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The topic treated is that of finding a reproducible, plausible and computationally simple method
of selecting a discrete frequency distribution with prescribed upper and lower bounds on its com-
ponents. The problem is shown to be tractable when a minimax error selection criterion is employed,
and “error’” is measured by maximum absolute deviation between components. In this case one obtains
a linear program of a special form admitting explicit solution. The vertices of the polyhedron of optimal
solutions can also be found explicitly, and so their centroid can be calculated if unique specification
is required.
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1. Introduction

In the mathematical modelling efforts associated with an operations research study, one may
well have only incomplete information on which to base a representation of the probabilities of
the various outcomes of some pertinent chance event. Under these circumstances, one should
of course examine the consequences of several alternative probability distributions, each consistent
with the information at hand. It still seems desirable, however, to have a systematic and repro-
ducible method for arriving at a single “‘nominal’ distribution, to serve as a base-point for such
sensitivity analyses.

This note works out the mathematics of one approach, based on a “minimax error’ criterion,
to the selection of a nominal distribution. The “‘incomplete information” is assumed to consist
of upper and lower bounds on the individual terms of the probability distribution.

Let L. and U be real n-vectors whose components satisfy

A real n-vector x will be called a probability vector if it has nonnegative entries which sum to 1.
We will be concerned with the set P(L, U) of probability vectors x whose components satisfy

Li=xi = U, (2
Our objective is to choose xeP (L, U) to minimize
F(x)= max {d(x, y) : yeP(L, U)} (1.3)
where d is the metric on n-space given by
d(x,y)=max; | xi—yi| . (1.4)
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It would be interesting to consider the problem with the alternate metrics
d(x,y)=2i(xi—yi?, dx,y)=2%i | xi—yi |, (1.5)

but this will not be done here. The common features of (1.4) and (1.5) are invariance under trans-
lation —used in the next section—and convexity in y for fixed x. The latter property implies that
the maximum in (1.3) occurs at an extreme point of P(L, U), and since the extreme points of this
polyhedron can be found explicitly, F(x) can be written as a discrete extremum. Thus the remain-
der of the problem—the minimization of F'—has a strongly combinatorial flavor, but appears
to be considerably harder for (1.5) than for (1.4).

The solution method is derived and justified in sections 2-4. In general there will be a con-
vex polyhedron of optimal x’s rather than a single one; section 5 proposes the centroid of this
polyhedron’s vertices as a plausible “representative” choice, and shows how these vertices can
be calculated. If they are not too numerous, they might perhaps provide the basis for the sort of
sensitivity analysis mentioned above. Section 6 shows how the solution method extends to the
generalization

d(x,y)=maxw; | x; — yi |

of (1.4), where the w; are given positive numbers.

2. Simplification and Feasibility Analysis

From (1.3) and the form of d, it is apparent that the constraint set P(L, U) can be replaced
by any of its translates without changing the problem. Our first simplification is a translation
through (—L), which replaces P(L, U) by the set

O, V)={x:0<x;<V;(alli), ZJixi=S} 2.1
where V=U—L >0 and S=1—23;L;. Now (1.3) is replaced by

F(x) =max {d(x, y):yeQ(S, V)}. 2.2)

We turn next to a feasibility analysis, i.e., to determining when Q(S, V) will be nonempty.
The condition

is obviously necessary; we will show it is also sufficient. If equality holds throughout (2.3), then
clearly Q (S, V) ={0}. If equality does not hold, then (S/2;¥;)V is in Q(S, V). From now on we
assume (2.3) holds, in fact that

0<S <3V, (2.4)

since otherwise (S, V) is a single point and the whole problem is trivial.

