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A new set of orthogonality conditions is derived for real three-by-three orthogonal matrices which
describe transformations in Euclidean three-dimensional space. The principal consequences of these
conditions are obtained. These are: (1) the existence and construction of the intrinsic vector of the
transformation, (2) an equation connecting the trace of a transformation matrix with that of its square,
which, for rotations, can be solved to give the well-known trace formula analytically, (3) a simple
formula for the determinant of a transformation matrix directly in terms of the relative handedness
of the two coordinate systems connected by the transformation, (4) the secular equation for a trans-
formation matrix.
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1. Introduction

There are several ways to represent proper and improper rotations in three-dimensional space.
They can be represented by dyadics, which are linear operators on the vectors of Euclidean three-
dimensional space [1].! Quaternions offer a more abstract and more elegant means of representa-
tion [2]. The quaternion representation leads to, and is equivalent to, a representation in terms
of the group SU(2) of two-dimensional unitary matrices with determinant unity [3]. The simplest
representation to work with, and by means of which to visualize proper and improper rotations,
is in terms of real, three-by-three orthogonal matrices [4]. This is the representation which we
will be concerned with in this series of papers. In this series of papers the word “transformation,”
will generically denote the kind of transformation which is described by a general, real, three-by-
three, orthogonal matrix, without regard to the value of the determinant of the matrix. When it is
necessary to take the value of the determinant into account we will speak of the transformations
with determinant plus one as “‘rigid rotations,” or “proper rotations,”” or simply ‘“‘rotations,” and
the transformations with determinant minus one as ‘“‘improper rotations.”

The usual definition of orthogonality of the underlying coordinate systems in three-dimensional
Euclidean space, leads to a well-known set of conditions on the elements of the transformation
matrices. We will refer to these conditions [eqs (7)] as the first orthogonality conditions. The
properties of the matrices cannot, however, be deduced directly from these conditions. Instead,
specific properties must be deduced analytically or geometrically. For example, the axis of a proper
rotation is usually found from Euler’s theorem [5], while the angle of rotation may be found by
considering the action of the rotation matrix on specific vectors.

*An invited paper. This work was supported by the Electronic Systems Division of the United States Air Force under contract No. AF19(628)-5165, Project 4966.

! Figures in brackets indicate the literature references at the end of this paper.

229



By considering an alternative but equivalent definition of orthogonality of the underlying
coordinate systems, it is possible to derive a new set of orthogonality conditions on the trans-
formation matrices. We will refer to these new conditions as the second orthogonality conditions
[egs (9)]. They have the important quality of being working relations. From them, one can deduce,
for example, all of the well-known properties of rotation matrices, in most cases more elegantly
and concisely than with the usual methods of deducing these properties. One can also deduce some
new properties.

The purpose of this paper is to derive the second orthogonality conditions (sec. 2), and to
deduce their main consequences (sec. 3). Discussion of some of the consequences will be pre-
sented in subsequent papers in this series. It is hoped that the series as a whole offers a unified
and simple presentation of the theory of proper and improper rotations which will be practically
and pedagogically useful.

As is well known, transformations can be regarded as either passive or active. In a passive
transformation all physical objects are regarded as being fixed in space while the transformations
are carried out on coordinate systems. In an active transformation, there is a single coordinate
system which is thought of as being unaffected, while the transformations act on physical objects
in space. Although the two interpretations are equivalent for the purposes of this series of papers,
it is nevertheless useful in visualizing transformations, to favor one interpretation. For the most
part we will regard them as passive transformations.

