norm is Xo = LPN, where L is any matrix in elK) such that LK is Hermitian 
and N is any matrix in elM) such that MN is Hermitian . 
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PROOF. Let X be any solution. Then Xo = LPN = LKXM N is also a solution. Since LK and MN 
are Hermitian projections, we have by Lemma 2, that IlXoll ~ IIXII, with equality if and only if X = Xu. 

Ben·Israel and Wersan [1] have shown that the solution of (3) with minimum norm is the 
C4 -inverse of A. We show how this follows from Theorem 1. 

COROLLARY 1. If A is a given matrix, the solution of A * AX = A * of minimum norm is the C4 -

inverse of A. 
PROOF. Let KEC I (A*A) and KA*A be Hermitian. Then, by Theorem 1, Xo = KA* is the solu­

tion of minimum norm. It is known [9] that XoEC:l(A). Since XoA = KA * A is Hermitian, we have 
XoEC4 (A) . 

In view of Lemma 3, Corollary 1 shows that among all matrices BEC I (A) such that AB is Her­
mitian, the C4 -inverse of A has minimum norm. In fact among all matrices in CI (A), the C4 -inverse 
of A has minimum norm. A proof of this has been indicated by Kalman [10]. We give this result 
below as a corollary of Theorem 1. 

COROLLARY 2. If A is a given matrix, the solution of AXA = A of minimum norm is the Cr 

inverse of A. 
PROOF. Clearly AXA = A is consistent. By Theorem 1, the solution of minimum norm is 

Xll = BIAB2 where BI and B2 are in CI(A) and are such that BIA and AB2 are Hermitian. By a 
known theorem [7], XllECdA) , and plainly AXo = AB2 and XuA = BIA are Hermitian. Hence 
XuEC(A). 

REMARK. One construction of the C4 ·inverse of A given by Penrose [11] is in fact B = B IA B2, 
where BI and B2 are any solutions of (4) and (3), respectively. This is a special instance of the 
theorem [7] that B = BIAB2 is in C2(A) when B, and B2 are arbitrary elements of C,(A). In par­
ticular, if AB2 is Hermitian , then BEC3 (A) and if BIA is Hermitian, then BEC:I' (A) ([cf. 9]). We 
co uld also prove Corollary 2 by observing that among all matrices of the form (6), 

[
D- l 

B = R* 0 

has minImum norm and that, according to the discussion after (6), thi s matrix is A+. 
The next theorem gives a subset of Ct (A) such that elements of this subset select the solution of 

minimum norm when (1) is consistent. It also gives a subset of C, (A) which selects a least-squares 
solution of (1) and shows that the C4 -inverse of A is the only matrix which enjoys both properties. 

THEOREM 2. Consider the system 

Ax = y (s) 

where A and yare a given matrix and vector respectively. 
(i) Let BECt (A) and BA be Hermitian. If (s) is consistent, then Xu = By is the solution of mini­

mum norm. Conversely, if xo = By is the solution of minimum norm for every y such that (s) is 
consistent, then BEC I (A) and BA is Hermitian. 

(i i) Let BEC, (A) and AB be Hermitian. Then x = By is a least-squares solution. Conversely, 
if x = By is a least-squares solution for every y, then BEC, (A) and AB is Hermitian. 

(iii) Let B be the C4 -inverse of A. Then Xo = By is the least-squares sol ution of minimum norm. 
Conversely, if xo=By is the least-squares solution of minimum norm for every y, then B is the 
C-inverse of A. 

PROOF. (i) It follows from Theorem 1 that Xo = By is the solution of minimum norm if BEC, (A) 
and BA is Hermitian. Conversely, suppose xo=By to be the solution of minimum norm for each 
YER(A). Then AXo=ABy=y, for all YER(A) implies ABAz=Az, for arbitrary z, and so BEC,(A). 
Thus far we have only used tlie fact that By is a solution. For any z, lety= Az, then we have By= BAz 
and IIByl1 = IIBAzll· If By is the solution of minimum norm, IIByl1 = IIBAzl1 ~ Ilzll, and that BA is Her­
mitian follows from Lemma 1. 
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(ii) The least-squares solutions of (s) are the solutions of A * Ax = A *y. We show that x = By 
with B as in (ii) satisfies this equation. We have A*Ax= A *ABy=A *B*A *y = A*y, since AB = B *A* 
and ABA = A. Conversely, if A*ABy=A*y for every y, we have A*AB = A* and, from Lemma 3, 
BEC I (A) and AB is Hermitian. 

