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K. E. Torrance*

Institute for Applied Technology, National Bureau of Standards, Washington, D.C. 20234
(August 16, 1968)

Five numerical methods were compared for calculating two-dimensional, transient natural con-
vection in an enclosure. Both implicit and explicit procedures were considered. Requirements for
numerical stability were derived from analysis and experience, and when satisfied, the calculated flows
for all methods were found to be similar. Consideration was also given to the accuracy and (energy and
vorticity) conservation of the methods. One method was found to be conservative and stable without a
restriction on the spatial mesh increment. This method can be successfully applied to nonlinear flows,
but care must be exercised due to the presence of truncation errors which introduce false transport
mechanisms.
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1. Introduction
1.1. General

The purpose of this paper is to compare the practical stability, truncation errors, and conser-
vation properties of five finite-difference procedures for solving a problem in natural convection.
Three of these methods are from the current literature [2, 6, 20] ' and two are developed here. The
ability of the various methods to produce physically meaningful solutions is examined; and solutions
calculated with the various methods are compared.

The physical problem chosen for study is the natural convection flow induced in a vertical
circular cylinder by a small hot spot centrally located on the floor (see fig. 1). Transient and steady
laminar flows are considered in two-dimensional, axisymmetric cylindrical coordinates. Such a
fluid motion is described by three simultaneous partial differential equations [4, 10]: (a) an equation
relating stream function to vorticity, eq (2); (b) a time-dependent equation for vorticity, eq (3);
and (c) a time-dependent equation for temperature, eq (4). The first equation is of elliptic type, and
the last two are of parabolic type.

1.2. Numerical Methods Tested

This section provides a brief introduction to the five numerical methods tested. All methods
employ successive over-relaxation [16, see chapter 11] for solving the finite-difference approxima-
tion of the elliptic equation, and no difficulties are encountered. The parabolic equations, on the
other hand, contain nonlinear terms with first-order derivatives which express the influence of
convection (hereafter called the convection terms). These terms introduce serious problems of
stability and conservation into the finite-difference scheme. The numerical methods differ only in
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their treatment of the parabolic equations, and these differences are highlighted in table 1. Methods
IV and V are new and are modifications of methods IT and I, respectively.

TABLE 1. Numerical methods applied to parabolic equations for temperature and vorticity
Checks mean that the numerical methods possess the indicated properties.

Explicit Order No time | No spatial No false Satisfies
Method Reference or Difference form for convection terms | of trun- step re- | mesh size diffusion conser-
implicit cation striction | restriction and con- vation
error vection
Barakat and Clark [2].............. E 2 pt forward or backward................. h o by
.| Wilkes and Churchill [20]. I 3 pt central...... R by e
.| Fromm [6]............ E 3 pt central... h? I
.| Present study. 1 3 pteentral...........o...... LR e I
.| Present study. JE 3 pt noncentral forward or backward..| h et o A | s Id

An inspection of table 1 reveals that no one method is conservative, free of false transport.
and stable without a restriction on the spatial mesh size. For conservation reasons, methods I11I-V
are to be preferred over methods 1 and II. Of these, methods III and IV require a reduction in
spatial mesh size with increasing flow velocities to achieve stability, while method V does not.
This mesh size restriction leads to prohibitively large demands on computer time and storage.
The stability of method V, together with its conservation, are essential for calculating flows where
the convection terms are important, as in the present problem. The introduction of false diffusion
and convection, however, means that the calculated flows must be interpreted with care. In general,
this false transport is important only in those flow regions where methods Il and IV were found
to break down.

Since the completion of this work, two additional differencing schemes have come to the
author’s attention [15, 1]. The first of these [15] was independently developed for steady flows and
employs a differencing of the convection terms identical to method V. The second method [1] has
been employed for meteorological problems and was developed for the vorticity equation. This
method conserves vorticity, mean kinetic energy, and mean square vorticity. The convection terms
are differenced to A% accuracy, as with methods II-1V in table 1, but conservation of mean square
vorticity should lead to improved stability characteristics.

A comparison of the methods listed in table 1 is presented in the following sections. The physi-
cal problem is posed in section 2, some features and properties of the numerical methods are
discussed in section 3, and comparative physical results are presented in section 4.

2. Mathematical Description of the Physical Problem

Consider the motion of a viscous fluid within a vertical circular cylinder of height @ and radius
b (see fig. 1). Erect a cylindrical coordinate system (x, r) with origin at the center of the base. The
flow is assumed to be axisymmetric with no variations in the azimuthal direction. The fluid is initially
motionless and at a uniform temperature 7. The enclosure walls are also at this temperature,
except for a small centrally located circular spot on the base of radius ¢ which is at a temperature
Ty > T,. The temperature difference 7,—T, initiates and sustains the natural convection flow within
the enclosure.
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F1GURE 1. Cylindrical enclosure and coordinate system.
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The Boussinesq approximation is used [4, see p. 16]; in this density (p) is assumed constant
except for the generation of buoyancy forces. Other fluid properties are taken as constant: kine-
matic viscosity (v), thermal diffusivity (), and volume expansion coefficient (8). We introduce the
following dimensionless quantities: time, 7= (k/a?)t; vertical and radial coordinates, X = x/a and
R =r|a; vertical and radial components of velocity, U= (a/k)u and V= (a/k)v; and temperature

O=(T—T,)/(Th,—Ty).

The governing equations in dimensionless form are

1 0w 1 oW

U=gar V= rRox (@
S | @
%+ {""{fﬁ(ﬂ’+"’(;‘))]:—(;r1}ﬂ 9 p, [‘:—3+ ";{ (11{ "‘meﬂ. 3)
and
%Jr[a((%)u% (’(ﬁze)]:[(j;(zﬁl;f-ﬁ(“ (:_2)] @)

Equation (3) contains the Prandtl number Pr=yv/k and the Grashof number Gr=gB(T)—Ty)a?/v>.
The latter number is used for natural convection flows and denotes the product of buoyancy and
inertia forces divided by the square of the viscous force. The acceleration of gravity is denoted
by g. The existence of a stream function W is assumed such that the velocities are given by (1).
The mass conservation equation div U=0 is then automatically satisfied. The vorticity vector
Q= curl U has only an azimuthal component, Q= dV/aX —alU/oR, given by (2). The conservation
equations for vorticity and energy are (3) and (4) respectively. In these equations, bracketed terms
on the left and right sides respectively denote the convective and diffusive transport terms. The
term containing Gr in (3) represents the vorticity source due to buoyancy.

