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The Dedekind modular function is defined by n(r) = e™/12 ﬁ (1 —e2mm) Im 7> 0, and satisfies

1
the transformation equation (c7+ d) *n(A7)=v(A)n(7) for every Ael’, the modular group, where 1(4)
is a complicated 24th root of unity depending on 4. Let G be the set of all A¢l” for which o(4)=1. Then
1 .
0 ])- Main Theorem.

Every subgroup of I that is a subset of G is cyclic. Moreover GC1", the commutator subgroup of I'.

G is not a group, but there are groups that are subsets of G, eg., {S**}, where S= (
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1. Let I' be the matrix modular group, that is, '=SL(2, 7Z), Z=integers. The well-known
Dedekind modular function n(7) is defined by

n(T)Zx”Z“ ﬁ (l _xm): em’1/12 ﬁ (1 _ezrrim-r)’ (1)
1 1

where, throughout, x = e27" and Im 7 > 0. The function 7 is a modular form of dimension — 1/2 with
multiplier system v; this means that

(et + d)~"Pm(A7) = v(A)n(7) (2)
. b\ ..
for each A= (:L (1,’) el’. Here Ar= (ar+b)/(ct+ d) and (¢7+ d) 12 is defined uniquely by setting,

for each complex number u,
—rw<argu=. 3)
Moreover, the multiplier v is of modulus 1 and satisfies a consistency condition
V(AB) (capt + dap)'* = v(A)(B) (caB1 + d)*(cpr + dp)'/2, )

ay by

where in general we write A:< ) It is the multiplier system v that we wish to study.

Cy (1,1
The difficulty arises hecause 7 is a form of fractional dimension. For a form of dimension — r
the exponent r would occur in (4) instead of 1/2. Hence if r is integral, v is a homomorphism of I’
into the group of complex numbers of modulus 1. The subset G of I' on which v is identically 1 is a
subgroup of I'.
This is no longer the case when r ceases to be an integer. Then G is not a group, but it does
contain subgroups of I'. For example, we see from (1) that v(524") =1, where
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S:G) i) 5)

Hence the cyclic group {S?!} is contained in G.

The main object of this paper is to establish the following conjecture of Rademacher:
THEOREM 1. If H is a subgroup of I" and a subset of G, then H is cyclic.

We shall see that GCI"’, the commutator subgroup of I'. Thus H is a subgroup of I'". Since
I'" is free of rank 2, it follows from Theorem 1 that H is of infinite index in I and is not normal.
On the other hand, as well shall see later, G is of index 2 in I'" in the sense that I'' =GUGS2 is a
disjoint union and v(A4S'?) =—1 for every AeG.

2. We shall first treat a simpler case, namely, n2(7) with multipliers v2. Here v2 is a homo-
morphism and so, letting

G ={Ael'|v*(4) =+ 1},
we have
I'"CG,.
THEOREM 2. G,=1".
Since [I':I'"] =12 —recall that we are dealing with the matrix groups —we have only to show
that [I":G,]=12. Since by (1) and (5), v*(S")=exp wih/6, we see that 1, S, S2, . . ., S" lie in

different cosets of I'/G;. q.e.d.
We have already defined

G={Ael'|v(A) =1}.
Clearly GCG, and so
GCl.

However, G is not a group. In fact, — <(1) (l)) €G but its inverse — <(1) A(l)) does not. To discover

what groups are contained in G, we must study (4) in detail.
Let us recall that we are writing modular matrices as

A = (uA bA), (l,qu - bACA = ]

ca da
If c4=0, thenas=ds==x1and A==x=8S" m==xb,. Define as usual
sgn u=uf|u| for u # 0.
For the systematic treatment of (4) we write v(AB) =0 (A, B)v(A4)v(B), so that
o(A, B)=(caBt+ d1)""*(cp7+ dp)"*(capT+ dap) 2. 6)
Clearly %4, B)=1. Using the convention (3) together with (6) we obtain the following values:

v)=1, v(=1)=exp (—mi/2), I= (é ?)

o(S™, A)=a(4, Sm) =1 )

oA, A )=1,ca #0; o4, A")=sgn d,, c4=0.
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The last equation shows that
vA")=15(A), ca # 0; vA")=sgn d4 - 5(A), c4a=0. @)
Next,
v(—=A)=v(A)i sgn c4, cs # 0; v(—A)=—v(A)i sgn da, ca=0. 9)
Finally we have the following table, in which a missing entry means that the sign is irrelevant.

