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Five numerical methods we re co mpared for calculating two-dimens ional , trans ie nt natural con­
vection in an e nclosure. Both implic it anJ explicit procedures were considered . Requirements for 
numeri ca l s tabilit y we re de rived from analysis and experi e nce , and when sati s fi ed, the calc ula ted Rows 
for all methods were found to be s imilar. Co nsi deration was also given to the accuracy a nd (energy and 
vorticity) conservation of the me thods. One me thod was found to be conservative and s tab le without a 
res tri c tion on the s pa ti a l mesh incre me nt. This method can be successfully applied to nonlinear Rows , 
but ca re mu st be exerc ised due to the presence of trunca tion errors whic h introduce false trans port 
mechanisms. 
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1. Introduction 

1.1. General 

The purpose of thi s paper is to co mpare the practical stability , truncation e rrors, and conser­
vation properties of five finite-differe nce procedures for solvin g a problem in natural convection. 
Three of these me thods are from th e current ljte rature [2 , 6, 20]1 and two are developed here. Th e 
ability of the various me thods to produce physically meaningful solution s is examined; and solution s 
calculated with the various methods are co mpared . 

The physical problem chose n for study is th e natural co nvection flow induced in a verti cal 
circular cylinder by a small hot spot ce ntrally located on the fl oo r (see fig. 1). Trans ie nt and steady 
laminar flows are consid ered in two-dime nsional , axisymm etri c cylindrical coordinates. S uc h a 
fluid motion is described by three simultaneous partial differential equations [4, 10]: (a) an equation 
relating stream fun ction to vortic ity , eq (2); (b) a time-depende nt equation for vorticity, eq (3); 
and (c) a time-dependent equation for temperature , eq (4). The first equation is of elliptic type, and 
the last two are of parabolic type. 

1.2. Numerical Methods Tested 

Thi s section provides a bri ef introduction to the five numerical methods tested. All methods 
e mploy s uccess ive over-relaxation [16, see chapter 11] for solving the finite -difference approxima­
tion of the ellipti c eq uati on, and no diffi culti es are e nco untered. The parabolic equations , on the 
other hand , contain nonlinear te rm s with first-order derivatives which express the influence of 
co nvection (hereafte r called the convec tion terms). These terms introduce serious proble ms of 
stability and conservation into th e finit e-diffe re nce scheme. The numerical methods differ only in 
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their treatment of the parabolic equations, and these differences are highlighted in table 1. Methods 
IV and V are new and are modifications of methods II and I, r es pec tively. 

TABLE 1. Numerical methods applied to parabolic equations for temperature and vorticity 
Checks mean that th e numerica l methuds possess the indi cated prope rt ies. 

Explicit Order No limt' No spatial No false Sat is fi es 
Met hod Reference or Difre ren ce form for convection terms of Irun - s te p reo mesh size diffusion con ser-

implic it cat ion 

I. . Barakat and C lack 121.... E 2 pI forward or backward .. h 
II . . .. .... ...... Wilkes and C hurchiIl1 20J.... I 3 pi central. . . .... _,.. ..... ... . . .. It '1. 
III Fromm 16J ... E 3 pI central. . h2 

IV .. P resent s tud y.. I 3 pI cent ral. . ,, "1. 
V.. Present 51 udy.... E 3 pI nonccntral forward or backward .. h 

slriclion res tri c tion a nd con-
vec tion 

............ . .... 

... ......... ... .. ... ..... ..... .... 
... ... .. ........ . v .... .... .... 

.. .... .. .... .. .... . .. .... ........ ... .... 

val ion 

An inspection of table 1 reveals that no one method is conservative , free of false transport. 
and s table without a res tri ction on the spatial mes h size. For conservation reasons , methods I II- V 
are to be preferred over me thods I and II. Of these, me thods III and IV require a reduction in 
spatial mesh size with increasing flow velocities to achieve stability , while method V does not. 
This mesh size res tri ction leads to prohibitively large demands on co mputer time and storage. 
The stability of method V, toge ther with its conservation, are essential for calculating flows where 
the convection terms are important , as in the present problem. The introduction of false diffusion 
and convection , howe ver , means that the calculated flow s must be interpreted with care. In general, 
this false transport is important only in those fl ow regions where methods III and IV were found 
to break down. 

Since the comple tion of this work , two additional differencing schemes have co me to the 
author's attention [15 , 1]. The first of these [1 5] was independently developed for s teady flow s and 
em plo ys a differe ncing of the convec tion terms identical to method V. The second method [1] has 
been employed for meteorological problems and was developed for the vorticity equation. This 
method conserves vorti city , mean kineti c energy, and mean square vorti ci ty. The convectio n terms 
are differenced to h2 accuracy, as with methods II- IV in table 1, but conservation of mean square 
vorticity should lead to improved stability characteris ti cs . 

A comparison of the methods li sted in table 1 is presented in the following sections. The physi· 
cal proble m is posed in section 2, some features and properties of the numeri cal methods are 
discussed in section 3, and co mparati ve physical results are prese nted in section 4 . 

2. Mathematical Description of the Physical Problem 

Consider the motion of a vi scous fluid within a verti cal circular cylinder of height a and radius 
b (see fig. 1). Erect a cylindrical coordinate system (x, r) with origin at the cen ter of the base. The 
flow is ass umed to be axisymmetric with no variations in the azimuthal direction. The fluid is initially 
motionless and at a uniform temperature To. The enclosure walls are also at this te mperature, 
except for a small centrally located circ ular spot on the base of radius c which is at a temperature 
Tit > To. The temperature differen ce T It - To initiates and sustains the natural convection flow within 
the e nclos ure. 

r 
a 

LmGnRr
7;7;ITY ~~7777A 

FIGURE 1. Cylindrical enclosure and coordina te system. 

282 



The Bouss in esq approximation is used [4 , see p. ]61; in thi s de nsity (p ) is assumed cons tan t 
except for th e gene ration of buoyancy forces. Other fluid properti es are ta ke n as co ns ta nt : kin e­
mati c viscos ity (v), the rmal diffusivity (K), and vo lume ex pansion coefficie nt ({3). We introduce the 
following dime ns ionless quantiti es : time , T = (K / a2)t; vertical and radia l coordin ates, X = x / a and 
R = r / IL ; vertical and radial compone nts of velocity , U= (n / K)u and V= (a/ K)v; and te mpe ra ture 
8 = (T - 1'n )/( T,, - 1'o). 