2. The Second Orthogonality Conditions

We consider the transformation between a Cartesian coordinate system S, whose axes are
specified by a triad of mutually orthogonal unit vectors by, b,, b3, and a system S’ which is co-
original with S, specified by the triad bj, b;, b;. In this transformation, which is illustrated in
figures 1, we take into account the possibility that the handedness of S’ might differ from that of S.
The customary way to express the unit normalization and mutual orthogonality of the vectors
in each triad is by means of the relations

b; - bj=§;;, (1a)
b - b} =35, (1b)

where §;; is the Kronecker delta, equal to zero for i #j and equal to one when i=j. There is an
alternative expression of orthogonality of basis vectors of a coordinate system which has the
advantage over the expressions (1) that it allows for the explicit inclusion of the handedness of
the particular coordinate system. This expression of orthogonality, for the coordinate systems
S and S’, respectively, is 2

b; X bj=peijrbs, (2a)

b: X bjl =p’€,'jkb,:,, (2b)

where € is the Levi-Civita symbol, which is antisymmetric in the interchange of any two of its
indices (implying that it vanishes when any two of its indices are equal), and is equal to one when
(z, j, k) is equal to (1, 2, 3) or to any cyclic permutation of (1, 2, 3). The factors p and p’ are the
“handedness” factors, which are equal to one for a right handed coordinate system, and to minus
one for a left handed system. The choice of handedness that is associated with p=+1 is dictated
by the fact that we are using the conventional right handed cross product in eqs (2).

* In eqs (2) and subsequently in this series of papers, we use the customary convention that a repeated index on any one side of an equation is to be summed

over its range.
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FIGURE la. An orthogonal transformation which does FIGURE 1b. An orthogonal transformation which brings
not bring about a change of handedness. about a change in handedness.

The eqs (2) as they stand do not guarantee the unit normalization of the vectors in each triad.
To insure such normalization, one adds the supplementary requirements

b, b, Xb;=p, (3a)
bi-b,Xb,=p’. (3b)

Equations (2) and (3) immediately lead to eqs (1). In addition to being orthonormal, the b and b’
triads are each separately complete. This is expressed by

bbi=1, (4a)
bib; =1, (4b)

where |, the unit dyadic, has the property that 1 - F=F - 1=F for any vector F.
The matrix of transformation 4= (A4;;) between S and S’ is constructed from the cosines of
the angles between the b and b’ vectors. To be specific we define

Aij=b;-b;. (5)

The elements of A then appear as the coeflicients of expansion of the vectors of either triad in
terms of the other triad as basis. These expansions are obtained by using the completeness relations

),
b;zb; |:b,'bjbjz(b; l’)j)l),’:‘tubj (6a)
bi=h:-1=bh; - b/b! = (b} - bi)b! = A;b;. (6b)

i

As a result of the orthonormality and completeness of the b and b" vectors, the matrix 4 satisfies
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the well known orthogonality relations
AijAri= (b} - bj) (by - bj) =b; - (bjb)) - b, =b/ - b, = &, (7a)
Ajidjk = (bj - bi) (bj - bi) =b; - (bjb}) - by=b; - by=&;. (7b)

We will refer to these as the first orthogonality conditions.

The second orthogonality relations are derived by requiring that the transformation of either
of the cross product relations (2) by the transformations (6), reproduces the other one of the relations
(2). If eq (6a) is inserted for b’ everywhere in eq (2b), we get

AirAjmbr Xb,= PleijkAknbn-

Equation (2a) is now used for the cross product on the left side of this equation. The result may be
written

(AirAjmfrmn - % GijkAkn> b,=0. (8a)

Alternatively, we could have transformed the relation (2a) using the transformation (6b). We would
then have found

(A rz'A mj€rmn — [l))_, ez’jkA nk) b,’, =), (8b)

In eqs (8) we have vanishing linear combinations of each set of basis vectors. Since the vectors in
each set are linearly independent, the coefficients in each linear combination must vanish iden-
tically. This leads to

!

A irAjmermn :% Eijl.'A kns (9a)

A riA mj€ rmn :_ll)l, eijlfA nk- (9b)

These equations, which we shall refer to as the second orthogonality conditions, appear to be
new, or at any rate do not appear to have been discussed before. In the next section we will work
out their main consequences.