3. Evaluation of F

F(x), as given by (1.4) and (2.2), is readily evaluated in terms of the quantities

M;=max {yi:yeQ(S, V)}, 3.1)
m;=min {y;:yeQ (S, V)}. (3.2)
Indeed, we have

F(x)= max , max; max {y;—xi, x; —yi} = max; max {max (yi—x:), max (x;—y;)}
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or finally
F(x) =max; max {M;—x;, xi—m;}. (3.3)

We next find explicit expressions for M; and m;, so that (3.3) is also explicit. It will be shown
that

M;=min {V;, S}, (3.4)

m;=max {0, S—3;..V;}. (3.5)
If M§ and m§ denote the right-hand sides of (3.4) and (3.5), then clearly any ye(Q (S, V) satisfies
mi<y; < M¥. It suffices to show that y;=M§ for some yeQ(S, V), and that y;=m} for some
yeQ(S, V).
For the first purpose, if /; <S we note from (2.4) that
0< H:(SAV,)/EJ¢,VJ< 1.

and set

yi=Vi,yj=0V; for j #1i.
If S <Vi, we set
yi=S,y=0 for j # (.
For the second purpose, if S = 3./; we set
yi=S — 3V, yi=V; for j # i.

If S < 3.V we set
¥i=0, yj=ViS|2kxiVi for j # i.

This completes the proof of (3.4) and (3.5).

We now make a second simplification, namely translation of the constraint set Q(S, V), through
(—m) where m is the vector with components m;. The resultis a new constraint set Q(S’, V'), where
S'=S—3%2mi,V =V—m.

However, the primes will be dropped. We now have all m;=0, so that
F(x)= maxi{M; — xi, xi}, (3.6)
S=3;.V; (all 7). 3.7)

Note that (3.4) still holds.

4. Minimization of F

The minimization of F over Q(S, V) can be viewed as a linear program, namely to select
z and x so as to minimize z, subject to xeQ(S, V) and to
z=Mi—xi; z= xi (all 7).
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These last constraints are equivalent to

so that the linear program’s full set of constraints reads

max {0, M;—z} < x; < min {z, V;} (all 7),
Zxi=S.
For fixed z, the existence of an x satisfying (4.1) and (4.2) clearly implies that
3 max {0, Mi—z}<S <3, min {z, V3},
z=3 max; M; > 0.
We now show that the converse also holds. Note first that (3.4) and (4.4) yield
Vi=zM; > M;—z,
which together with (4.4) yields
max {0, Mi—z} < min {z, Vi} (all 7).
If equality holds in the second part of (4.3), then (4.1) and (4.2) are satisfied by taking
xi=min {z, Vi} (all 7).
If strict inequality holds, then &= n has the property
Y j<k.min {z, V;} + 35, max {0, M;—z} > S,
but £=0 does not, and so there is a smallest ke{1, 2, . . ., n} with this property; for that &,
Yj<k min {z, V;} + 2= max {0, Mj—z} <S.

We now set
xj=min {z, V;} (all j < k),
xj= max {0, M;—z} (allj > k),

xk=S—§,,-¢kxj;

that (4.1) is satisfied for i =k follows from (4.6) and (4.7).

@.1)

4.2)

4.3)

4.4)

(4.5)

(4.6)

4.7)

The problem has now been reduced to minimizing z subject to (4.3) and (4.4). For this pur-

pose, renumber so that
V12V22- . -2V11>Vn+l£:0,
which by (3.4) implies

M]?Mz?. . .?Mn>M"+1:0.
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If z* is the minimum value of z > 0 satisfying the first half of (4.3),
Simax {0, M;—z} <8,
and z** is the minimum value of z > 0 satisfying the second half,

Si;min{z, Vi} =8,

then the desired minimum value of z is
— il 3
Zmin= max {z*, z**, 3 min {S, V1}}-

Thus it suffices to determine z* and z**.
The determination of z* goes as follows. Let

Mp}=2iM; — jM;.
Then M{f=0<S, and by (2.4) we have M}, , = S. Moreover, the calculation

Mj—Mp=j(M;—Mj.1) =0

shows that the sequence {M}7+1 is nondecreasing. Thus there is a unique Je{1,2,. . .,

that

O=MFfsMf<...<M§f<SsM}f,<...<M:,.