The gove rnin g e quations in dime nsion less form are 

(1) 

(2) 

a,Q + lfa (UD.) + a (V,Q )] =_ CrP,.2 a8 + Pr [a2 ,Q +~ (l a( R,Q))] 
aT aX aR aR aX 2 aN. R aR ' (3) 

and 

a8 + [a(U8) + _.1 a( RV8 )]= [a28 +l ~ (R (8)] 
aT aX R aR aX2 R aR aN. - (4) 

Equation (3) conta in s the Prandtl number Pr = V/K and the Gras hof numbe r Cr = g{3 (T" - 1'o)a3/v2. 
The latte r number is used for natura l co nvec tion fl ows a nd deno tes the product of buoyancy and 
inerti a forces divided by the sq ua re of the viscous force. The accele ration of grav it y is denoted 
by g. The ex is te nce of a strea m function 'i' is ass umed such that the veloci ti es are give n by (1). 
The mass conserva tion eq uati on div D = 0 is the n automati call y sati sfied. The vo rti c ity vector 
0 = c url D has only an azimuthal co mpone nt , ,Q = av/ax - aU/oR , given by (2). The conservati on 
equations for vorticity and e nergy are (3) and (4) respecti ve ly. In these eq uation s, bracketed terms 
on the left and ri ght s ides respectively deno te the convective and diffusive tra nsport terms. Th e 
te rm co ntainin g Cr in (3) re presents the vorticity so urce due to buoyancy. 

The convective term s in eqs (3) and (4) are in a "co nservati on" form [3, 6] s uitable for methods 
III , IV, and V of table 1. Alte rnate "nonconservation" form s for these terms are utilized for methods 
I and II. The alternate eq uation s a re obta in ed by introdu c ing a modifi ed vorticity,Q' = (1 /R),Q into 
(2) and (3), followed by subtrac tion of .0.' div D = 0 and 8 div D = 0 from (3) and (4) respectively. 
In terms of modifi ed vorti city .0. ', eqs (1) thro ugh (4) become 

and 

1 a\)! ] a'i' 
U= R aR ' V=- R ax' 

_ R,Q, = l a2\)! +~ (l a'i') 
R aX2 aR R oR ' 

a,Q' + U ao ' + v a,Q' =_ CrPr2 a8 + Pr [a2,Q' +l ~ (l a( R2,Q')) ] 
aT aX aR R oR aX2 R aR R aR ' 

(1 ' ) 

(2') 

(3') 

(4') 

Equations (1)-(4) and (1')- (4') are subj ec t to initi al conditions a nd boundary co nditions. The 
initi al conditions are: 

0 =8= 0 for T < 0, 0 ,,;; X ,,;; 1, and 0 ,,;; R ,,;; Rb• (5), (5') 
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The boundary conditions 2 for T ~ ° are: 

'I' = a 'I' / ax = ° 
9=1 

9 = 0.5 

9 = 0 

'I' = a '1'/ ax = 9 = ° 
'1' = fl = a9/aR = ° 
'1' = a'l'/a R = 9 = 0 

for X = O, 

for X =0, 

for X=O, 

forX= O, 

for X= 1, 

forR = O, 

for R = R/) , 

0 ,;;: R < Rc; 

R = Rr·; 

Rc < R ,;;: Rb ; 

all R; 

all X; and 

allX. 

(6), (6') 

For equations (1')-(4') replace fl = ° in (5) by fl' = 0, and fl = ° (R = 0, all X) in (6) by the dual con­
ditions V= aV/aR = O.:J 

The boundar y conditions introduce two geometri c para me ters: the aspect ratio ofth e e nclos ure 
(radius/height) Rb = b/a and the relative size of the heat source (heat source radius/enclosure height) 
Rr= cia. 

To determine 9 and fl ' along the centerline, s pecial forms of the conservation equations are 
needed to avoid a n indeterminate form as R ~ 0. By incorporating boundary conditions at R = ° 
and us ing L 'Hospital's rule, eqs (4), (3'), and (4') res pectively reduce to 

a9 + a(V9) + a2(RV9) 
aT ax aR2 (7) 

-+ V - .-= - CrPr2 --+ PI' - + 4 --afl ' afl ' a29 [ a2f! ' a2fl'] 
aT aX aR2 aX2 aR2' (7' a) 

and 

(7' b) 

For conve nie nce, the velocities V a nd V are retained expli c itly in the proble m formu lation. 
Ho wever, an examination of eqs (1)- (7) (or a lternately, eqs (1' )- (7')) reveals that the essen tial 
de pende nt variables are '1' , fl, and 9 (or '1', fl ', and 9), while the inde pendent variables are 
X, R, and T. The parameters of the problem are Rb , Rc, Pr , and Cr. Throughout thi s study , the 
as pect ratio, relative heat source size, and Prandtl number are held fixed at Rb = 1 , Rc= O.1 and 
Pr = 0.7 , respec ti vely. Th e Grashof number Cr is ass umed equal to 1 X 105 , except in section 4.4, 
which considers larger values of thi s parameter. 

3. Numerical Methods, Formulation and Some Properties 

3.1. Grid System and Calculation Sequence 

An a pproxim a te solution of eqs (1) - (7) or (1') - (7') will be obtained at a finit e number of 
grid points having coordin ates X = tAX, R = jtJ.R , and at di scre te times Til, where i, j , and n are 
integers. The grid spaci ngs in the X and R directions are denoted by AX and tJ.R . The symbol 
T n de notes the time level after the nth time step tJ.T II' The values of '1' , fl , 9, V, a nd V at each 
grid point should be thought of as average values over a small volume of fluid surrounding the 
point. 

2 No te thai explici t bounda ry conditions for vorti city O il the so lid boundaries are not ava ilable. This causes no difficulty with the explicit so lution methods and on ly 

s light difficulty with the implic it me thods. 

:I The cente rline boundary cond ition O = RD. ' = 0 is satisfied for all finite va lues of fl '. Although the vo rti c ity n is zero,lhe modified vort ic ity 0 ' is not, in general, 

zero. Barakat and C lark [2J used the modified vo rti ci ty fl ' and assumed 0 ' = 0 along the cente rline . This is incorrec t. a nd may have contributed to the osci lJations in 

s tream function (near the cent e rline) and heat transfe r observed in the ir ca lcula tions. The vurtic ity fl ' on the centerUne can be evaluat ed with the aid of eq (7' a). 
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All of the nume ri cal methods listed in table 1 advance the field s of\jl, 0 , a nd 0 across a time 
step in the sa me sequence. All quantities are ass umed known at a time T". The sequence for ad­
vance me nt from time Tn to the new level TI1 + 1 = T" + /),.T is as follows: 

1. Te mperature (0) at all interior grid points is advanced with suitable differe nce approxima­
tion s of (4) and (7) or (4/) and (7/ b). This is di scussed in section 3.2. 

2. Vorticity (0 or 0/ ) at all interior grid points is similarly advanced with approximations of 
(3) or (3/) and (7' a). This is discussed in sec tion 3.2. 

3. Stream function (\jI) at all inte rior grid points is brought up to date with the new vorti c ity 
fi eJd by using a difference approximation of (2) or (2/). This is discussed in section 3.3 . 

4. The vorticity on the solid boundari es is de termined from the new stream function field, as 
are the velocities U and V. This is discussed in section 3.3. 