(i ii ) First, let B = A+. Then by (ii), Xo is a least-squares solution. Now let x be any least·squares 
solution. Then A*Ax=A*y from which BB*A*Ax= BB*A*y. But B*A*=AB and we have BAx 

= By= xo. Si nce BA is Hermitian, Ilxoll .;;; Ilxll follows from Lemma 1. Conversely, suppose that for 
every y, xo=By iii the minimum norm solution of A*Ax=A*y. By Theorem 1 we then have Xu 

= By = KA*y for all y, where KECt(A*A) and KA*A is Hermitian. Thus B =KA*, which as in the 
proof of Corollary 1 is the C4 -inverse of A. 

REMARK. In the proof of (i) we have essentially proved that if BECt (A), then X = By is a solu· 
tion of (s) whenever YER (A) and that, conversely, if x= By is a solution of (s) for every YER (A) then 
BECI (A). This was proved by Bose [2] (cf. [14]) and in fact Rao [13] takes this as a definition 
ofCI(A). 

The content of (iii) of Theorem 2 is known. For, Penrose [12] shows that Xo = A+C is the least­
squares solution of minimum norm of AX = C. By observing that A+ is the least·squares solution 
of minimum norm of AX = 1 he shows that A + is the only matrix with the required properties. We 
prove (iii) here to show how the result stems directly from the Hermitian character of A+A and 
AA+ and to show the relation of (iii) to (i) and (ii). 

It is clear th at any BEC3 , (A) meets the conditions of (i) of Theorem 2. It is precisely that 
property of the Cl,·inverse which was exploited by Goldman and Zelen [4]. Their proof however 
is essentially different in character.2 With Theorem 2 in hand, we can give a rather brief version 
of their proof of the Gauss theorem (Theorem 1 of [4]) utilizing a weaker c lass of generaljzed inverse 
than the C3,-inverse. The term estimable is used here as it is used in [4]. 

THEOREM 3. Let y be a vector of random variables such that the variance·covariance matrix 
is (J2/ and the expected value of y is A~ . The minimum variance unbiased linear estimate {j of any 
es timab le function () = q*~ is given by (j = q*By = q*x, where B is any matrix in C I (A) such that 

AB is Hermitian and x is any solution of (2). 
PROOF. A linear estimate 8= p*y of () is unbiased if and only if the expected value E({j) of {j is 

E(8) = p*A~ = (} for all ~, i.e., A*p = q. Thus () is estimable if and only if qER(A*), and s ince the 
variance of 8 is (P*p)(J"2, 8 gives the minimum variance unbiased estimate if and only if p is the 
minimum norm solution of the consistent system A *p = q. According to (i) of Theorem 2, thi s is 
equivalent to p = B*q where B*ECI(A *) and B*A * is Hermitian, i.e., BEC I(A) and AB is Hermitian. 
Thus 8= p*y= q*By. But for any qER(A *) we further have q*By= q*x, where x is any solution of (2). 
For, by (ii) of Theorem 2, By is a solution of (2) and any solution of (2) can be written x = By+ v 
with vEiV(A). 

It is of interest to note that the general solution of (2) can be wri tten as x = KA *y + (1 - KA * A)z, 

where K is any CI-inverse of A*A and z is arbitrary.:l This, in a different notation, is eq (3.3) of 
Goldman and Zelen [4], except that they require that KEC2 (A * A). As noted previously in this paper, 
and shown in [9J, KA*ECl(A). Thus Goldman and Zelen in fact employ both the C3 ·inverse and 
th e Cl,·inverse and these are included in the set of all matrices which meet the conditions of 
(ii) and (i) of Theorem 2, respectively. 
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