Ca cn Cap a(4, B)

+ 4+ +1
+ o+ = -1
+ = +1
-+ +1
= = = +1 (10)
- - o+ -1
0 + sgn d,
AF 0 sgn dp
0 = Sl
= 0 +1
Let
(R ()
Note that

I*=R}=—1I. 1)
We introduce a symbol

Ve=—¢€Re, e==x1, V=V,

(12)
In Ve, € is not an exponent, and in fact we have
V) 1=—V-<, VV-1=y-\=—],
V=—V-' V-1y1=V.
(13)

Furthermore
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TV=(1 }):S, TV~1:(1 0)- (14)

LEMMA 1. Let

Then
az > O, bA ?0, Cq = 0, dA > O

This is an immediate consequence of (14). The set of words of this form is therefore a semigroup.
We partition the elements of I', aside from =T and =V, into 8 classes, as follows.

Each element can be written uniquely as a power product of 7 and V/, apart from sign.
We set (e2=1)

Ci={Ael’'|[A=TVe . . . TVem},
Co={Ael’|[A=VsT . . . VenT},
Cs={Ael'|A=TVe . . . VenT},
Ci={Ael'|A=VT . . . TVen},
—Ci={Ael'| —A4eCi},i=1, 2, 3, 4. (15)

Since (TVe¢)-'=V-<T, we observe that (in an obvious notation)

CIIZCQ, C:;_l:'_C:;, C:;:C1T, C;‘Z—C4, C4:"‘ TC] (16)

Lemma 1 can now be restated: AeC, implies a4, ds > 0; ba, c4 = 0.
LEMMA 2. v(S™)=exp (mim/12), v(—S™)=exp (mi(m—6)/12), o(=T)=exp (Fmi/4), v(TV)=exp (mie/12).
The first values are immediate from the definition (1), and v(7T') is obtained from the classical
transformation formula

n(Tr) = (—ir)"*n(7).

Then use R=TS. V¢=—€R¢, and (8), (9), (10).
LEMMA 3. When AeC,, v(A)=exp (mi(v/12), where

V=V(A)=2m €.

n
The lemma is true when m=1, by Lemma 2. Suppose it is true for all words H TVei, h <m,
1

and let A =ﬁ TVe. What we need to show is v(ATV¢)=v(A)v(TV¢), in other words,
1

(*) a4, TVe) =1.

Now by Lemma 1, ¢4 =0. When e=1, TV<=S and when c4=0, A=S" (by Lemma 1). In both
cases (*) follows from (7). In the remaining case c4 > 0 and e=—1, and (*) follows from line 1 of
table (10) and (14), since
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. . 1 . . .
(zo >0> (1 : )=(>0 . )

3. We are now ready to begin the proof of Theorem 1. We assume there is a subgroup of 1"
that is contained in G and is not cyclic. This subgroup, then, contains a free group H of rank 2 as a
subgroup and HCG. We denote by {4, B} the group generated by 4 and B.

Every Ael'’ falls into one and only one of the 8 classes of (15). If we write A==T<Ve: . . . VemT*
with €, € =0, 1 and €?=1, we can define the length of A to be m and denote it by |4|. From all
H={A, B} select one, say Hy={Ay, By}, such that |4+ |Bo| is a minimum. This minimum is
positive; call it p.

When we multiply two words, there may be internal cancellations. For example, suppose

A= (H TV‘z‘) - T, Bo= H TV™. Then if €,,=—m, the factor VemTTV ™ will disappear from A4,Bu.
1 1

Let |4y] = |Bo| and suppose By cancels completely in 4¢By. Then |4oBo| = |Ao| — |Bo| and |40Bol
+ [Bo| = |4o] < p. Since {4y, Bo} ={A¢Bo, Bo}, this is a contradiction. Hence there is a smallest
interger A = 0 such that

U ==SC1I (5m~h+7)l+,'1) (17)
is not zero. Similarly, by considering Bo4,, Bij'Ay, and BoA;!, we deduce the existence of minimal
nonnegative integers j, k, [ such that

z=8gn (Mn_j+ €14j), x=sgn (— N1+t €14x), Y=sgn (Mn-1— €m-1) (18)
are all nonzero. We shall use the quantities x, y, z, w systematically.
From now on we write A for Ay and B for By.
Next we must develop rules that will enable us to multiply elements of the different classes.