5. The field of mesh points is scanned in order to determine the time step /),.T for the next time 
advancement. This is limited by prac ti cal s tability requirements and is discussed in section 3.4. 

3.2. Parabolic Equations 

a . Differencing Schemes 

The approximations of the equations for te mperature and vorti city (for steps 1 and 2 above) 
are described in conventional notation in table 2. In this sec tion we co mme nt on the di stinguishing 
features and some of the properti es of these sche mes. 

II 

III 

IV 

v 

TABLE 2. Finite·difference approximations of the parabolic equations for temperature and vorticity 

Illustrat ed with the sim pli fied tempe ratu re equations, ~+u ae - d20, = 0 (for methuds J and II ) and ~+ a(Uf) - i)
20 = 0 (for methods III- V). 

aT ax ax aT ax ilX' 

Method 

9'1+1 - 9".f 1/'-
b ;.1 ;.1 + O(d T) 

M /2 

a Same as method lI a. 

b Sa me as melho(1 lib. 

Same as method I. 

*0., , = (Um", ,+ V", ,)/2, 

a(Ve) 

ax 

<10 a(VEl) 
U - or --ax ax 

D': .e, - O'.8' __ 
I ,) .,j , - 1,/ H,i (U" U" > 0) 

t1X • i,j' i -I,j 

+ O(&X) + O(M)' 

0 ' -2El' + 0' 
I .. . ) I,) 1- 1.)+O( <lX )' 

(<lX )' . 

(<lX)' 

0 '11 1 - 28"+' + 8!, i l 1+1,) I.} ,- I.) 
+ O(<lX )'+ O (~r)-

(M) ' 

+ O(M) '+ O (~r 

Same as method lis. 

Same as method lib. 

Same as methud I. 

App lication of the variou s numerical methods to the parabolic equations is illustrated with 
the one-space dime nsion te mperature equation 
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(8) 

in place of eqs (3), (4), and (7) ; and 

(8') 

in place of eqs (3'), (4 ' ), and (7'). Equation (8) is e mployed for methods III·Y and eq (8') for methods 
I and II (see table 2). It is understood that the di scussion and differe ncing of each term of these 
equations applies to sim ilar terms in the two·space dimension te mperature and vorticity equations. 

Methods 1, III , and Yare explicit procedures for calculating quantities at time n + 1 in terms 
of their values at times nand n - 1. Methods II and IV are two step implicit procedures (see [12 , 
16 , 20]) , goi ng from time n to n + 1/2 in s tep a, and from n + 1/2 to n + 1 in step b. During the 
first haU' time step (or second half time ste p), the X and R space derivatives are res pectively ap· 
proximated a t time levels nand n+ 1/2 (or n + 1 and n+ 1/2) . Clearly , the time steps a and bare 
implicit in the R and X directions , respectively. This is called an alternating direction, implicit 
sche me and leads to a tridiagonal matrix of unknown temperatures or vorticities for each R-row 
or X·column , as the case may be. These matrices are readily inverted by a simple algorithm. 

Column two of table 2 li sts the approximation of the derivative a8/aT. A central time differ· 
e nce is used with method III , and forward time differe nces with all others. The las t column of the 
table li sts the app roximation of the diffusion terms, a28/aX2 • Three point space differences are 
used for all methods . 

The approximations of the co nvection terms Va8/aX or eJ(V8)/aX are listed in column three. 
At any grid point the velocities are evaluated at time n and are treated as cons tants over the time 
ste p. With method I, the convection terms are approximated with two·point forward or backward 
differences as the coefficient velocity V is positive or negative , respectively. Methods II- IV all 
e mploy three·point ce ntral differences for these terms. Method V e mploys a modified form of 
forward or backward differences in which the mean velocity VI/ ,11I in the numerator is multiplied 
by 81/, m or 81/+1, 111 as VI/ , m is positive or negative, respec tively. If the two mean velocity coeffic ients 
are of differe nt s ign, one te rm from the numerator of each of the two approximations shown is 
required . 

Two points about the vorticity equation should be noted. First, thi s equation contains a buoy· 
ancy source term which is not li sted in table 2. The term contains a8/eJR, which is approximated 
with three·point central differences. Method III evaluates the term at tim e n, all other methods 
evaluate it at time n + 1. Second , when the implicit methods II and IV are applied to the vorticity 
equation , it is necessary to te mporarily ass ume the vorticity di stribution on the solid wall s at 
times n + 1 and n + 1/2 equal to that at time n. Thus, the wall vorticity is out of step with the ad· 
vance ment of the interior vorticity fi eld. The error introduced by thi s assumption decreases with 
both small time steps and the approach to s teady state. 

The rest of this subsec tion presents brief comme nts on the stability and conservation prop· 
erti es of the parabolic difference equations. Additional discussion is provided in sections 3.4 and 
4.3, respectively. 

The stability of the various numerical methods is principally due to some key approximations 
shown in table 2. For methods I and V, it is the use of forward or bac kward differencing for the 
convection terms [2 , 7, 14 (see p. 194)]. For method III , it is the duFort-Frankel differencing [5] 
of the diffusion terms a28/eJx2. For methods II and IV , it is the alte rnating direction, impli cit 
nature of the sche me (due to Peaceman-Rachford [1 2, 16 (see p. 366), 20] ). 

A le ngth y but s trai ghtforward study of methods }- V shows that conservation is satisfi ed for 
III- V, but not for I and II. The elements of such a study are presented in [3, 6]. Conservation of 
energy or vorticity wi,thin the grid system exis ts if the difference equations for te mperature or 
vorticity are summed over all interior grid points and no spurious sources or sinks of these quan -
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tities are found. Th e convection and diffusion terms cancel in pairs. The net energy or vortIcIty 
trans port from the wall mesh points into th e enclosure just balances the net in crease of energy 
o r vort ic ity within the mesh system. Heat transfer rates to and from the enclosure can thus be 
de termined by calculating the transfer from wall mesh points. If conservation is sati s fi ed, there 
is no ne t increase of e ne rgy within the e nclos ure a t s teady state, and the total heat added to the 
e nclos ure balances the heat removed. 

b. Truncation Errors 

The truncation errors shown in table 2 are worth y of some discuss ion. These es timates are 
obtained by Taylor series analysis as described in references [5, 11 , 13] . Methods II- IV are mos t 
eas ily discussed and are treated in the first paragraph. Methods I and V are more co mplicated, 
and are disc ussed in the second and third paragraphs, respectively. 

For methods II- IV, all space de rivatives are approximated to (M)2 accuracy. The use of 
multiple time le vels in conjunction with th ese space derivatives, however , introduces additio nal 
trun cation errors of O(flT/M) for met hods II a nd IV a nd of O(flT/M )2 for method III. Substitution 
of the diffe re nce approximations li s ted in table 2 into eqs (8) or (8'), as appropriate, introduces 
trun cati on e rrors of O(flT )+ O( flT /!:lX) + 0(!:lX)2 for methods II and IV and of 0(flT)2 + 0(flT/M)2 
+ 0(flX)2 [or me thod III. Th e coeffi cients of these terms involve derivatives of hi gher order than 
those of the bas ic eqs (8) or (8'). S tability requires th at flT ~ !:lX, and when flX is small , these trun ca­
tion errors are us ually neglected. 