3. Consequences of the Second Orthogonality Conditions

As a first consequence of eqs (9), we construct a vector which is not altered by the transforma-
tion represented by 4. To do this, we contract on ¢ and n in eq (9a), that is, we set i=n and sum
on the repeated index so formed. Now the Levi-Civita symbol has the same value for any cyclic
permutation of its indices. For example

€Enjk = €jkn- ( 10)

Therefore we may write the contracted form of eq (9a) as

!

Ajm(emnrA m') :p; €jl;nA kne {1].)
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By defining the three component quantity V,, as
vm = EmnrAnr- (12)

we may write eq (11) in the form

Ajmvmzp_vj- (]33)
p

This equation says that unless it is identically zero, the “vector” V is an eigenvector of 4 belonging
to the eigenvalue p'/p. Similarly, contracting on i and n in eq (9b), and observing that p/p"’=p’/p,
we find

Amjvmz (/‘I)jmvmz% V; (13b)

so that V is also an eigenvector of the matrix A, the transpose of 4, belonging to the same eigenvalue
p'Ip.

Of course V is not the only real eigenvector of 4 and of A belonging to the eigenvalue p'/p.
Because of the homogeneity of eqs (13) any non-null vector parallel or antiparallel to V is an eigen-
vector. For example if V is not identically zero, a unit vector may be formed from it by dividing
V by its length. In the case of rigid rotations, for which p’/p=1, this unit vector specifies the
direction of the axis of rotation, and the development embodied in eqs (11) through (13) can be
taken as a new proof of Euler’s theorem [5]. The significance of the particular vector V for rigid
rotations is that is gives not only the axis of rotation but the sine of the angle of rotation as well.
When combined with the cosine of the angle of rotation as derived from the trace of 4, this gives
directly the complete, unambiguous correlation between the axis and angle of rotation. This will
be seen in the second paper in this series, where eqs (13) and the vector V are considered in
detail. In particular, it will be shown that V can be expressed as

V =2n sin a,

where n is a unit vector giving the direction and the chosen sense of the axis of rotation, and «
is the angle of rotation whose sense of description about the axis agrees with the handedness of
the coordinate system which is rotated by 4.

Although the derivations of eqs (12) and (13) from the second orthogonality relations are
new, most of the results of those equations are not new. In particular, the fact that the ratios of
the components of any vector which specifies the axis of a rigid rotation are identical to the ratios
of the components of V, has been known for a long time [6, 7]. This result has unfortunately not
been adequately stressed in the literature. We would like to call attention to it here and to em-
phasize the slightly more general conclusion that eqs (12) and (13) form a prescription for writing
down real eigenvectors of a transformation matrix without in fact solving the eigenvalue equation
for the matrix. The prescription fails of course when V vanishes identically. As can be seen from
eq (12), this occurs whenever 4 is symmetric in addition to being orthogonal. In paper II we shall
see that a symmetric 4 corresponds to a rigid rotation of either 0° or 180° for the proper rotations
(p'/p=1), and to either a reflection in a plane or to an inversion of the coordinate system with
respect to the origin, for the improper rotations (p’/p=—1). In such instances one must solve the
eigenvalue equation for A4 to find its real eigenvectors.

We have been referring to V as a vector since it is a three-component object. However, it is
not a vector in the sense in which the physicist usually understands that word. He would think
of a vector as a one-to-one correspondence between coordinate systems and sets of three numbers,
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which under a transformation of coordinates obeys the transformation law of coordinate intervals.?
Strictly speaking, V has relevance to the transformation between two coordinate systems, rather
than as an object germane to individual coordinate systems. For convenience, however, we will
continue to refer to V as a vector, keeping in mind its limitations under the transformation defini-
tion. For want of a better name, we shall henceforth call V the intrinsic vector.