Now if 0 <z< M,,,, then
Simax {0, Mi—z} =3{t'M;—(J+ 1)z > M}, =8,

so that z does not satisfy (4.10). And if M; = z= M,,,, then (4.10) becomes

which is equivalent to

z=z*= {M;—S)/J.

(4.10)

(4.11)

(4.12)

(4.13)

n} such

(4.14)

(4.15)

(4.16)

By use of (4.14), the value of z* proposed in (4.16) is easily verified to satisfy M, = z* = M, ,, and

so is indeed the smallest z > 0 satisfying (4.10).
The determination of z** goes as follows. Let

Vi*=kVi+ 32, Vi
Then by (2.4), we have Vi{* > S, and 0=V}* < S. Also, the calculation

Vit =k(Vin—Vi) <0

shows that the sequence {V}*}#*! is nonincreasing. Thus there is a unique Ke{l, 2, . . .

such that

Vi*zVi*= ... 2V*=8S>Vi = ... =V

Now if z < Vg4, then

3; min {z, Vi} < (K+1)z+ 2 Vi< Vi¥ <S8,

K+2" 1
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so that z does not satisfy (4.11). And if V'x = z > V.1, then (4.11) becomes
KCEER TAN =TSR
which is equivalent to
z=z**=(S—32, Vi)/K. (4.19)

By use of (4.18), the value of z** proposed in (4.19) is easily verified to satisfy Vi =z**> Vi,
and so is indeed the smallest z > 0 satisfying (4.11).

The process for finding K, and thus z**, can be shortened as follows. First observe that the
constraint set Q(S, V) can clearly be replaced by Q(S, M), where the components M; of M are
given by (3.4). Thus V)’s are replaced by M,’s, and V§*’s by M}*’s. From (4.13) and (4.17) we
have

M+ M}*=S2M;,

so that (4.18) is equivalent to
MFE<3M;—S < ME, .,

and K can be evaluated using the same sequence {MJ?"}’I' used to locate J. This sequence can be
generated using the initial condition M§=0 and the recursion

Mf+1:M;(+j(Mj_Mj+|)-

To conclude this section, we recapitulate the solution process developed above. The input
data are the n-vectors L and U, satisfying 0 < L. < U. (If some L;=U;, we set x;= L;, drop the ith
component from consideration, and rescale x by (1—1L1;)-1.)

STEP 1: Set Vi=U;—L;for 1 <i<n. Set S=1—3,L..

STEP 2: If S < 0 or S > 3;Vi, STOP; the problem is infeasible. If S=0 set x= 0 and go to Step
10; if S=3;V; set x=V and go to Step 10.

STEP 3: Form the vector m with conponents m; = max {0,S—2;.;/;}. Replace V by V—m,
and S by S—3im;. ‘

STEP 4: Renumber the components of V to be in nonincreasing order. Record the correspond-
ing permutation 7 of {1, 2, . . ., n}. Set V,,,; =0.

STEP 5: Calculate M;=min {V;, S} for 1<i<n-+1.

STEP 6: Calculate M}, from the initial condition M{=0 and the recursion M}, =M}
+j(M;j— M;y), until a first one M}, is reached which is = S and a first one M}, | is reached which
is > 3pM;—S. Set z*¥= (Z{M;—S)/J and z**= (S—3p2, ,M;)/K.

STEP 7: Form z= max {z*, z**; §M,}. (This corresponds to the z;, of the previous text.)

