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A ne w se t of orthogona lit y condi ti ons is de rived fo r realth ree-by-three orthogo na l matri ces whic h 
d esc ribe tra ns formati ons in Eucl id ea n three-dime ns iona l s pace. The princ ipa l conseque nces of th ese 
condi ti ons are ob ta in ed. These are: (1) the ex is te nce a nd con s tru cti on of th e intrin s ic vec to r of th e 
transform ation , (2) a n equa tion conn ec ting th e trace of a tran sformation matrix with that of its squ a re, 
whi c h, fo r rotations, can be so lve d to give th e we ll-known trace formula a na lyti ca ll y, (3) a s imple 
formula for the de te rminant of a tra ns forma tion ma tri x directl y in te rm s of the re lati ve handedness 
of th e two coordin a te systems connec ted by the transformati on , (4) the secular equa tion for a tra ns­
fo rmat ion matri x. 

Key Wo rds : Matrices; orthogona l transformati ons; rotat ion. 

1. Introduction 

There are several ways to re prese nt proper and improper rotations in three-dime nsional space_ 
They can be represented by dyadi cs, wh ic h are lin ear operators on the vectors of Euclidean three­
dime nsional space [1]_1 Quate rnio ns offer a more abstract a nd more elegant means of re prese nta ­
tion [2] _ The quaternion representation leads to, and is equivale nt to, a representation in te rm s 
of the group 5U(2) of two-di me nsional uni tary matrices with determin ant unity [3]. Th e simples t 
representation to work with , and by means of which to visualize proper and improper rotations, 
is in ter ms of real, three-by- three orthogonal matrices [4]. This is the re prese nta ti on whi c h we 
will be concerned with in thi s series of papers. In thi s series of papers the word " transformation ," 
will generically denote the kind of transformation which is described by a general, real, three-by­
three, orthogonal matrix , without regard to the value of th e de terminant of the matrix. When it is 
necessary to take the value of the determinant into account we will speak of the transformation s 
with de terminant plus one as " rigid rotation s," or "proper rotations," or s imply " rotations," and 
th e transformations with de terminant minus one as " improper rotations ." 

The us ual de finiti on of orthogonality of the underlying coordinate sys tems in three-dimensional 
Euclid ean space, leads to a well-known se t of conditions on the elements of the transform ation 
matl·ices . We will refer to these conditions [eqs (7)] as the first orthogonality co nditions . The 
prope rti es of the matrices cannot, however, be deduced direc tly from these conditions. In s tead , 
spe cifi c properties mu st be deduced analyti ca ll y or geo metri call y. For examp le, th e axi s of a proper 
rotation is us uall y found from Euler 's theore m [5], while the angle of rotation ma y be found by 
consid erin g the action of the rota tion matrix on s pec ifi c vecto rs. 

* An in vi ted paper. 'rhis work was supported by the Elect ronic Systems D iv ision of the Unit ed States Air Force under contract No. AFI9(628r-S165, Pruject 4966. 

I Figures in brac kets indica te the lit cratu rt: references at the end of this paper. 
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By considering an alternative but equivalmt definition of orthogonality of the underlying 
coordinate systems, it is possible to derive a new set of orthogonality conditions on the trans­
formation .matrices. We will refer to these new ronditions as the second orthogonality conditions 
[eqs (9)]. They have the important quality of being working relations. From them, one can deduce, 
for example, all tlf the well-known properties of rotation matrices , in most cases more elegantly 
and concisely than with the usual methods of deducing these properties. One can also deduce some 
new properties. 

The purpose of this paper is to derive the second orthogonality conditions (sec. 2), and to 
deduce their main consequences (sec. 3). Discussion of some of the consequences will be pre­
sented in subsequent papers in this series. It is hoped that the series as a whole offers a unified 
and simple presentation of the theory of proper and improper rotations which will be practically 
and pedagogically usefuL 

As is well known, transformations can be regarded as either passive or active. In a passive 
transformation all physical objects are regarded as being fixed in space while the transformations 
are carried out on coordinate systems. In an active transformation, there is a single coordinate 
system which is thought of as being unaffected, while the transformations act on physical objects 
in space. Although the two interpretations are equivalent for the purposes of this series of papers, 
it is nevertheless useful in visualizing transformations , to favor one interpretation. For the most 
part we will regard them as passive transformations. 

2. The Second Orthogonality Conditions 

We consider the transformation between a Cartesian coordinate system S, whose axes are 
specified by a triad of mutually orthogonal unit vectors hI, h2' h :l ' and a system S' which is co­
original with S, specified by the triad h;, h;, h;. In this transformation , which is illustrated in 

figures 1, we take into account the possibility that the handedness of S' might differ from that of S. 
The customary way to express the unit normalization and mutual orthogonality of the vectors 
in each triad is by means of the relations 

(la) 

(lb) 

where Oij is the Kronecker delta, equal to zero for i o¥ j and equal to one when i = j . There is an 
alternative expression of orthogonality of basis vectors of a coordinate system which has the 
advantage over the expressions (1) that it allows for the explicit inclusion of the handedness of 
the particular coordinate system. This expression of orthogonality, for the coordinate systems 
Sand S', respectively , is 2 

(2a) 

(2b) 

where Eijk is the Levi-Civita symbol, which is antisymmetric in the interchange of any two of its 
indices (implying that it vanishes when any two of its indices are equal), and is equal to one when 
(i, j, k) is equal to (1, 2,3) or to any cyclic permutation of (1, 2, 3). The factors p and p' are the 
"handedness" factors, which are equal to one for a right handed coordinate system, and to minus 
one for a left handed system. The choice of handedness that is associated with p =+ 1 is dictated 
by the fact that we are using the conventional right handed cross product in eqs (2). 