The second consequence of eqs (9) that we shall derive is a new equation which connects
the trace of 4, tr A, with tr (42). To find it, we multiply eq (9a) by €;j», and sum on i, j, and n. With
the aid of the identities *

€ijin€rmn = Sirajm - aimajr, (143)
€ijn€ijk — 28k, (14b)

we arrive at
pl
Aiidjj— AijAji= 2= Ann.
p
In trace notation this equation appears as

(trA)?—tr (A2)=2‘;—tr,4. (15)

Equation (15) can also be derived by similar operations on eq (9b).
The trace of a transformation matrix is primarily important for rigid rotations, where it fur-
nishes the cosine of the angle a of rotation by means of the well known formula
trA=1+2 cos a. (16)
The standard derivation of this formula [5] makes use of the special form of a rotation matrix when

the axis of rotation is one of the coordinate axes, say the z axis. By direct calculation of the under-
lying two-dimensional transformation, this matrix is seen to be

cosa sina 0
—sina cosa 0 ER:(a). (17)

0 0

et

The trace of this matrix is given by eq (16). It is then noted that any rotation matrix may be put
into the form (17) by an appropriate similarity transformation. The result (16) for an arbitrary rota-
tion matrix then follows from the fact that the trace of a matrix is invariant under a similarity
transformation.?

*1 am indebted to Robert Richtmeyer, from whom I first heard this particular wording of the transformation definition of a vector.

* An elementary and very lucid introduction to the use of the Levi-Civita symbol can be found in ref. [8]. This includes a derivation of the identity (14a), from which
the identity (14b) may be derived by further contraction.

®In the language of group theory, real three-by-three orthogonal matrices belong to the vector representation, or the irreducible representation corresponding
to [=1, of the rotation group. The characters of a representation are the traces of its matrices. Equation (16) is true only for the characters of the vector representa-
tion. For the matrices of the irreducible representation belonging to integral / = 1 the characters are given by 14+2 cos a+. . .+2 cos la, where a is the angle of

rotation.
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It is possible to derive the formula for the trace analytically from eq (15) using only general
properties of rotations, and without the need to consider special forms of the rotation matrix.
The derivation is interesting because it shows that the formula (16) is a direct consequence of the
algebraic properties of rotation matrices, and so gives an insight into the structure of that formula
which one does not get from the standard derivation. The details of the derivation of eq (16) from
eq (15) will be presented in paper IV.

As a third consequence of eqs (9) we deduce a transparent expression for the determinant of
A, det A. We first note that the properties of determinants furnish the identities ¢

AirAijsnermn = (det A) €ijs, (183)
AriAmjAnsermn = (det A) €jjs. (18b)

If we then multiply either eq (9a) by A, or eq (9b) by 4, and sum on s then the left side of either
of the resulting equations is, by eqs (18), equal to (det A) €. The right sides each lead to (p'/p)
€ijs, with the help of the first orthogonality conditions (7). Equating these two expressions we have

’

det A=L-. (19)
p

This equation states in a concise form the result that the determinant of a real three-by-three
orthogonal transformation matrix is equal to + 1 when the transformation does not cause a change
in handedness, and equal to —1 when it does. This result is of course well known but does not
emerge quite as concisely in the customary way of deriving it. There, one uses the first orthogo-
nality conditions to arrive at the result (det 4)>=1, from which it follows that det A==1. One
then argues that only for the proper rotations is 4 continuously connected to the identity matrix,
for which the determinant is + 1. This leaves the value —1 of the determinant to account for the
improper rotations. The second orthogonality conditions lead to these conclusions in a single
succinct equation.

The final result of this section is a derivation of the secular equation for a transformation
matrix, directly from the second orthogonality conditions. A word of clarification is in order. By
the phrase ‘“secular equation’ of a matrix, one usually means the polynomial equation obeyed by
the eigenvalues of the matrix. The Cayley-Hamilton theorem [10] asserts that the matrix itself
obeys its own polynomial equation. For this reason we refer to the polynomial equation satisfied
by a transformation matrix as its secular equation. It is in this form that the secular equation for
A comes out of eqs (9).

We multiply eq (9a) by €4, and sum on n using the identity (14a). This gives

’

AisAji_AitA_i.s':p; eijk‘esltlAl.'ll- (20)

We now contract this equation on s and j. To evaluate the right side of the contracted equation
we use the cyclic property (10) of € and the identity (14a). The result is

(A:!)“_ (ll' A)A,fz% [Api_ (II‘ A)S,-,].