The convective terms in eqs (3) and (4) are in a “conservation” form [3, 6] suitable for methods
I1I, IV, and V of table 1. Alternate “nonconservation” forms for these terms are utilized for methods
I and II. The alternate equations are obtained by introducing a modified vorticity Q"= (1/R )} into
(2) and (3), followed by subtraction of Q' div U=0 and © div U= 0 from (3) and (4) respectively.
In terms of modified vorticity )’, eqs (1) through (4) become

p=13¥ Lot )
D
and

Equations (1)-(4) and (1')-(4') are subject to initial conditions and boundary conditions. The
initial conditions are:

Q:e:of()r T<0,O$X$],and0<R$Rh- (5)5(51)
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The boundary conditions ? for 7= 0 are:

V=9W/dX=0 for X=0, 0<R <R

0=1 for X =0, 0<=R <R

0=0.5 for X=0, R=R.;

0=0 for X =0, R. <R <Ry; (6), (6")

V=0¥/iX=0=0 for X =1, all R;
P=0=00/0R=0 for R=0, all X; and
V= 9g¥/oR=0=0 for R=R,, all X.

For equations (1')—(4") replace Q=0 in (5) by O'=0,and Q=0 (R =0, all X) in (6) by the dual con-
ditions V= 90U[0R = 0.3

The boundary conditions introduce two geometric parameters: the aspect ratio of the enclosure
(radius/height) R, = b/a and the relative size of the heat source (heat source radius/enclosure height)
R.=c/a. ’

To determine O and )’ along the centerline, special forms of the conservation equations are
needed to avoid an indeterminate form as R — 0. By incorporating boundary conditions at R=0
and using [.’Hospital’s rule, eqs (4), (3"), and (4") respectively reduce to

40 aUO) | RRVO) 220 020

ar T ox T aRr axe 2w )

Qe 020, [0 Y ,

o +U8X = (,rPr2(3R2+1r[aX2+ 81{2]" (7"a)
and

9 9 9 52

0 .90 _#0 20 _—

U T TR

For convenience, the velocities U and V are retained explicitly in the problem formulation.
However, an examination of eqs (1)—(7) (or alternately, eqs (1')—(7")) reveals that the essential
dependent variables are W, Q, and O (or W, ', and O), while the independent variables are
X, R, and 7. The parameters of the problem are R,, R., Pr, and Gr. Throughout this study, the
aspect ratio, relative heat source size, and Prandtl number are held fixed at R,=1, R.=0.1 and
Pr= 0.7, respectively. The Grashof number Gr is assumed equal to 1 X 10>, except in section 4.4,

which considers larger values of this parameter.
3. Numerical Methods, Formulation and Some Properties

3.1. Grid System and Calculation Sequence

An approximate solution of eqs (1)—(7) or (1')=(7") will be obtained at a finite number of
grid points having coordinates X =iAX, R=j AR, and at discrete times 7,, where 7, j, and n are
integers. The grid spacings in the X and R directions are denoted by AX and AR. The symbol
7. denotes the time level after the nth time step A7,. The values of W, ), O, U, and V at each
grid point should be thought of as average values over a small volume of fluid surrounding the
point.

2 Note that explicit ht)un&ary conditions for vorticity on the solid boundaries are not available. This causes no difficulty with the explicit solution methods and only
slight difficulty with the implicit methods.

3 The centerline boundary condition Q=R = 0 is satisfied for all finite values of ()". Although the vorticity () is zero, the modified vorticity Q0 is not, in general,
zero. Barakat and Clark [2] used the modified vorticity 0" and assumed Q' = 0 along the centerline. This is incorrect, and may have contributed to the oscillations in
stream function (near the centerline) and heat transfer observed in their calculations. The vorticity ()" on the centerline can be evaluated with the aid of eq (7'a).
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All of the numerical methods listed in table 1 advance the fields of W, ), and © across a time
step in the same sequence. All quantities are assumed known at a time 7,. The sequence for ad-
vancement from time 7, to the new level 7,1 =7, + A7 is as follows:

1. Temperature (O) at all interior grid points is advanced with suitable difference approxima-
tions of (4) and (7) or (4") and (7'b). This is discussed in section 3.2.

2. Vorticity (0 or ') at all interior grid points is similarly advanced with approximations of
(3) or (3') and (7"a). This is discussed in section 3.2.

3. Stream function (W) at all interior grid points is brought up to date with the new vorticity
field by using a difference approximation of (2) or (2'). This is discussed in section 3.3.

4. The vorticity on the solid boundaries is determined from the new stream function field, as
are the velocities U and V. This is discussed in section 3.3.

5. The field of mesh points is scanned in order to determine the time step A7 for the next time
advancement. This is limited by practical stability requirements and is discussed in section 3.4.

3.2. Parabolic Equations

a. Differencing Schemes

The approximations of the equations for temperature and vorticity (for steps 1 and 2 above)
are described in conventional notation in table 2. In this section we comment on the distinguishing
features and some of the properties of these schemes.