With method I, the O(LU' ) approximation of th e convecti on term Ua8/aX introduces a large 
trun cation error. A Taylor series expansion for 8 i - l ,j abo ut 8 i . j can be rearranged to solve for 
(a8/aX)i ,j 

(a8) = 8 i,j-8i - l ,j + {LU' (at8 ) _ (LU')2 (a:18) } 
aX . . M 2 ap · · 6 aX!·· + . .. . 

t,) l .) I .j 

(9) 

Th e firs t te rm on the right s id e is a backw ard difference. The te rm in braces is the trun cation 
error. Mu ltiplication of eq (9) by Ui ,j(Ui ,j > 0) leads to the form shown in the table. The solution 
of the difference equation (i.e., the approxi mati on of (8')) is equ ivalent to a solution of th e differ­
e nti a l equation 

(1 0) 

The coefficients of the te rms O(flT) and 0(M )2 involve derivatives of hi gher order tha n appear 
in (8'), and for reasons noted in the preceding paragraph , these truncation er rors are usually 
neglected. The diffe rencing of the convection terms in equation (8') introduces an additional, 

or fals e, heat diffu sivity M I~I . Only for small M I ~I does the differe nce approximation ap-

proach the differe ntial equation (8'). For large M I ~I, care must be exercised because a false 

heat diffus ivity is introduced (or a false viscosity in the case of the vorticity equation).4 
Turning now to method V, the analys is is similar to that prese nted for method I above. The 

truncation error of OeM ) in the co nvec tion term a (U8) /ax is more complicated , however- It can 
be s hown th at the solution of the diffe re nce equation (i.e., the approximation of (8)) .is equivale nt to 
a solution of the diffe re nti al equ a tion 

a8+ {a (U8)_ LU' aUae} _ {l+LU' Ui,j} ,F8= 0 (fl )+O(LU')t 
aT aX 2 ax ax 2 aX2 T (11) 

4 This problem cannot be overcome by cli minalinga ~f:) /aX2 from (9) wi th , fo r example, I h.-cc-point cent ral differences. I f this is done. eq (9) becomes a Illrce-pn inl 

ce ntral difference approxim ation of ae/aX, wi th its assoc iated stabilit y proble ms. 
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when Vi , j, V; _ I , j > O. Again, the te rm s on the right side are usually neglec ted. There is now a 
false heat diffusion (or a false viscosity) as well as a false convection. The latter is a subtraction 

from the real convection and is small whenever ~ (a u/ax) (a 8 /aX) is s mall. When this last term 

and M ¥ are small , the differen ce approximation approaches the differe ntial equation (8). When 

these te rms are large , care mus t be exercise d. 

3.3. Elliptic Equation, Velocities, and Wall Vorticity 

The computation s described in steps 3 and 4 of section 3.1 are identi cal for all five nuine ri· 
cal me thods, and are integrate d and presented in this section. Equations for the vorticity fl (used 
for me thods III- V) are considered he re . Appropriate equations in terms of modified vorti c ity 
fl ' (fo r me thods I and II) are obtained by the substitution D = Rfl '. Step 3 is considered first. 

The e lliptic equation (2) re lates s tream function to vorticity at any given tim e. The new vortici · 
ties DI',j I are introduced and the s pace de rivatives are approximated by three-point central differ­

erences with truncation errors of 0(M)2 and 0(6R)2. An iterative technique known as s uccessive 
over-relaxation [21] was e mployed to obtain the new stream function field . No problems of s tability or 
conservation are encountered. Thus , if 'I'\~~ denotes the approxi mate stream function at a point 
interior to the solid boundaries and centerline after S iterations, a further approximation 'I'\~j!) 

is obtained from 

'\I(s+ I)= (1 - w)'I'(s)+ w.. {J6Rfln + I+_1._ ['I' (s) :I- 'I' (S+ I)] 
t , j t,j 2 1 (J J) t ,j (M )2 t + I ,) ,.- I , } 

(LU')2 + (6R)2 \i + t + j -t 

It is understood that all values of 'I' in this equation pertain to time n+ 1. The optimum value of 
the relaxation parameter w was calc ulated for a given system of grid points (see eqs (1.9) and (4.6) 
of reference [21]).5 

Successive sweeps of eq (12) over the field of mesh points were alternated in the vertical and 
radial directions. Iteration was terminated when 

max 
i , j 

I'Tr (s+ 1)_ ,{, lsi I 
"t'l,j 't't ,j 

-- < 0.0001. 
max l'I'i:t'll 

t.j 

(13) 

The number 0.0001 was arrived at by experimentation, noting that more stringent criteria led to 
no essential differen ce in the solution of tes t problems. The numerator on the left side of (13) is 
the maximum change in stream function occ urring in the field of grid points as a result of one ap­
proximation step. Th e denominator is the maximum value of stream fun ction in the field. 

In practice, the most time consuming part of the whole calculation was the iteration of eq (12) 
at each time s tep. One iterative sweep took almost as long as the entire computation of the new 
temperature or vorticity field desc ribed in the previous section. The following procedures resulted 
in a considerable savings in computer time . A maximum number of iterations , Sma" was permitted. 
For 100, 400, and 1000 mesh points, Smax was 20,25, and 35, respectively. The convergence crite rion 
(13) was generally achieved within Smax iterations after the initial flow transient was over. The 
stream function field was then updated less frequently, typically eve ry 1 + 0.25 (smax-sconve rgence) 

time steps. 

:; An independellt de te rmination of the optimum w was made with the aid of a compu te r. Equation (12) was solved for various w starting with a gi ve n fl field. The 

va lue of w leading to fastest conve rg,"nce was suffi c iently close 10 the calculated value so that the latter was used. 

288 



The co mputa tions described in step 4 (sec. 3.1) are disc ussed in the rest of this section. The 
numerical a pproxi mat ions up to thi s point , together wi th the boundary cond it ions (6), provide the 
entire fie lds of 'l' and e, and the field of n interior to the solid boundaries, a ll at tim e n + 1. S till 
to be calcul ated a t time n + 1 are th e unknown values of vorti c ity n on th e soli d bou nda ri es 6 and 
th e veloc ity fi elds U and V. The new strea m function fi eld is used for thi s purpose. 