The matrix form of this equation is

A'—’—(trA)A=% [A— (tr A)1], 21)

¢ A derivation of these identities may be found in ref. [9). In the theory of Cartesian tensors, these identities constitute the proof that the Levi-Civita symbol

is a pseudotensor of the third rank.
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where A4 is the transpose of A, and [ is the identity matrix. Upon multiplying eq (21) by 4. either
from the left or from the right, and noting that A4 =44 =1 from the first orthogonality relations,
we have

A:*—(xrA)A2+p; (trA)A—p; 1=0. 22)

This is the secular equation for A.
For the special case of rigid rotations, we can set p’/p=1, and use eq (16) for tr 4, in eq (22).
The secular equation for a rotation matrix is then

A*— (142 cos a)A*+ (142 cosa)d —1=0. (23)
This may be written in the factored form
(A—1)[A>— (2 cos a)A+1]=0. (24)

If A4 in eq (23) (or eq (24)) is replaced by a numerical variable representing the eigenvalues of
A, then the solution of the resulting equation gives the usual result that the eigenvalues are 1,
e'®, and e~i@ The fact that one of the eigenvalues is unity may be taken as yet another direct proof
from eqs (9) of Euler’s theorem. This proof has the advantage over the one based on eqs (13) in
that it remains valid even when the intrinsic vector vanishes.

A more powerful use of eq (23) is in finding a closed-form expression for 4 as a function of
the axis and angle of rotation. On the basis of very general properties of rotation matrices, the
solution of eq (23) is

A(a) =1—N sin a+N? (1—cos a). (25)

Here, N is a matrix which is formed from the components of n, the unit vector along the sense of
the axis of rotation, by the prescription

Nik = €ijkn;. (26)
In explicit matrix form, N appears as
0 —nz n
N=ln3 0 —n | 27)
Ny My . 0

Equation (25) is probably more familiar in its exponential form.”

A(a) =eNe, (28)

Since eq (23) is independent of the axis of rotation, it is to be expected that it has to be supplemented
by a condition which introduces the axis. The appropriate condition is the eigenvalue equation
for A corresponding to the eigenvalue + 1.

The details of how eq (23) is solved to give eq (25) are interesting in their own right, and are
given in paper IV. As with the solution of eq (15) to yield the trace formula, the process of solving

7 The reader who is familiar with the dyadic representation of rotations will recognize the similarity between eq (25) and the rotation dyadic [11]. The matrix N is
replaced by the dyadic —nX 1, where 1 is the unit dyadic, the minus sign entering because a dyadic is generally used to describe an active transformation, whereas
eq (25) is meant to describe a passive transformation. The matrix N2 is replaced by the dyadic nx (n X1) which is just (—nX1) - (—n X 1)=(—n x1)2. One can

check that the matrix form of n X1 is given by the right side of eq (26).

236



eq (23) from general properties of rotations shows the intimate connection between the result,
eq (25), and the algebraic properties of rotation matrices. As will be seen in paper IV, the same
general properties of rotations are invoked to solve both eqs (15) and (23). These are the group
property, and the periodicity property.

In all of the results derived in this section, it can be seen that the only way in which p and p’
occur is in the ratio p'/p. This is an expression of the fact that only the relative handedness of
two coordinate systems is of any significance. To emphasize this fact we shall continue to write
the ratio as p'/p, rather than define a new symbol for it.

We have already indicated the contents of papers Il and IV of this series. Paper III will be
concerned with the proof of the theorem of conjugacy, from the second orthogonality conditions.
This theorem makes statements about the axes and angles of rotation of two rotation matrices
connected by an orthogonal similarity transformation.

I would like to thank Monte A. Franklin, Kent R. Johnson, Nicholas M. Tomljanovich, and
Peter C. Waterman for critically reading an earlier version of this paper, and for making a number
of useful suggestions. I am grateful to Werner E. Sievers and William A. Whitcraft, Jr. for their
encouragement during the course of this work.
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