TABLE 2. Finite-difference approximations of the parabolic equations for temperature and vorticity

0 30 30 90 a(UO)  a%
Illustrated with the simplified temperature equations, — + U — — ——=0 (for methods 1 and II) and = + M) -_’,0 (for methods 111-V).
ar aX aX* aX ax?
0 90 AU 92
Method 29 el A, 0
ar aX aX ax?
or —or
Uy, ——=4 (Uz,>0)
1 Ghap=Gal, L a 0 AX ) 1U] ¢ ,"’ e O}~ 26,46, -
Ar § ax or, ,—or PS ) (AX)? &
Up, —2— el g , (Up,<0)
v A,X
opfin—or 90 or o O}1,,—20;,+ 6}
a| —4—"040(Ar) U—=Up, - 00 g(AX)? s —Ld 4 0(AX)z.
At/2 aX o 20X (A\ )‘
1l e
enu_(.)nu/z a0 Qr+l —Qnit A On+1 ,z()n.|+9uu
b —1J— 4 0(Ar) (it At e "’+0(M;2+o<l) N RS RE Ly e ) (A’)
A2 ax AX AX (AX)? AY,
Ot = O =t 6n
0 Op =07 +0(An)? a(UO) l/;-” O~ U "’0?""+0(M)* (AX)z
2AT aX 2AX AT\
+0(AX)2+0 (—)
(aX) AY
avue) Uur, or -Ur, O
a | Same as method Ila. X 3%'—'1'—”+0(M)" Same as method Ila.
v
b|S hod 11k aUO) _ Ui O~ Ut O 0(AX)2+0 ar S hod I1b
Same ot b T Ly + Same 8 :
) ame as metho ) X 24X ( ) (AX) ame as metho
Un or ,Un N ~ *
e 7#'” Wiy Utz 0
. b )
\' Same as method 1. *(TYJ Same as method 1.
F
Ur O ur
8Oy~ U O (Op,, On, ,<0)
AX
+0(AX) +0(AX)?

*Um, n= (Ums1, n+ Unm, »)/2.

Application of the various numerical methods to the parabolic equations is illustrated with
the one-space dimension temperature equation
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00 a(U6) #0_
ar P Tax axr 0 ®)

in place of eqs (3), (4), and (7); and

9,y _F0_, 8
ar aX  0XZ

in place of eqs 3'), (4'), and (7'). Equation (8) is employed for methods I11-V and eq 8") for methods
I and II (see table 2). It is understood that the discussion and differencing of each term of these
equations applies to similar terms in the two-space dimension temperature and vorticity equations.

Methods I, I1I, and V are explicit procedures for calculating quantities at time n+ 1 in terms
of their values at times n and n —1. Methods II and IV are two step implicit procedures (see [12,
16, 20]), going from time n to n+ 1/2 in step a, and from n+1/2 to n+1 in step b. During the
first half time step (or second half time step), the X and R space derivatives are respectively ap-
proximated at time levels n and n+1/2 (or n+1 and n+1/2). Clearly, the time steps a and b are
implicit in the R and X directions, respectively. This is called an alternating direction, implicit
scheme and leads to a tridiagonal matrix of unknown temperatures or vorticities for each R-row
or X-column, as the case may be. These matrices are readily inverted by a simple algorithm.

Column two of table 2 lists the approximation of the derivative d0/d7r. A central time differ-
ence is used with method III, and forward time differences with all others. The last column of the
table lists the approximation of the diffusion terms, 920/0X?. Three point space differences are
used for all methods.

The approximations of the convection terms UdO/dX or 0(UO)/dX are listed in column three.
At any grid point the velocities are evaluated at time n and are treated as constants over the time
step. With method I, the convection terms are approximated with two-point forward or backward
differences as the coefficient velocity U is positive or negative, respectively. Methods II-1V all
employ three-point central differences for these terms. Method V employs a modified form of
forward or backward differences in which the mean velocity U, .. in the numerator is multiplied
by ©u, m or O,s1.m as U, m is positive or negative, respectively. If the two mean velocity coefficients
are of different sign, one term from the numerator of each of the two approximations shown is
required.

Two points about the vorticity equation should be noted. First, this equation contains a buoy-
ancy source term which is not listed in table 2. The term contains 00/dR, which is approximated
with three-point central differences. Method 11l evaluates the term at time n, all other methods
evaluate it at time n+ 1. Second, when the implicit methods II and IV are applied to the vorticity
equation, it is necessary to temporarily assume the vorticity distribution on the solid walls at
times n+ 1 and n+ 1/2 equal to that at time n. Thus, the wall vorticity is out of step with the ad-
vancement of the interior vorticity field. The error introduced by this assumption decreases with
both small time steps and the approach to steady state.

The rest of this subsection presents brief comments on the stability and conservation prop-
erties of the parabolic difference equations. Additional discussion is provided in sections 3.4 and
4.3, respectively.

The stability of the various numerical methods is principally due to some key approximations
shown in table 2. For methods I and V, it is the use of forward or backward differencing for the
convection terms [2, 7, 14 (see p. 194)]. For method III, it is the duFort-Frankel differencing [5]
of the diffusion terms 920/dX%. For methods Il and IV, it is the alternating direction, implicit
nature of the scheme (due to Peaceman-Rachford [12, 16 (see p. 366),20]).

A lengthy but straightforward study of methods I-V shows that conservation is satisfied for
III-V, but not for I and II. The elements of such a study are presented in [3, 6]. Conservation of
energy or vorticity within the grid system exists if the difference equations for temperature or
vorticity are summed over all interior grid points and no spurious sources or sinks of these quan-
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tities are found. The convection and diffusion terms cancel in pairs. The net energy or vorticity
transport from the wall mesh points into the enclosure just balances the net increase of energy
or vorticity within the mesh system. Heat transfer rates to and from the enclosure can thus be
determined by calculating the transfer from wall mesh points. If conservation is satisfied, there
is no net increase of energy within the enclosure at steady state, and the total heat added to the
enclosure balances the heat removed.

b. Truncation Errors

The truncation errors shown in table 2 are worthy of some discussion. These estimates are
obtained by Taylor series analysis as described in references [5, 11, 13]. Methods II-1V are most
easily discussed and are treated in the first paragraph. Methods I and V are more complicated,
and are discussed in the second and third paragraphs, respectively.

For methods II-1V, all space derivatives are approximated to (AX)? accuracy. The use of
multiple time levels in conjunction with these space derivatives, however, introduces additional
truncation errors of O(A7/AX) for methods II and IV and of O(A7/AX)? for method I1I. Substitution
of the difference approximations listed in table 2 into eqs (8) or (8"), as appropriate, introduces
truncation errors of O(A7)+ O0(A7/AX) + 0(AX)? for methods II and IV and of 0(A7)%+ 0(A7/AX)?
+0(AX)? for method III. The coefficients of these terms involve derivatives of higher order than
those of the basic eqs (8) or (8"). Stability requires that A7 < AX, and when AX is small, these trunca-
tion errors are usually neglected.