STEP 8: (Assumes any optimal x will do.) Calculate ¥, from the initial condition S¥= 3} min
{z, Vi} and the backwards recursion

S, =8*+ max {0, M;—z} — min {z, Vj},

until a first one S}, is reached which is < S. Define x by

xj= min {z, V;} (all j < k),
x;=max {0, M;—z} (allj> k),
=S8 — djrrxj.
STEP 9: Permute the components of x by 7—1. Then replace x by x +m.
STEP 10: Replace x by x+ L.
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5. The Centroid Solution

Once zpj, has been found, the optimal x’s are defined by the constraints (4.1) and (4.2), which
we repeat here,

2ixi=S, (5.1)
ai<x;<b; (all 1) (5.2)

where a;=max {0, M;— zp;n} and b;= min {zyn, Vi}. One member of this convex polyhedron of
solutions can be found by the construction used to show that (4.3) and (4.4) implied the existence
of a solution to (4.1) and (4.2). But this is somewhat arbitrary. In view of the original intention to
fasten on a single x, it seems less arbitrary (at least to the writers) to select the centroid of the
vertices of the polyhedron. Fortunately, these extreme points can be found explicitly. In what
follows we assume

Siai<S<3ibi,
thus excluding the trivial cases in which the polyhedron degenerates to a single point.

The polyhedron lies in the (n — 1)-dimensional hyperplane (5.1); its extreme points are char-
acterized as intersections of (5.1) with some n—1 of the 2n “bounding hyperplanes” x;=a; and

xi= bi. Such a point of intersection, x(j, 4), is associated to each je{l,. . ., n} and each of the
2"-tsubsets 4 of {1,2,. . .,n}—{j}. The coordinates of x(j, A) are given by
xXi= @i 1€A,

x,-Zb,- ié{l,z,. . .,n}—{j}—A,
Xj= S— 2,‘;‘,‘,’.!‘;.
The extreme points of the polyhedron are precisely those x(j, 4) for which

a; = Xj = [)l

6. The Weighted Version
We now generalize the objective function (1.3) to
F(x) = max {max;wi|xi— yi| : yeP (L, U)} (6.1)

where {w;}" is a set of positive “weights” with 3;w;=1. This corresponds to the case in which
the accuracy, with which x approximates the “true” distribution, is more important for some
components than for others.

The reasoning of sections 2 and 3 go through unchanged, with occasional insertions of “w;”
in appropriate formulas. We find that (4.1) is replaced by

max {0, M;—z/w;} < x; < min{z/w;, V;} (all 7) (6.2)
so that (4.3) and (4.4) are replaced by

Simax {0, Mi—z/wi} < S < X; min {z/w;, Vi}, (6.3)
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z = % max;M;w;.

(6.4)

The problem is now that of minimizing z subject to (6.3) and (6.4). As before, we write

Zmin=max {z*, z**,  max;M;w;},
where now z* is the minimum value of z = 0 satisfying
2;max {0, M;—z/w;} <S
and z** is the minimum value of z = 0 satisfying
Simin {z/w;i, Vi} = S.
The renumbering now is to be such that

VIWIZVsz?. — ,,w,,>0

6.5)

6.6)

6.7)

6.8)

which by (3.1) implies a similar condition for {M;w; }". As before we set V1= 0 (implying M, ,, = 0),

and now also choose any wy,, > 0.
The determination of z* goes as follows. Let

MJ*:E{MI—WJMJZ{(llw,)
Then M*=0<S, and by (2.4) we have M*,, = S. The calculation

M* —M;(:(w]'Mj_ijf j+1)21j(1/wi)20

g1

shows that sequence {M}}*! is nondecreasing. Thus there is a unique Je{1, 2, . .

O=M¥<sMf<.. . sMr<SsM},<...<M},.
Now if 0<z < M, wy1, then
3 max {0, Mi—zjwi} = S (Mi— z/wi) > M}, = S,
so that z does not satisfy (6.6). And if M,w; =z = M, w1, then (6.6) becomes
2IMi — z/wi)<S,

which is equivalent to

z = z2%= CIM;— S)[Z](1/wy).

., n} such that

6.9)

(6.10)

By use of (6.9), the value of z* proposed in (6.10) is easily verified to satisfy M,w; = z* = M 1w, 41,

and so is indeed the smallest z > 0 satisfying (6.6).
The determination of z** is similar, involving

= w Vi 2w+ 32, Vi,
V¥zVit=. . . =2VE*=S>VEL =. . .=V,
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=S = 2R VIR wi).
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