The vorti c ity on the solid boundaries is ob tained by first reducing eq (2) to n =- (1/R)a2\J!/ax2 
for X = 0 or X = 1, and to n = - (l /R/)a2'l' /aR2 for R = Rb . The second order derivatives are approxi­
mated by expanding 'l' in a T aylor seri es about th e wall. Expansions for the two grid points neares t 
the wall , together with th e boundary conditions on \J! , yield wall vorti city approximations suc h as the 
followi ng, which applies when X = 0: 

(14) 

Fi nally, the fi elds of U and V are calcula ted with th ree point central difference approximations 
of eqs (1). These ap proxim ations (of 0(/lX)2 and 0(~R )2) are not presented here, but it is readily 
verified that they a utoma ti cally sati sfy a ce ntral di ffe re nce approximation of the continuity equation, 
di v D = O. T he conse rvation of mass withi n the gr id sys tem is thereby establis hed. 

3.4 . Practical Stability Considerations for the Parabolic Equations 

At thi s point , the fi elds of 'l' , n, e, U, and V are c urrent a t time n+ 1 fo r all methods. F urther 
integration of the para boli c tem pe rature a nd vortic ity equ ati ons in tim e and s pace requires co n­
side ra tion of prac ti cal stabilit y. This is step 5 of sec ti on 3.1. Practi cal stability imposes a res tri c tion 
on th e size of the time step ll7 for methods I and V (eqs (19) a nd (20), res pec ti vely) a nd rest ri c tions 
on ll7, !lX , and llR for methods II- IV (eqs (15)). T he s ize of ~7 is calcula ted from the appropria te 
equations (assu mi ng for me thods U- TV th at the restri c ti ons on !lX and ~R a re sati sfied). Th e fie lds 
of'l' , n, e, U, and V are th en advanced across thi s ti me s tep by repeatin g the whole cycle described 
in sections 3.2 a nd 3.3. 

A comple te a nalysis of the nonli near equations to de termine the exact for m of the stability 
requireme nts is not always possible. S uch is the case fo r me thods II- I V. The li nearized sta bility 
a nalys is of vo n Neum ann [11] has been applied to methods II [19] a nd III [6] a nd leads only to a 
restri c ti on on ll7 for method III . Num erical experience with methods II- I V for a limited range of 
flows sugges ts tha t the fo llowing empirical restr ic tions be a pplied at each grid point for integration 
of the te mperature and vorti c ity equations: 

< 8 R < 8 
6.X ~ -IU 'I, ll ~ -IV ·1' 

I ,) ,-, J 
(lSa) 

[ 2 2 ]-1 
ll7 "; ( /lX )2 + ( llR )2 ' (ISb) 

and 

(lSc) 

Note the res tn c tJOn on s pati al mesh size (ISa), which presumably results from th e use of three 
point ce ntral differe nces for the three me thods. Within limited ranges these res tri c tions have led 
to s ta bility, but they cannot be regarded as general. In particul a r, during fl ow transients with la rge 
initial changes, time s te ps s malle r tha n s ugges ted by (ISb) or (ISc) we re required. 

6 This delay in calcu lat ing the wall vorticities causes no difflc ~lt y wi th the explicit methods I . III , and V. for the implicit methods II and I V, it was necessary in 

section 3.2a 10 temporarily assume that the wall vort icities at ti mes /1 + I and n + 1/2 were equ al to their values at time II . 
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Analytical stability criteria are possible for methods I and V. The analysis is applicable to 
explicit , nonlinear , two time level differencing schemes and is discussed in reference [2]. This 
paragraph is based on that analysis . To be specific, stability of the integration of the temperature 
eqs (4) or (4') is considered here; that for vorticity (3) or (3') is similar. In methods I and V, the un· 
known temperature er:j l can be written as an explicit linear combination of computed values at 
time n: 

(16) 

where the (LA" denote coeffi cients which vary in time, but which are constant over a time step. 
The esse ntial feature of the method is to require that the norm of the matrix of coeffi c ients aA' at 
all times is bounded by unity. The row norm is used, and leads to 

m~x {± lakl } "';: 1 
I, J 

A" = I 

(17) 

where m~x denotes the maximum value of the quantity in braces for all i,j in the grid system. Sta-
I, J 

bility in the sense of Lax and Richtmyer [9, 14 (see p. 44)] exists if inequality (17) is satisfied. For 
methods ] and V, satisfying (17) is equivalent to requiring that all the coefficients aA" are positive. 
This follow s because for methods I and V the coeffi c ient (L3 has the special form: 

(IS) 

which can be readily verified. The conditions under which the coefficients (Lk are positive for 
methods I and V are discussed next. 

For method I, the coefficients ak (k = 1,2,4,5) are always positive, whereas a:l can be made 
positive by restricting the size of the time step ~T. For Pr "';: 1, the most severe restrictions on ~T 
are: 

(19a) 

(19b) 

and 

[ IV;, ol 2Pr SPr ]-1 
~T ,.,;: LlX + (LlX)2 + (b.R)2 . (19c) 

These res tnctlons respectively follow by requiring that (L:l be positive for the finite-difference 
representations of eqs (4'), (7'b) , and (7' a). 

For me thod V (as for method I above), the coeffici e nts (Lk (k= 1,2,4,5) are always positive. 
In order to make (La positive, howe ver , several different restrictions on ~T arise because method V 
e mploys forms for the convection te rms that depend upon the sign of the mean velocities, as noted 
in table 2. For the case whe n the mean velocities Vi,j, Vi - I,j , Vi , j and V;,j _ 1 are positive 7 and 
Pr "';: 1, the greatest restrictions on ~T result from the difference forms of the temperature equations 
(4) and (7): 

(20a) 

7 The mean ve locities are defi ned by 

U- _ U",'1 , 11 + U ... , II d v- _ V"" IU1 + V", , 1I 

'II, II - 2 an ,", " -
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and 

(20b) 

Additional forms similar to (20) arise when the mean velocities are negative, or a co mbination of 
positi ve and negative. 

Some observations on the application of the stability requirements can be noted. It is imprac­
tical to alter M and !1R according to eqs (1Sa) during a computation to achieve stability for methods 
II- IV. Accordingly , a cut and try procedure is e mployed. The time step, however, is adjusted during 
a computation with all methods, using equations (ISb), (1Sc), (19), or (20), as appropriate. The field 
of mesh points is scanned in order to de termine the largest allowable !1T which will satisfy the 
stability requirements. Time steps smaller than this value can be used, of course, to provide a 
safety factor. In practice , 80 percent of the allowable!1T was used with methods 1- IV and 95 percent 
with method V. 

4. Comparative Physical Results 

Natural convec tion flow s calculated with the five numerical methods are presented and com­
pared in sections 4.1 through 4.3 for a Grashof number of Cr = 1 X 105 . The calculations employed 
a uniform grid spacing of !1X = !1R = 0.05, with a total of 121 mesh points. The calculation of phys i­
cally meaningful flow s at higher values of Cr , and some questions of co nverge nce, are considered 
in sec tion 4.4. 