With method I, the O(AX) approximation of the convection term Ug©O/dX introduces a large
truncation error. A Taylor series expansion for O;_; ; about O; ; can be rearranged to solve for

(00/0X);, ;
(£9) —eimoLut i mo) s _GTE oy .
X ). AX 2 GX%;, 6 \exs); " } )

The first term on the right side is a backward difference. The term in braces is the truncation
error. Multiplication of eq (9) by U; ;j(U;,; > 0) leads to the form shown in the table. The solution
of the difference equation (i.e., the approximation of (8")) is equivalent to a solution of the differ-

ential equation

(E)+(J()X (1+AX| ') O(AT)+ 0 (AX)2, (10)

or 2 JXZi
The coeflicients of the terms 0(A7) and O(AX)? involve derivatives of higher order than appear
n (8), and for reasons noted in the preceding paragraph, these truncation errors are usually
neglected. The differencing of the convection terms in equation (8') introduces an additional,

| |

Only for small AX 14 |does the difference approximation ap-

U |

or false, heat diffusivity AX

proach the differential equation (8'). For large AX ' , care must be exercised because a false

heat diffusivity is introduced (or a false viscosity in the case of the vorticity equation).*

Turning now to method V, the analysis is similar to that presented for method I above. The
truncation error of O(AX) in the convection term 9(U6O)/dX is more complicated, however. It can
be shown that the solution of the difference equation (i.e., the approximation of (8)) is equivalent to
a solution of the differential equation

90, [aU0) _AX 330 _ Uij) 90_ :
8'r+{ ax 5 ('in')X} {1+AX 2 }(,’ 2—()(AT)+0(A,\/)" (11)

*This problem cannot be overcome by eliminating 9*0/3X* from (9) with, for example, three-point central differences. If this is done, eq (9) becomes a three-point
central difference approximation of 40/aX, with its associated stability problems.
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when l_/i,j, Ui-1,;> 0. Again, the terms on the right side are usually neglected. There is now a
false heat diffusion (or a false viscosity) as well as a false convection. The latter is a subtraction

from the real convection and is small whenever % @U/0X)(00/0X) is small. When this last term

U .. 2 . .
and AX 5 are small, the difference approximation approaches the differential equation (8). When

these terms are large, care must be exercised.

3.3. Elliptic Equation, Velocities, and Wall Vorticity

The computations described in steps 3 and 4 of section 3.1 are identical for all five nuineri-
cal methods, and are integrated and presented in this section. Equations for the vorticity Q (used
for methods 1I1I-V) are considered here. Appropriate equations in terms of modified vorticity
Q' (for methods I and II) are obtained by the substitution = RQ’. Step 3 is considered first.

The elliptic equation (2) relates stream function to vorticity at any given time. The new vortici-
ties 2741 are introduced and the space derivatives are approximated by three-point central differ-
erences with truncation errors of 0(AX)? and O(AR)2. An iterative technique known as successive
over-relaxation[21] was employed to obtain the new stream function field. No problems of stability or
conservation are encountered. Thus, if W{; denotes the approximate stream function at a point
interior to the solid boundaries and centerline after s iterations, a further approximation Wi+
is obtained from

w
PR S
(AX?  (ARP \j+3% j—3

(s — (1 — (s)
\lfi,j+1) (] w)\lji,j+ (M)z i+1,j i-1,j

){_/ARQ;71+ L [«W .+\I"_‘“’]

1 J_ g6 J g
T @Re [/+ Vit WE"tll)} } 12

It is understood that all values of V¥ in this equation pertain to time n+ 1. The optimum value of
the relaxation parameter w was calculated for a given system of grid points (see eqs (1.9) and (4.6)
of reference [21]).>
Successive sweeps of eq (12) over the field of mesh points were alternated in the vertical and
radial directions. Iteration was terminated when
max |W(; =
¥ < 0.0001. (13)

max W5
2%)

The number 0.0001 was arrived at by experimentation, noting that more stringent criteria led to
no essential difference in the solution of test problems. The numerator on the left side of (13) is
the maximum change in stream function occurring in the field of grid points as a result of one ap-
proximation step. The denominator is the maximum value of stream function in the field.

In practice, the most time consuming part of the whole calculation was the iteration of eq (12)
at each time step. One iterative sweep took almost as long as the entire computation of the new
temperature or vorticity field described in the previous section. The following procedures resulted
in a considerable savings in computer time. A maximum number of iterations, syay, was permitted.
For 100, 400, and 1000 mesh points, s,,.x was 20, 25, and 35, respectively. The convergence criterion
(13) was generally achieved within s, iterations after the initial flow transient was over. The
stream function field was then updated less frequently, typically every 1+ 0.25 (spux-Sconverzence)
time steps.

3 An independent determination of the optimum w was made with the aid of a computer. Equation (12) was solved for various o starting with a given () field. The
value of w leading to fastest convergence was sufficiently close to the calculated value so that the latter was used.
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The computations described in step 4 (sec. 3.1) are discussed in the rest of this section. The
numerical approximations up to this point, together with the boundary conditions (6), provide the
entire fields of W and O, and the field of ) interior to the solid boundaries, all at time n+ 1. Still
to be calculated at time n+ 1 are the unknown values of vorticity ) on the solid boundaries ¢ and
the velocity fields U and V. The new stream function field is used for this purpose.

The vorticity on the solid boundaries is obtained by first reducing eq (2) to Q=— (1/R)2W/0X2
for X=0o0r X=1, and to Q=—(1/Ry)?*V/dR? for R= R,. The second order derivatives are approxi-
mated by expanding ¥ in a Taylor series about the wall. Expansions for the two grid points nearest
the wall, together with the boundary conditions on W, yield wall vorticity approximations such as the
following, which applies when X = 0:

8V, ;— W, ;

ntl___ — 2d %) 72
065 = SiaR@xy OGN "

Finally, the fields of U and V' are calculated with three point central difference approximations
of eqs (1). These approximations (of 0(AX)?> and O(AR)?) are not presented here, but it is readily
verified that they automatically satisfy a central difference approximation of the continuity equation,
div U=0. The conservation of mass within the grid system is thereby established.