In the event of internal cancellations we shall have to take account of the relations (11) and (13).
The following possibilities arise:

VITV <=TVV <T=1, e==*1 (19)

VerTvn=ulV -, TV¥V"T=—ulV-*T,mn==+1 (20)

where u=sgn (e + n) # 0. Suppose (19) occurs in the product AB. Then the exponent sum v(4B)
=v(4)+v(B). If (20) occurs, v(AB)=v(A)+v(B)—e—m—u=v(A)+v(B)—3u, since either
e=m=u=1 or e=m=u=—1. Furthermore, we multiply the word AB by u in the first case of (20)
and by —u in the second case.

An example will make the technique clear. Consider BA, where AeC,, BeC;. Let A :ﬁ TV,
1

B= (H TV"’) - T. Here we have a cancellation of the type V"TTVe. Since z, defined in (18), is the
1

sign of the first nonvanishing sum 7, + €, Nn—1+€, . . ., we have BA=zDT with DeC, and
v(D)=v(B)+v(4)—3z.

On the other hand suppose A4 is as before but BeC,, BZH TV". Then in AB-! there is a can-
1

cellation of the type TVeV 1T, so that AB-'= yDT, since —y=sgn (€m_1—Nu_1). Also v(D)=v(A)
—v(B)+3y. )

One final rule. If Ae==C; or =Cy, then for every appearance of A1 in the word we are con-
sidering we must multiply by — 1, since

{ (iH TV%‘) : T}_lz— (tH TV“m—i) T and { (i"ﬁ VqT) : V%}_1=—(iﬁ V—emfi) Ve,

257



4. We now proceed as follows. The generators A, B of H lie in the classes +=C;,i=1, . . ., 4.
For each possible pair 4, B we shall exhibit a word W (A4, B) that does not belong to G.

Since A, BeG, {4}, {B} CG.

LEMMA 4. If Ae—C, or Ae—C,, then {4} ¢ G.

Suppose first A=—C,, c4=0. Then —AeC, and, by Lemma 1, 4=—S". By Lemma 2,v(A4)
= exp (mi(m—6)/12), v(A2) =v(S?*") = exp (mi - 2m/12). Hence v(A), v(A2?) cannot both equal
1, i.e., A and A% do not both belong to G. Next assume ¢4 # 0; it follows from LLemma 1 that ¢4 < 0.
Hence — A4 has all entries positive except by = 0 and so the ¢ of — A2 is positive. By line 1 of table
10, o(—A,—A) =1. Therefore

v(A2)=v(—A-—A)= (v(—A4) )2

By (9), v(A4) and v(—A) are not both real, hence v(A4) =v(A4%) =1 is impossible.
Since (—C,)'=—Cy, the result follows for —Cs,.
LEMMA 5. Let DeC, e==*1. Then

o(D, el)=0o(eT,D)=0o(—T, DT)=1.

These results are proved by reference to table (10) and (7). By Lemma 1, ¢ = 0, d;, > 0. Note
that when cp >0, the ¢ of D - €T and of €TD has sign €.

The proof is now divided into cases: Ae+C;, BexCj, i, j=1, . . ., 4, where we may ob-
viously assume j = i. Lemma 4 shows we need not consider the classes —C; or —C,. And in view
of (16) we may disregard the classes —Cj3 and —Cy as well as Cs. There remain the cases: 4eC,,
BeC,, Cs, Cy; AeCy, BeCs, Cy: A, BeCy. In each case we shall write the “cancellation rules” (cf. end
of sec. 3) and exhibit a word in 4 and B for which v=—1.

AeC,, BeC, AB AB-! A-'B A-1B-1 BA—1 B4
multiply by 1 y =7 1 —y x
add to exponent 0 3y 3x 0 —3y —GY%,

sum

Here x, y are defined in (18) and

A :['1"1 Ve, B :f:[ TV,

Recall also (Lemma 6) that v(4) = v(B) = 0 (mod 24). The words for which v=—1 are as follows:
y>0; B-'"ABA-'BA-!
y <0, x>0; B-'AB!

y <0, x<0; B'ABA-'B-'A.