Flow patterns and te mpe rature fields are illustrated in figures 2 through 6 with co mputer­
drawn graphs displaying sets of streamlj nes and isothe rms. The location of these streamlines and 
isotherms was determined by linear interpolation of th e computed values at the mesh points. In 
each of the graphs, the centerline of the cylindrical e nclos ure is shown on the left. Th e abscissa 
is the radial coordinate R, and the ordinate is the axial coordinate X. The heat source on the floor 
is de noted with a thick ljn e betwee n R = O and R = O.l. 

4 .1. Transient Streamline and Temperature Fields 

AlJ the numerical calculations were carri ed from the initial quiescent co ndition forward in 
time until steady state was achieved. The transient and steady-s tate flows calculated during thi s 
process are qualitatively similar for all fiv e num eri cal methods. The purpose of thi s sec tion is to 
di scuss the physical nature of the flow s, co nseq uently , only the tran sie nt res ults for one me thod 
need be considered. Method V is considered representative, and the transie nt flow and temper­
ature fields calculated with this method are illustrated in figures 2 and 3, respectively. These figures 
are each composed of four graphs, arranged in order of increasing time, T. 

1.O f-----,----, 

I Q5 t---;f---j---'\----1 

LD o Q5 

I 
(1))1;"oQ03 

'It,,,,,,,.Q61 

LD 

(e)1"'010 
"\ft max' L56 

(d)T 'OZ5 
V max ·1.60 

F IGU RE 2. Transient streamline fields calculated with method V at various times (r), Gr = I X 10'-

S trea mline evolution is (lU a lil atively similar for all five numerical methods. The walls and centerline correspond to "' = 0 ; the dot has va lue "'max; the re maining 

streamlines correspond successively to 'I' values of 0.1 , 0.3,0.5,0.7, and 0.9, of ' I'm;!)!.' 
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LO 
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o Q5 

R 
(d)T - 0.25 

FIGURE 3. Transient temperature fields calculated with method V at various times (r). Gr= 1 X 105 • 

Temperature evolu t ion is q ua1itatively similar for all five numerical methods. Tempera ture (0) is the curve parameter ; the heal source (thick line on Hoor) is 

at 8 = I. 

Immediately after the start of heating, a ring vortex of warm fluid form s near the origin (figs. 
2a and 3a). Thi s vortex rises and moves radially outward from the centerline (fi gs. 2b and 2c). A 
gradual developm ent into the steady state flow and tern perature fi elds then follows . The steady 
state fi e lds reveal a ring vortex centered jus t above X = 0.5 , R = 0. 5 (fi g. 2d) which is drive n by the 
heated fluid which ri ses along the centerline from the fl oor to the ceiling (fi g. 3d). 

A sensitive indication of the approach to steady s tate was provide d by the overall energy bal­
ance on the enclosure. When the heat transfer rates into and out of the enclos ure were within 1 
percent of an asymptotic value, steady condition s prevailed. Steady state was achie ve d by T = 0.25 
with all methods. 

4.2. Comparison of Steady-State Streamline and Temperature Fields 

The qualitative s imilarity of flows calculated with the five methods was mentioned in the las t 
section. The purpose of the present sec ti on is to illustrate thi s similarity in a quantitative way, by 
comparing s teady state flows obtai ned with ' methods I- V. Such a comparison of the steady-state 
streamline and te mperature fi elds is presented in fi gures 4 and 5, respectively. The sets of s tream­
lines and isotherms s hown have the same numeri cal values as in figures 2 and 3. Figures 4 and 5 
each co ntain four individual graphs, which respectively pertain to numerical methods I, II, III, 
and V. Computed results from methods III and IV agreed to at least three significant figures, and 
graphs of the steady state streamline and temperature fields for the two methods are ide ntical. 
Conseq ue ntly , only the results of method III are shown. Figures 4d a nd 5d duplicate figures 2d 
and 3d respectively. 

x 

05 

I 
(e) METHOD I 

Yrm.2J2 

1.0 o 05 

I 
(b) METHOO n 
'fn.,.-L53 

LO Q5 

(clMETHOO m 
'fmax -1.53 

1.0 

f-++++--'>..¢,.L-+-f-H-l 05 X 

--'------' 0 

R 
(d) METHOD:lZ: 
'lfoox -1.60 

1.0 

FIGURE 4. Steady-state streamline fields for the various numerical methods , Gr = 1 X 105 • 

Res ults for me thods HI and I V a f C identical. The walls and cente rline correspond 10 'P = 0; I he dot has vaJue 'V max; the re mai ning 51 reamlines correspond suc­
cess ively to 'I' values 0[ 0.1, 0.3, O.S, 0.7, and 0.9, of'i'max. 
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FIGURE 5. Steady state temperature fields for the various numerical methods, Gr = 1 X 105 • 

Ht>s ult s for methods III and IV arc identical. TempcralUre (8) is the c ur ve para meter ; the heal source (thick line on fl oor) is at 8 = 1. 

A comparison of fi gures 4a- 4d or 5a- 5d reveals a striking similarity in the streamline and 
te mperature field s co mputed with the various numerical methods. Method I shows the greatest 
departure from the group with the largest value of \jI max (ca ption , fi g. 4a) and in the shape of the 
isotherms above the heat so urce (fi g. Sa). The ph ysical reason for thi s is th at method I transfers 
more heat by co nvec tion from the heat so urce th a n th e othe r meth ods (and thus has the greatest 
ra te of Auid circulation , \jIm ~x)' Thi s is di scussed further at the e nd of section 4.3. 

F igures 4 and 5 illu s trate Aows in whi ch both co nvective and diffus ive transport exists. The 
contribution of co nvec tion to the temperature field s in fi gure 5 can be appraised by re ferring to 
figure 6. This fi gure illus trates the s teady sta te te mpe rature fi eld for stati c conduction (no Auid 
moti on) and was obtain ed with method V by se ttin g Cr = U = V = n = \jI = 0 in th e basic differential 
equations (1)- (4). The conduc tion fi e lds calc ulated in thi s way for numerical me thods I- V are 
identical (to at least four s ignificant fi gures) because aJl methods approxi mate the heat diffu s ion 
(or co nduc tion) terms to the same s patial accuracy. 

0 .1 

0.2 

0 .5 

f-------------,-----------------, 1.0 

l:::::::----------'''.:----+---\-----------i----I 0.5 X 

L...~~~~=~=--------.J o 

o 0.5 

R 

1.0 

F IGU RE 6. Static conduct ion temperat.ure field at steady state, aLL methods. 
Tempera ture (8) is the c urve parameter : the hea t "ouret> flhick li ne nn flour) is a l 8 = I. 

Table 3 li sts the co mputer tim e (in seconds) required to calculate the Aows illu strated in fi gures 
4 and 5. T he parti c ular computer used had execution times of 1. 75 and 2.625 f.LS for nine digit Aoat­
ing point addition and multiplication , respec tively. The only s ignificant observat ion th at can be 
made about thi s table is that method III required the least co mputer time, and method I the mos t. 
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Differences between methods could be reduced by altering the safety factor used for the time step 
dT or by more efficient programming. 