3.4. Practical Stability Considerations for the Parabolic Equations

At this point, the fields of ¥, ), ©, U, and V' are current at time n+ 1 for all methods. Further
integration of the parabolic temperature and vorticity equations in time and space requires con-
sideration of practical stability. This is step 5 of section 3.1. Practical stability imposes a restriction
on the size of the time step A7 for methods I and V (eqs (19) and (20), respectively) and restrictions
on Ar, AX, and AR for methods II-1V (eqs (15)). The size of At is calculated from the appropriate
equations (assuming for methods II-1V that the restrictions on AX and AR are satisfied). The fields
of ¥, Q, O, U, and V are then advanced across this time step by repeating the whole cycle described
in sections 3.2 and 3.3.

A complete analysis of the nonlinear equations to determine the exact form of the stability
requirements is not always possible. Such is the case for methods [I-1V. The linearized stability
analysis of von Neumann [11] has been applied to methods II [19] and I1I [6] and leads only to a
restriction on A7 for method I1I. Numerical experience with methods I1-1V for a limited range of
flows suggests that the following empirical restrictions be applied at each grid point for integration
of the temperature and vorticity equations:

8 8
<—’ S_s
Ar= |Ui, j| o Vi, (15w
2 % it
s = | ] - o
and
i .. -1

Note the restriction on spatial mesh size (15a), which presumably results from the use of three
point central differences for the three methods. Within limited ranges these restrictions have led
to stability, but they cannot be regarded as general. In particular, during flow transients with large
initial changes, time steps smaller than suggested by (15b) or (15¢) were required.

6 This delay in calculating the wall vorticities causes no difficulty with the explicit methods I, I1I, and V. For the implicit methods Il and IV, it was necessary in
section 3.2a to temporarily assume that the wall vorticities at times n+ 1 and n+ 1/2 were equal to their values at time n.
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Analytical stability criteria are possible for methods I and V. The analysis is applicable to
explicit, nonlinear, two time level differencing schemes and is discussed in reference [2]. This
paragraph is based on that analysis. To be specific, stability of the integration of the temperature
eqs (4) or (4') is considered here; that for vorticity (3) or (3') is similar. In methods I and V, the un-
known temperature O7%! can be written as an explicit linear combination of computed values at
time n:

Hl"j‘ =a,0 = age{'_,‘j-l- (1;;6{"]- +aOr .,  + asf9ﬁjvl (16)

n . .
et 5] RAREhal
where the @, denote coeflicients which vary in time, but which are constant over a time step.
The essential feature of the method is to require that the norm of the matrix of coefficients ax at
all times is bounded by unity. The row norm is used, and leads to

max {g ]ak|} <1 (17)

where max denotes the maximum value of the quantity in braces for all 7, j in the grid system. Sta-
i,

bility in the sense of Lax and Richtmyer [9, 14 (see p. 44)| exists if inequality (17) is satisfied. For
methods I and V, satisfying (17) is equivalent to requiring that all the coefficients ax are positive.
This follows because for methods I and V the coeflicient a; has the special form:

adzi— l‘{(11+(12+a4+u5} (18)

which can be readily verified. The conditions under which the coeflicients ax are positive for
methods I and V are discussed next.

For method I, the coefficients ax (k=1, 2, 4, 5) are always positive, whereas a3 can be made
positive by restricting the size of the time step A7. For Pr < 1, the most severe restrictions on A7
are:

e i g ]

= [“ﬁ'}(()u(&)ﬁ(ﬁﬂzr’ e
and

el e ]

These restrictions respectively follow by requiring that a3 be positive for the finite-difference
representations of eqs (4'), (7'b), and (7'a).

For method V (as for method I above), the coefficients ax (k=1, 2, 4, 5) are always positive.
In order to make a3 positive, however, several different restrictions on A7 arise because method V
employs forms for the convection terms that depend upon the sign of the mean velocities, as noted
in table 2. For the case when the mean velocities Ui j, Uiy j, Vi.;j and Vi j_, are positive 7 and
Pr <1, the greatest restrictions on At result from the difference forms of the temperature equations
(4) and (7):

Ui, < 1)17,-j 2 2]71
< [ Sl (145) ot
ot [AX %) AR " axy T aRp (20)
7The mean velocities are defined by
= Umiv, ntUm,x < Vom, w1+ Vi, n
U,,,,,.:;T and V,,,,,.:—?——
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and

Ui,()
ATg[AX+4 AR " (AXE ' (ARP

- . »
Vico R : . ] (20b)

Additional forms similar to (20) arise when the mean velocities are negative, or a combination of
positive and negative.

Some observations on the application of the stability requirements can be noted. It is imprac-
tical to alter AX and AR according to eqs (15a) during a computation to achieve stability for methods
II-1V. Accordingly, a cut and try procedure is employed. The time step, however, is adjusted during
a computation with all methods, using equations (15b), (15¢), (19), or (20), as appropriate. The field
of mesh points is scanned in order to determine the largest allowable A7 which will satisfy the
stability requirements. Time steps smaller than this value can be used, of course, to provide a
safety factor. In practice, 80 percent of the allowable AT was used with methods I-1V and 95 percent
with method V.

4. Comparative Physical Results

Natural convection flows calculated with the five numerical methods are presented and com-
pared in sections 4.1 through 4.3 for a Grashof number of Gr=1 X 105. The calculations employed
a uniform grid spacing of AX = AR = 0.05, with a total of 121 mesh points. The calculation of physi-
cally meaningful flows at higher values of Gr, and some questions of convergence, are considered
in section 4.4.

