On the Signs of the ν -Derivatives of the Modified Bessel Functions $I_{\nu}(\mathbf{x})$ and $K_{\nu}(\mathbf{x})^*$

D. O. Reudink**

Bell Telephone Laboratories, Incorporated, Holmdel, New Jersey 07733 (September 17, 1968)

It is proved that $\partial I_{\nu}(x)/\partial \nu$ is negative and $\partial K_{\nu}(x)/\partial \nu$ is positive when x > 0 and $\nu > 0$.

Key Words: Bessel functions; ν-derivatives.

1. Introduction

The properties of the modified Bessel functions of the third kind have been investigated for many years. In a private communication, F. W. J. Olver pointed out that $\partial K_{\nu}(x)/\partial \nu > 0$ when x > 0 and $\nu > 0$. This follows immediately from the integral representation for $K_{\nu}(x)$

$$K_{\nu}(x) = \int_0^\infty e^{-x \cosh t} \cosh (\nu t) dt. \tag{1}$$

It is the purpose of this paper to show that a similar fundamental property holds for $I_{\nu}(x)$, namely, $\partial I_{\nu}(x)/\partial \nu < 0$ when x > 0 and $\nu > 0$.

The author wishes to acknowledge his discussions with F. Oberhettinger concerning this result.

2. Proof

Consider the following known integral ¹

$$I_{\nu}(x)K_{\nu}(x) = \frac{2}{\pi^2} \int_0^{\infty} \frac{\lambda \sinh(\pi \lambda)}{\lambda^2 + \nu^2} K_{i\lambda}^2(x) d\lambda \operatorname{Re} \nu > 0.$$
 (2)

Now differentiate the above formula with respect to ν to obtain an expression for $\partial I_{\nu}(x)/\partial \nu$,

$$\frac{\partial I_{\nu}(x)}{\partial \nu} = -\frac{1}{K_{\nu}(x)} \left[I_{\nu}(x) \frac{\partial K_{\nu}(x)}{\partial \nu} + \frac{4\nu}{\pi^2} \int_0^{\infty} \frac{\lambda \sinh(\pi \lambda)}{(\lambda^2 + \nu^2)^2} K_{i\lambda}^2(x) d\lambda \right]$$
(3)

It is easily seen from (1) that $K_{i\lambda}(x)$ is real when λ is real and x > 0; hence for $\nu > 0$, the integral in (3) is nonnegative. Therefore, since $K_{\nu}(x)$, $I_{\nu}(x)$, and $\partial K_{\nu}(x)/\partial \nu$ are positive for $\nu > 0$ and x > 0, it follows immediately that

$$\frac{\partial I_{\nu}(x)}{\partial \nu} < 0 \qquad x > 0, \qquad \nu > 0. \tag{4}$$

^{*}An invited paper.

^{**}Present address: Bell Telephone Laboratories, Inc., R-133 Crawford Hill Lab., Box 400, Holmdel, New Jersey 07733.

¹ This integral is given in [1, p. 176, No. 8] for ν a positive integer, but is has been shown [2] that the expression is valid for Re ν > 0. Figures in brackets indicate the literature references at the end of this paper.

3. References

- Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Tables of Integral Transforms, Vol. 2 (McGraw-Hill Book Co., New York, 1954).
 Oberhettinger, F., On the Diffraction and Reflection of Waves and Pulses by Wedges and Corners, J. Res. NBS 61, No. 5, 343-365 (1958) RP2906.

(Paper 72b4-278)