TABLE 3. Computer time required for test case with Gr = J X J 05 and a 2 J X 2 J mesh 

Method Computer time 

sec 
1....... .. ... ........ ..... ... 335 
[I... .. . ... ... .. .. ..... ..... 270 
III.... . ... .... .... ... . . ... . 230 
IV ..... .. . .. . . .. .. .. . ... . .. 309 
V........ ...... ............. 285 

4.3. Heat Transfer Rates 

The heat transfer rates calculated by the five numerical methods are conveniently discussed 
in terms of the rate of heat addition (Qin) or heat removal (Qoutl from the enclosure . These are total 
quantities, obtained by integration over the areas of the heat source and cold walls, respectively. 
The integration is performed by computing the heat transfer by convection and conduction from 
wall mesh points 1.0 adjacent mesh points, as discussed in the paragraph at the end of section 3.2a. 
A dimensionless heating rate can be defined as 

(21) 

where A is the thermal conductivity of air, a is the height of the enclosure, and dT is the imposed 
temperature difference driving the flow, dT= Til - To. Equation (21) defines a dimensionless heat 
addition (<Pin) or heat removal (<Pout) as the rate of heat transfer is Oin or Oout. respectively. 

The heat transfer rates discussed in this section pertain to a ramp temperature change at the 
edge of the heat source. This ramp is the grid approximation of the boundary conditions (6) (a step 
change) and appears as a linear variation of temperature along the floor from e = 1 at R = RIJ - f:.R /2 
to e = 0 at R = Rb + dR/2. Both numerically and experimen tall y, a step change in temperature is 
difficult to achieve. The rate of heat transfer, while being finite for a ramp, would be infinite for a 
step. Twenty·one radial mesh points were used throughout this study and an extension of this 
study [18]. The corresponding ramp (see fig. 4 of [18]) is a close approximation of the floor tempera­
ture profile in a physical experiment [17] with which the numerical flows could be compared. 

Curves illustrating the heat transfer rates for numerical methods I and II as a function of time 
are presented in figure 7; si milar results for methods 111- Yare presented in figure 8. Figures 7 and 8 
illu strate non conservation and conservation methods, respectively. The ordinate is the dimension­
less heat transfer rate into (<Pin) or out of (<Pout) the enclosure. The abscissa is the dimensionless 
time T. 

The calculated heat transfer rates due to static conduction (Cr = 0) are virtually identical for 
all five numerical methods. These conduction curves are shown in both figures 7 and 8 as a basis 
for comparison. Note that the heat removed (dashed line) approaches the heat added (solid line) 
with increasing time. Thus, the finite-difference approximation of the diffusion terms for all methods 
conserves energy within the grid system. 

Methods I and II, figure 7, employ difference approximations of the convection terms which 
do not conserve energy. For method I , the rate of heat removal exceeds the rate of heat addition 
at steady state , indicating a net production of heat within the enclosure. For method II, the heat 
addition exceeds the heat removal, indicating a net absorption of heat wit hi n the enclosure. Clearly, 
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FIGURE 7. Dimensionless heat flow into (<P;,,) and out of (<POI" ) the enclosure as a function of time (T) fo r methods I and 
" (C r = J X J{f» and static conduction (all methods). 

me thods I and II violate the laws of thermodynami cs. Th ese differe nces in th e rates of heat addition 
and heat re moval are due to residues whi ch remain whe n the diffe re nce equ a ti ons for te mperature 
are summed over all interior grid points, and the convection te rm s do not cancel in pairs. Methods 
I and II thus do not retain the energy co nservation expressed by the basic differential equation s.s 

Methods III through V, figure 8, e m ploy difference approximations of the convection terms 
which conserve e nergy. Clearly, for each me thod the rate of heat addition equais the rate of heat 
removal at s teady state. Methods III and IV employ derivative approximations with similar spati al 
accuracy. As a conseque nce, the heat tran sfer curves for these me thods are virtually ide ntical. 

Two ge neral observations about fi gures 7 and 8 can be made. First, the s hape of the heat 
addition c urves is qualitatively simil ar for all methods , as is the shape of the heat removal curves. 
All cunes for heat add ition (solid lin es) follow th e co nduction c urve initially, then break away and 
achieve a s tead y value by T = 0.05. The heat re moval c urves (dashed lines) al so follo w the co ndu ction 
c urve initi all y. The heat re moval ra te the n falls below the conducti on value as it beco mes more 
difficult for heat to be condu cted radiall y from th e heat source to th e nearb y co ld floor co unter Lo 
the in co min g flow. At about T = 0.04, the rate of heat removal begin s to in c rease s ha rpl y as th e 

II The authors of me thods I [21 and II [20J did not ca lcula te the heat transport frolll node to node wi thin the mes h sys tem. In stead. fo ur poin t diff(' re nc{' form ulas 

we re empluyed to ap prox im ate the te mpe ra tu re gradien t a l the walls, a nd thus the ra tes of hea l transfe r. For unsymmetric healing, th is a pproach does nul lead 10 
e (IU ality be tween the s tead y Siale rates of heat re moval a nd hea t addition. 
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FIGURE 8. Dimensionless heat flow into (1);,,) and out of (1)out) the enclosure as a function of time (7) for methods Ill , IV 
and V (Gr = 1 X lOS) and static conduction (all methods). 

heated fluid reaches the ceiling above the hot spot. As the fluid spreads radially outward along the 
ceiling, the rate of heat removal continues to rise . The lower curve then gradually approaches the 
upper (in fig. 8). 

The second general observation that can be made about figures 7 and 8 concerns the magnitude 
of the steady·state heat additions. Clearly , the difference between the values for the five methods 
at Gr= 1 X 105 and the value for conduction is a measure of the convective heat transfer from the 
heat source. This convecti ve contribution decreases for the fi ve methods in the sequence: method 
I > II > V > JII = IV. The relative magnitudes of these contributions can be estimated by applying 
the difference approximation of the convection terms Va8 /aX or a(V8) /aX (table 2) to the grid 
point (i = 1, j= 0) . A portion of this difference approximation is associated with the convective 
transport of energy from grid point (i = O,j=O) to (i = 1,j= 0). A careful study reveals that the 
convective heat transport for the five methods is proportional to the following quantities: method I 
o:UI, o; II o: V I , 0(1 + 81 . 0) /2; V o: UI.O/2; and III and IV o: UI , 081 , 0/2. (The boundary conditions 
Vo,o = 0 and 8 0 , 0 = 1 were employed.) The temperature 8 1, 0 lies between 0 and 1; thus, the afore· 
mentioned sequence of methods is in order of decreasing convection. This agrees with the results 
in figures 7 and 8. 