Flow patterns and temperature fields are illustrated in figures 2 through 6 with computer-
drawn graphs displaying sets of streamlines and isotherms. The location of these streamlines and
isotherms was determined by linear interpolation of the computed values at the mesh points. In
each of the graphs, the centerline of the cylindrical enclosure is shown on the left. The abscissa
is the radial coordinate R, and the ordinate is the axial coordinate X. The heat source on the floor
is denoted with a thick line between R=0 and R=0.1.

4.1. Transient Streamline and Temperature Fields

All the numerical calculations were carried from the initial quiescent condition forward in
time until steady state was achieved. The transient and steady-state flows calculated during this
process are qualitatively similar for all five numerical methods. The purpose of this section is to
discuss the physical nature of the flows, consequently, only the transient results for one method
need be considered. Method V is considered representative, and the transient flow and temper-
ature fields calculated with this method are illustrated in figures 2 and 3, respectively. These figures
are each composed of four graphs, arranged in order of increasing time, 7.

NN RIE
) ) &2

©
rf/

0 0 as 0 0 a5 0 0 as 0
R R R
(@ T=a0l (b T=003 ©T=QI0 @ T -025
Vi3 W inax 06l Winox =156 V max =160

FIGURE 2. Transient streamline fields calculated with method V at various times (1), Gr=1 X 105,
Streamline evolution is qualitatively similar for all five numerical methods. The walls and centerline correspond to W =0; the dot has value W,,,,; the remaining

streamlines correspond successively to W values of 0.1, 0.3, 0.5, 0.7, and 0.9, of W,,,.
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FIGURE 3. Transient temperature fields calculated with method V at various times (), Gr=1X 105.
Temperature evolution is qualitatively similar for all five numerical methods. Temperature (0) is the curve parameter; the heat source (thick line on floor) is
at O =1.

Immediately after the start of heating, a ring vortex of warm fluid forms near the origin (figs.
2a and 3a). This vortex rises and moves radially outward from the centerline (figs. 2b and 2¢). A
gradual development into the steady state flow and temperature fields then follows. The steady
state fields reveal a ring vortex centered just above X=0.5, R=0.5 (fig. 2d) which is driven by the
heated fluid which rises along the centerline from the floor to the ceiling (fig. 3d). '

A sensitive indication of the approach to steady state was provided by the overall energy bal-
ance on the enclosure. When the heat transfer rates into and out of the enclosure were within 1
percent of an asymptotic value, steady conditions prevailed. Steady state was achieved by 7= 0.25
with all methods.

4.2. Comparison of Steady-State Streamline and Temperature Fields

The qualitative similarity of flows calculated with the five methods was mentioned in the last
section. The purpose of the present section is to illustrate this similarity in a quantitative way, by
comparing steady state flows obtained with methods I-V. Such a comparison of the steady-state
streamline and temperature fields is presented in figures 4 and 5, respectively. The sets of stream-
lines and isotherms shown have the same numerical values as in figures 2 and 3. Figures 4 and 5
each contain four individual graphs, which respectively pertain to numerical methods I, II, 111,
and V. Computed results from methods II1 and IV agreed to at least three significant figures, and
graphs of the steady state streamline and temperature fields for the two methods are identical.
Consequently, only the results of method IlI are shown. Figures 4d and 5d duplicate figures 2d
and 3d respectively.

0 0
(o] Q5 1.0 0 05 Lo 0 Q5 1.0 (¢] Q5 0
R R . R R
(@) METHOD I (b) METHOD I (c) METHOD I (d) METHOD

Winax =242 Whnax 153 Vinax *153 Vnax =160

FIGURE 4. Steady-state streamline fields for the various numerical methods, Gr=1 X 105.
Results for methods III and 1V are identical. The walls and centerline correspond to W= 0; the dot has value V,,.,: the remaining streamlines correspond suc-
cessively to ¥ values of 0.1, 0.3, 0.5, 0.7, and 0.9, of ¥ ...
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FIGURE 5. Steady state temperature fields for the various numerical methods, Gr=1 X 105.

Results for methods 111 and IV are identical. Temperature (0) is the curve parameter; the heat source (thick line on floor) is at = 1.

A comparison of figures 4a—4d or 5a—5d reveals a striking similarity in the streamline and
temperature fields computed with the various numerical methods. Method I shows the greatest
departure from the group with the largest value of W,,., (caption, fig. 4a) and in the shape of the
isotherms above the heat source (fig. 5a). The physical reason for this is that method I transfers
more heat by convection from the heat source than the other methods (and thus has the greatest
rate of fluid circulation, W,,.,). This is discussed further at the end of section 4.3.

Figures 4 and 5 illustrate flows in which both convective and diffusive transport exists. The
contribution of convection to the temperature fields in figure 5 can be appraised by referring to
figure 6. This figure illustrates the steady state temperature field for static conduction (no fluid
motion) and was obtained with method V by setting Gr=U =}V = Q=W =0 in the basic differential
equations (1)-(4). The conduction fields calculated in this way for numerical methods 1=V are
identical (to at least four significant figures) because all methods approximate the heat diffusion
(or conduction) terms to the same spatial accuracy.
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FIGURE 6. Static conduction temperature field at steady state, all methods.

Temperature (0) is the curve parameter; the heat source (thick line on floor) is at = 1.

Table 3 lists the computer time (in seconds) required to calculate the flows illustrated in figures
4 and 5. The particular computer used had execution times of 1.75 and 2.625 us for nine digit float-
ing point addition and multiplication, respectively. The only significant observation that can be
made about this table is that method III required the least computer time, and method I the most.
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Differences between methods could be reduced by altering the safety factor used for the time step
A7 or by more efficient programming.

TABLE 3. Computer time required for test case with Gr=1X 105> and a 21 X 21 mesh

Method Computer time

sec
335
270
230
309
285

4.3. Heat Transfer Rates

The heat transfer rates calculated by the five numerical methods are conveniently discussed
in terms of the rate of heat addition (Q;,) or heat removal (Q,y) from the enclosure. These are total
quantities, obtained by integration over the areas of the heat source and cold walls, respectively.
The integration is performed by computing the heat transfer by convection and conduction from
wall mesh points to adjacent mesh points, as discussed in the paragraph at the end of section 3.2a.
A dimensionless heating rate can be defined as

o 0
Aa AT

(21)

where A is the thermal conductivity of air, @ is the height of the enclosure, and AT is the imposed
temperature difference driving the flow, AT=T, —T,. Equation (21) defines a dimensionless heat
addition (®;,) or heat removal (®,,) as the rate of heat transfer is Q;, or Qo respectively.