AeC,, BeC,
AB  AB™! A-'B A-'B-! BA! B-'A B4
multiply by 1 1 —x =7 1 x 1
add to exponent 0 0 3x 3z 0 —3x 0.
sum
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Recall that when B! occurs a minus sign must be prefixed. Also v(4) =0, v(B) =3 (mod 24)
by Lemma 6. The words are:

x> 0; B'AB-!
x <0, z>0; BA'B'AB

x <0, z<0; B'AB'A-'B-!,

AeC,, BeC,
AB A-'B A~'B~! BA BA-! B-'4
multiply by —w 1 1 1 =17 1
add to exponent — 3w 0 0 0 — 3y 0.

sum
Here v(A4) =0, v(B) =—3 (mod 24). When B~! occurs, multiply by —1. The words are:
w > 0; A-'BAB
w <0, y > 0; ABA-'BA-!

w < 0; y <0; B'ABA-'B-'A

AeC;, BeC,

AB AB! A-'B A-'B! BA BA-! B-'A B-14-1
multiply by  w = =7 =5 z y x =
add to expo-
nent sum —3w 3y 3x 3z —3z —3y =31 3w.

When A-1 or B-1 occurs, prefix a minus sign; v(A4) = v(B)= 3 (mod 24). The words are:

w < 0; AB
z <0; BA
w,z>0, xy < 0; ABA-'BA—'B

w, z>0; x, y>0; AB-'A-'B
w, z>0; x, y<O0; A-'B-'A-'BAB-".
AeC,, BeC,

In this case no internal cancellation ever occurs. We have, since v(4) = 3, v(B) = —3 (mod 24),

AB'A=—-DT, DeC,
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with (D) =9 (mod 24); the minus sign is caused by the presence of B-!. Hence

v(AB-'A) =v(D)u(—T)=exp (i/12) (9+3))=—1.

AeC,, BeC,

AB AB-'*  A'B BA BA-! B4 B-14-1
multiply by —w y x z —y =g% w
hentaum’” —Bw 3y 3 3% —3 % 3w

When A1 or B! occurs, prefix a minus sign; v(4) = v(B) =— 3 (mod 24). The words are:
x>0, y > 0; A-B-'"A-'BAB-1
x>0, y < 0; A-1BA-1
x <0, y > 0; B-14AB-!
x <0, y < 0; AB-'A-'BAB.
This completes the proof of Theorem 1.

5. We conclude with a list of generators for all cyclic subgroups of I'' that are contained in G.
Let {4} be such a subgroup; then we may assume 4 is in one of the classes C,, C3,C4 in view of
[Lemma 4 and (16).

Suppose AeC,. Since AeG we have v(4) =0 (mod 24) by Lemma 6. Suppose c4 # 0, i.e.,
c4>0. For [=1, AleC, and v(A')=[v(A). Thus the condition on v(A4) insures v(A) =1, [=1.
Also the ¢ of A' is positive and so v(4-!) =8(A4-!) =1, by (8). If c4=0 we have 4=Sm, 24|m is
necessary and sufficient for {S”} to lie in G. But v(S™) =m. Thus AeC, generates a cyclic group
contained in G if and only if

v(4) =0 (mod 24).

Next let AeC;. By Lemma 6 we have v(4) =3 (mod 24). Also ¢, > 0 always. Let A = 0 be the
smallest integer such that
t=sgn (€m-n+€1+n) 21)

m

is not zero, where AZ(H TVg’) -T. If such an h does not exist, we would have A2=—1 and
1

{A} could not be a subgroup of the free group I'". Hence the existence of ¢ is a necessary condi-
tion on A.

Multiplying 4 by A involves a concellation that has the effect of multiplying the word by ¢
and adding — 3¢ to the exponent sum. Hence for [ =1,

A'=1¢-1DT, DeC,, v(D) =3L—3(L—1)¢t (mod 24)
and

v(AY) =exp {(mi/12) (=3¢t + 31 —3(l—1)t}.
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Hence t=1 is necessary and sufhcient for v(A4') =1, [ > 0. Since the ¢ of A'==+ DT is never zero,
v(A7Y) =1 also when t=1.
By similar reasoning we develop conditions in the case AeC, and then have the following

THEOREM 3. Necessary and sufficient that a modular matrix A generate a group that is a subgroup
of I'" and a subset of G is that A satisfy the following conditions: A or A= lies in C,, Cs, or C4 and

v(A4")=0 (mod 24), if A.€C,
v(A")=3 (mod 24) and t=1, if A'eC;
v(A')=—3 (mod 24) and t=—1, if A'eC,.

Here A' is A or A=1 and t is defined by (21).

(Paper 72B4—275)
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