4 .4 . Extension to Higher Gr, Convergence 

The calculation of flows at high Grashof numbers is considered in this section. Results at 
Gr= 1 X 105 in sections 4.1 and 4.2 revealed a qualitative similarity in the calculated flows for the 
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five nume'rical methods. Extension to higher Cr, howe ver, means that the methods must continue 
to produce physically meaningful solutions, and this is closely associated with the prac tical s ta­
b ility, truncation errors , and conservation properties discussed in sections 3 and 4.3. For co nserva­
tion reasons alone, we discard methods I and II from further consideration, and consider on ly the 
co nservation methods III- V. 

Of the latter methods, III and IV impose a spatial mesh size restriction to achieve stab ility 
while V does not. Violation of this restri c tion leads to oscillations in the fields of e, 'V, U, and V. 
The effect of violating the spatial mesh size restri c tion is illustrated in figure 9 for the steady-state 
cente rlin e temperature at Cr= 1 X 106• The ordinate is the axial coordinate X and the abscissa is 
the temperature 8. The curves on the right pertain to method III with the number of vertical mesh 
points, M, equal to 21, 41, and 61. (Results for methods III and IV were identical.) For comparison, 
results from method V are shown on the left with M = 21,51, and 101. In all cases, the number of 
radial mesh points, N, is 21. 
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FIGURE 9. Steady state distribution of temperature (8) with height (X) aLong the centerLine; methods 111 and V, Gr = 1 X 1()6 . 
Curve paramete r is the number of ve rti cal mesh poi nts (M ). 

From figure 9, it is immediately apparent that method lIIleads to an oscillating temperature 
near the ceiling (X = 1) when M = 21. Repeating the calculation with M = 41 reduces the oscillation, 
but a local maximum persists at X = 0.95. Further refinement to M = 61 eliminates this hot spot. 
With 21 and 41 vertical mesh points, occasional negative temperatures were calculated during 
the transient. The steady state results for M = 21 reveal a region of negative temperature atX = 0.8. 
With M = 11 , register overflows occurred early in the transient, and a stable integration was not 
poss ible. 

With method V, no such oscillations or negative temperatures were calculated. Increasing the 
number of vertical mesh points from 21 to 101 reveals that the temperature distribution appears 
to asymptotically approach a limiting curve. Note that the asymptotic temperature distributions 
for methods III and V are not identi cal; thi s is attributed to differe nces in the trun cation erro rs. 

Oscillations such as those in fi gure 9 are physically unrealisti c, and appear only when the mes h 
size restrictions (inequalities (15a)) are not satisfied. Such oscillations have not been observed with 
method V. The inequalities (15a) are satisfied for the tes t case at Cr = 1 X 105 with a 21 X 21 mes h. 
As the Grashof number is in creased, it has been found for the present problem [18] that U max ex:. Cr l / 2 • 

Clearly , through (15a) , thi s quickly leads to a very fin e grid and prohibitively large co mputer s torage 
require ments. 
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The freedom of method V from a spatial mesh size restnctIOn (and from oscillations) sug­
gests its application to high cr flows_ Due to truncation errors which increase with cr, such 
results must be interpreted carefully_ The solutions should be tested for convergence or compared 
with physical experiment; two such tests for method V are discussed in the subsequent paragraphs_ 

A type of convergence check is illustrated in figure 10. The ordinate is the steady state heat 
flow into the enclosure, <Pin , and the abscissa is the number of vertical mesh points, M. The curve 
parameter is the Grashof number. Solid lines pertain to method V, a single dashed line is shown 
for method III. For reasons noted at the beginning of section 4.3, the number of radial mesh points 
was held fixed at N = 21 (except for the one solid data point for which N = 31). The dotted line is an 
analytical result [8] for conduction of heat from a heated disk into a semi-infinite medium. The 
disk has a temperature profile quite close to the ramp profile of the grid approximation. The 
numerical results for static conduction are reasonably close to the analytical conduction value. For 
convective flows at cr= 1 X 105 , 1 X 106 , and 4 X 107, the numerical results tend toward an asymp­
tote with increasing M. 
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FIGURE 10. Steady state dimensionless heat flow (<Pi") versus number of vertical mesh points (M). 
Number Hf radial mes h puint s (tV) held fixed at N = 21 (except for one so!jd dala point for which N =3 1). 

Additional support for the use of method V is provided by comparison of a numerically cal­
culated streamline field with physical experiment. An example of such a comparison is presented 
in figure 11 at cr=4 X 106. The numerical results are from an extension of this study [18], which 
employed a 51 X 21 grid (M X N) and covered a range of cr from 4 X 104 to 4 X 1010. The experimental 
results are from reference [17] which covered a range of cr from 8 X 105 to 1 X 1010. For Gr up to 
about 1 X 109 , the comparison between numerical and physical experiment is very good. Above 
this value, the physical experiment indicates turbulence. The numerical experiment was laminar 
(presumably due to false viscosity and the assumed two-dimensional motion) up to cr = 4 X 1010. 

At this value, the numerical flow developed a periodic vortex shedding, suggestive of the onset of 
laminar instability. This vortex shedding was adequately resolved with the grid spacing used. 

A significant consideration in the application of any finite-difference procedure to a flow 
problem is the amount of computer time required to reach a steady state. Method V was applied 
in the numerical study of reference [18] , and the computing time is shown in figure 12. Clearly, 
as cr increases, the amount of computing time also increases (as Gr' /4 at large cr). Approximately 
one-half second was required for each time step, but for large Gr the size of the time step decreases 
rapidly and many more steps are required. 

298 



F IGURE J 1. Comparison of numerical results of method V Urom referen ce [J8]) with physical experiment Urom reference 
[17]) at Cr = 4 x 10", 
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FIGURE 12. Computing time required for method V at several Crashof numbers (Gr), numerical study of reference [18J. 
Calculations carried from quiescent in itia l conditions to steady stal t:' with a M X tV = 5] X 21 grid. 

299 



5. Concluding Remarks 

Five finit e difference procedures were co mpared for calculating transient natural convection 
flows in an enclosure. Although the problem was formulated in axisymmetric cylindrical coordi· 
nates , the conclusions should be applicable to any two·dimensional coordinate system. 

To achieve stability of the time and space integrations, restrictions are imposed on the size 
of the time step for all methods (i.e., I-V) and on the size of the mesh spacing for methods 11- IV 

Energy and vorticity are not conserved within the grid system with methods I and n, but are 
conserved with methods III- V. For this reason, the latter methods are to be preferred. 

Of the conservation methods, method III appears to require less computer time than methods 
IV and V (table 3). Method III is therefore preferable when its associated mesh size restriction can 
be satisfied. If thi s restriction cannot be satisfied (which is usually the case) oscillations in the 
flow develop. A method free of a mesh size restriction (and oscillations) is then recommended, 
method V. The flows calculated with method V must be interpreted carefully, however, due to the 
truncation errors. 

The author is inde bted to L. Orloff, Factory Mutual Research Associate at th e NBS, for devel­
oping a computer program to plot streamlines and isotherms directly from com puted numerical 
fields of stream fun ction and temperature. 
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