The heat transfer rates discussed in this section pertain to a ramp temperature change at the
edge of the heat source. This ramp is the grid approximation of the boundary conditions (6) (a step
change) and appears as a linear variation of temperature along the floor from©=1at R =R, — AR/2
to ©=0 at R=R,+ AR/2. Both numerically and experimentally, a step change in temperature is
difficult to achieve. The rate of heat transfer, while being finite for a ramp, would be infinite for a
step. Twenty-one radial mesh points were used throughout this study and an extension of this
study [18]. The corresponding ramp (see fig. 4 of [18]) is a close approximation of the floor tempera-
ture profile in a physical experiment [17] with which the numerical flows could be compared.

Curves illustrating the heat transfer rates for numerical methods I and II as a function of time
are presented in figure 7; similar results for methods I11-V are presented in figure 8. Figures 7 and 8
illustrate nonconservation and conservation methods, respectively. The ordinate is the dimension-
less heat transfer rate into (®;,) or out of (®,,) the enclosure. The abscissa is the dimensionless
time 7.

The calculated heat transfer rates due to static conduction (Gr=0) are virtually identical for
all five numerical methods. These conduction curves are shown in both figures 7 and 8 as a basis
for comparison. Note that the heat removed (dashed line) approaches the heat added (solid line)
with increasing time. Thus, the finite-difference approximation of the diffusion terms for all methods
conserves energy within the grid system.

Methods 1 and 11, figure 7, employ difference approximations of the convection terms which
do not conserve energy. For method I, the rate of heat removal exceeds the rate of heat addition
at steady state, indicating a net production of heat within the enclosure. For method 11, the heat
addition exceeds the heat removal, indicating a net absorption of heat within the enclosure. Clearly,

294



®in T v
08 T / —
g I;

'e.g 086 ]I/ ]
_____ o———--—\ﬂ---———-o-—————-o-—————-1
g: B / " ﬂ,—” D ———
3 CONDUCTION - ?/;’_ ———————————— B
S I ) T Y O M
0 0.05 010 015 0.20 0.25
T

FIGURE 7. Dimensionless heat flow into (®in) and out of (®,u) the enclosure as a function of time (v) for methods I and
Il (Gr=1X10°) and static conduction (all methods).

methods I and II violate the laws of thermodynamics. These differences in the rates of heat addition
and heat removal are due to residues which remain when the difference equations for temperature
are summed over all interior grid points, and the convection terms do not cancel in pairs. Methods
I and II thus do not retain the energy conservation expressed by the basic differential equations.8

Methods III through V, figure 8, employ difference approximations of the convection terms
which conserve energy. Clearly, for each method the rate of heat addition equals the rate of heat
removal at steady state. Methods III and IV employ derivative approximations with similar spatial
accuracy. As a consequence, the heat transfer curves for these methods are virtually identical.

Two general observations about figures 7 and 8 can be made. First, the shape of the heat
addition curves is qualitatively similar for all methods, as is the shape of the heat removal curves.
All curves for heat addition (solid lines) follow the conduction curve initially, then break away and
achieve a steady value by 7=0.05. The heat removal curves (dashed lines) also follow the conduction
curve initially. The heat removal rate then falls below the conduction value as it becomes more
difficult for heat to be conducted radially from the heat source to the nearby cold floor counter to
the incoming flow. At about 7= 0.04, the rate of heat removal begins to increase sharply as the

8 The authors of methods I [2] and IT [20] did not calculate the heat transport from node to node within the mesh system. Instead, four point difference formulas
were employed to approximate the temperature gradient at the walls, and thus the rates of heat transfer. For unsymmetric heating, this approach does not lead to
equality between the steady state rates of heat removal and heat addition.
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FIGURE 8. Dimensionless heat flow into (®iy) and out of (®ou) the enclosure as a function of time (7) for methods 11, IV
and V (Gr=1 X% 10%) and static conduction (all methods).

heated fluid reaches the ceiling above the hot spot. As the fluid spreads radially outward along the
ceiling, the rate of heat removal continues to rise. The lower curve then gradually approaches the
upper (in fig. 8).

The second general observation that can be made about figures 7 and 8 concerns the magnitude
of the steady-state heat additions. Clearly, the difference between the values for the five methods
at Gr=1X10° and the value for conduction is a measure of the convective heat transfer from the
heat source. This convective contribution decreases for the five methods in the sequence: method
[> 11>V >I1lI=1V. The relative magnitudes of these contributions can be estimated by applying
the difference approximation of the convection terms UdO/dX or a(UO)/dX (table 2) to the grid
point (i=1, j=0). A portion of this difference approximation is associated with the convective
transport of energy from grid point (:=0, j=0) to (i=1, j=0). A careful study reveals that the
convective heat transport for the five methods is proportional to the following quantities: method |
aly, o3 II «lUy,0(14+01,0)/2; V Uy, 0/2; and III and IV U, Oy, 0/2. (The boundary conditions
Up,0=0 and Oy, =1 were employed.) The temperature O, o lies between 0 and 1; thus, the afore-
mentioned sequence of methods is in order of decreasing convection. This agrees with the results
in figures 7 and 8.

4.4. Extension to Higher Gr, Convergence

The calculation of flows at high Grashof numbers is considered in this section. Results at
Gr=1X10° in sections 4.1 and 4.2 revealed a qualitative similarity in the calculated flows for the
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five numerical methods. Extension to higher Gr, however, means that the methods must continue
to produce physically meaningful solutions, and this is closely associated with the practical sta-
bility, truncation errors, and conservation properties discussed in sections 3 and 4.3. For conserva-
tion reasons alone, we discard methods I and Il from further consideration, and consider only the
conservation methods I11-V.

