On the Signs of the ν-Derivatives of the Modified Bessel Functions $I_\nu(x)$ and $K_\nu(x)^*$

D. O. Reudink**

Bell Telephone Laboratories, Incorporated, Holmdel, New Jersey 07733

(September 17, 1968)

It is proved that $\partial I_\nu(x)/\partial \nu$ is negative and $\partial K_\nu(x)/\partial \nu$ is positive when $x > 0$ and $\nu > 0$.

Key Words: Bessel functions; ν-derivatives.

1. Introduction

The properties of the modified Bessel functions of the third kind have been investigated for many years. In a private communication, F. W. J. Olver pointed out that $\partial K_\nu(x)/\partial \nu > 0$ when $x > 0$ and $\nu > 0$. This follows immediately from the integral representation for $K_\nu(x)$

$$K_\nu(x) = \int_0^\infty e^{-x \cosh t} \cosh (\nu t) dt.$$

(1)

It is the purpose of this paper to show that a similar fundamental property holds for $I_\nu(x)$, namely, $\partial I_\nu(x)/\partial \nu < 0$ when $x > 0$ and $\nu > 0$.

The author wishes to acknowledge his discussions with F. Oberhettinger concerning this result.

2. Proof

Consider the following known integral 1

$$I_\nu(x)K_\nu(x) = \frac{2}{\pi^2} \int_0^\infty \frac{\lambda \sinh (\pi \lambda)}{\lambda^2 + \nu^2} K_\nu^2(\lambda) d\lambda \quad \text{Re}\nu > 0.$$

(2)

Now differentiate the above formula with respect to ν to obtain an expression for $\partial I_\nu(x)/\partial \nu$,

$$\frac{\partial I_\nu(x)}{\partial \nu} = -\frac{1}{K_\nu(x)} \left[I_\nu(x) \frac{\partial K_\nu(x)}{\partial \nu} + 4\nu \int_0^\infty \frac{\lambda \sinh (\pi \lambda)}{(\lambda^2 + \nu^2)^2} K_\nu^2(\lambda) d\lambda \right].$$

(3)

It is easily seen from (1) that $K_\nu(x)$ is real when λ is real and $x > 0$; hence for $\nu > 0$, the integral in (3) is nonnegative. Therefore, since $K_\nu(x)$, $I_\nu(x)$, and $\partial K_\nu(x)/\partial \nu$ are positive for $\nu > 0$ and $x > 0$, it follows immediately that

$$\frac{\partial I_\nu(x)}{\partial \nu} < 0 \quad x > 0, \quad \nu > 0.$$

(4)

*An invited paper.

**Present address: Bell Telephone Laboratories, Inc., R-133 Crawford Hill Lab., Box 400, Holmdel, New Jersey 07733.

1This integral is given in [1, p. 176, No. 8] for ν a positive integer, but it has been shown [2] that the expression is valid for $\text{Re}\nu > 0$. Figures in brackets indicate the literature references at the end of this paper.
3. References