Of the latter methods, III and IV impose a spatial mesh size restriction to achieve stability
while V does not. Violation of this restriction leads to oscillations in the fields of ©, ¥, U, and V.
The effect of violating the spatial mesh size restriction is illustrated in figure 9 for the steady-state
centerline temperature at Gr=1 X 106. The ordinate is the axial coordinate X and the abscissa is
the temperature ©. The curves on the right pertain to method III with the number of vertical mesh
points, M, equal to 21, 41, and 61. (Results for methods 111 and IV were identical.) For comparison,
results from method V are shown on the left with M =21, 51, and 101. In all cases, the number of
radial mesh points, NV, is 21.
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FIGURE 9. Steady state distribution of temperature (©) with height (X) along the centerline; methods Il and V, Gr=1 X 1(6.

Curve parameter is the number of vertical mesh points (M).

From figure 9, it is immediately apparent that method III leads to an oscillating temperature
near the ceiling (X =1) when M =21. Repeating the calculation with M =41 reduces the oscillation,
but a local maximum persists at X=0.95. Further refinement to M =61 eliminates this hot spot.
With 21 and 41 vertical mesh points, occasional negative temperatures were calculated during
the transient. The steady state results for M = 21 reveal a region of negative temperature at X = 0.8.
With M =11, register overflows occurred early in the transient, and a stable integration was not
possible.

With method V., no such oscillations or negative temperatures were calculated. Increasing the
number of vertical mesh points from 21 to 101 reveals that the temperature distribution appears
to asymptotically approach a limiting curve. Note that the asymptotic temperature distributions
for methods 11l and V are not identical; this is attributed to differences in the truncation errors.

Oscillations such as those in figure 9 are physically unrealistic, and appear only when the mesh
size restrictions (inequalities (15a)) are not satisfied. Such oscillations have not been observed with
method V. The inequalities (15a) are satisfied for the test case at Gr=1 X 10° with a 21 X 21 mesh.
As the Grashof number is increased, it has been found for the present problem [18] that U, &< Gri/2,
Clearly, through (15a), this quickly leads to a very fine grid and prohibitively large computer storage
requirements.
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The freedom of method V from a spatial mesh size restriction (and from oscillations) sug-
gests its application to high Gr flows. Due to truncation errors which increase with Gr, such
results must be interpreted carefully. The solutions should be tested for convergence or compared
with physical experiment; two such tests for method V are discussed in the subsequent paragraphs.

A type of convergence check is illustrated in figure 10. The ordinate is the steady state heat
flow into the enclosure, ®;,, and the abscissa is the number of vertical mesh points, M. The curve
parameter is the Grashof number. Solid lines pertain to method V, a single dashed line is shown
for method III. For reasons noted at the beginning of section 4.3, the number of radial mesh points
was held fixed at N=21 (except for the one solid data point for which N=31). The dotted line is an
analytical result [8] for conduction of heat from a heated disk into a semi-infinite medium. The
disk has a temperature profile quite close to the ramp profile of the grid approximation. The
numerical results for static conduction are reasonably close to the analytical conduction value. For
convective flows at Gr=1 X105, 1 X 106, and 4 X 107, the numerical results tend toward an asymp-
tote with increasing M.
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FIGURE 10. Steady state dimensionless heat flow (®in) versus number of vertical mesh points (M).
Number of radial mesh points (N) held fixed at N=21 (except for one solid data point for which N=31).

Additional support for the use of method V is provided by comparison of a numerically cal-
culated streamline field with physical experiment. An example of such a comparison is presented
in figure 11 at Gr=4 X 108. The numerical results are from an extension of this study [18], which
employed a 51 X 21 grid (M X N) and covered a range of Gr from 4 X 104 to 4 X 101, The experimental
results are from reference [17] which covered a range of Gr from 8 X 105 to 1 X 10, For Gr up to
about 1X 109, the comparison between numerical and physical experiment is very good. Above
this value, the physical experiment indicates turbulence. The numerical experiment was laminar
(presumably due to false viscosity and the assumed two-dimensional motion) up to Gr=4 X 1010,
At this value, the numerical flow developed a periodic vortex shedding, suggestive of the onset of
laminar instability. This vortex shedding was adequately resolved with the grid spacing used.

A significant consideration in the application of any finite-difference procedure to a flow
problem is the amount of computer time required to reach a steady state. Method V was applied
in the numerical study of reference [18], and the computing time is shown in figure 12. Clearly,
as Gr increases, the amount of computing time also increases (as Gr'/4 at large Gr). Approximately
one-half second was required for each time step, but for large Gr the size of the time step decreases
rapidly and many more steps are required.
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FIGURE 11. Comparison of numerical results of method V (from reference [18]) with physical experiment (from reference
[17]) at Gr=4 X 10°.
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FIGURE 12. Computing time required for method V at several Grashof numbers (Gr), numerical study of reference []8].
Calculations carried from quiescent initial conditions to steady state with a M x N=51 X 21 grid.
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5. Concluding Remarks

Five finite difference procedures were compared for calculating transient natural convection
flows in an enclosure. Although the problem was formulated in axisymmetric cylindrical coordi-
nates, the conclusions should be applicable to any two-dimensional coordinate system.

To achieve stability of the time and space integrations, restrictions are imposed on the size
of the time step for all methods (i.e., I-V) and on the size of the mesh spacing for methods I11-1V.

Energy and vorticity are not conserved within the grid system with methods I and 11, but are
conserved with methods III-V. For this reason, the latter methods are to be preferred.

Of the conservation methods, method I1I appears to require less computer time than methods
IV and V (table 3). Method III is therefore preferable when its associated mesh size restriction can
be satisfied. If this restriction cannot be satisfied (which is usually the case) oscillations in the
flow develop. A method free of a mesh size restriction (and oscillations) is then recommended,
method V. The flows calculated with method V must be interpreted carefully, however, due to the
truncation errors.

The author is indebted to L. Orloff, Factory Mutual Research Associate at the NBS, for devel-
oping a computer program to plot streamlines and isotherms directly from computed numerical
fields of stream function and temperature.
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