~ In eqs (2) and su bseq uentl y in thi s series of pape rs, we use the customary convention that a repea ted index on anyone side of an equation is lu be s ummed 

ove r it s range. 
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3 

3' 

2 

F IGU RE 1 a. A n orthogonal transformation which does 
not bring about a change of handedness. 

FI GU RE 1 b. A n orthogonal transformation which brings 
about a change in handedness. 

The eqs (2) as they s tand do not guarantee the unit normalization of the vectors in eac h triad. 
To insure such normalization , one adds the supple me ntary requireme nts 

(3a) 

(3b) 

Equations (2) and (3) imme diately lead to eqs (1). In addition to be ing orthonormal , the band b' 
triads are each separate ly complete. Thi s is expressed by 

bibi = l , 

where I, the unit dyadic, has the property that I· F = F . 1 = F for any vector F . 

(4a) 

(4b) 

The matrix of transformation A = (Au) between 5 and 5' is constructed from the cosines of 
the angle s between the band b' vectors. To be specifi c we defi ne 

Ajj == b; . bj . (5) 

The ele ments of A then appear as the coeffi cients of expansion of the vectors of either triad in 
terms of the other triad as basis. These expansions are obtained by using the completeness relations 
(4), 

(6a) 

(6b) 

As a result of the orthonormality and completeness of the b and b' vectors, the matrix A satisfies 
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the well known orthogonality relations 

(7a) 

(7b) 

We will refer to these as the first orthogonality condi tions. 
The second orthogonality relations are derived by requiring that the transformation of either 

of the cross product relations (2) by the transformations (6), reproduces the other one of the relations 
(2). If eq (6a) is inserted for h' everywhere in eq (2b), we get 

Equation (2a) is now used for the cross product on the left side of this equation. The result may be 
written 

(8a) 

Alternatively, we could have transformed the relation (2a) using the transformation (6b). We would 
then have found 

(8b) 

In eqs (8) we have vanish ing linear combinations of each set of basis vectors. Since the vectors in 
each set are linearly independent, the coefficients in each linear combination must vanish iden­
tically. This leads to 

(9a) 

A riA //IjE nnll = P, E ijl,A Ill ... 
P 

(9b) 

The~e equations, which we shall refer to as the second orthogonality conditions, appear to be 
new, or at any rate do not appear to have been discussed before. In the next section we will work 
out their main consequences. 

3. Consequences of the Second Orthogonality Conditions 

As a first consequence of eqs (9), we construct a vector which is not altered by the transforma­
tion represented by A. To do this, we contract on i and n in eq (9a), that is, we set i = n and sum 
on the repeated index so formed. Now the Levi-Civita symbol has the same value for any cyclic 
permutation of its indices. For example 

Elljk = Ejlell· (10) 

Therefore we may wr ite the contracted form of eq (9a) as 

(11) 
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By definin g th e three compone nt quantity VIII as 

V III == f iJI/II-AliI', (12) 

we may write eq (11) in the form 

(13a) 

This equation says that unless it is ide ntica ll y zero , the "vector" V is an eigenvec tor of A belonging 
to the eigenvalue p' /p. Similarly, contracting on i and n in eq (9b), and observing that pip' = p ' /p , 
we find 

(13b) 

so th at V is also an e igenvec tor of the matrix A, t he tra nspose of A, belongin g to the same eigenvalue 
p' /p. 

Of course V is not the only re al eige nvector of A and of A belonging to the eige nvalue p' /p. 
Because of the homogeneity of eqs (1 3) a ny non·null vector pa ralle l or a nti parallel to V is an e ige n· 
vector. For example if V is not ide nti cally zero, a unit vector may be form ed from it by dividin g 
V by its le ngth . In th e case of ri gid rotations, for whi c h p' /p= 1, thi s unit vec tor s pec ifies th e 
direc tion of the axis of rotation , a nd the developme nt e mbodi ed in eqs (11 ) through (13) can be 
take n as a new proof of Euler 's theore m [5]. The s ignifica nce of th e parti c ular vec tor V for ri gid 
rota tion s is th at is gives not onl y the axi s of rotation but the s ine of th e angle of rotation as well. 
When co mbined with the cosine of the angle of rotation as derived from the trace of A, thi s gives 
directly the comple te, un a mbi guous correlatio n be tween the ax is and angle of rotati on. Thi s will 
be seen in the second pape r in thi s seri es, where eqs (13) and th e vector V are co ns ide red in 
de tail. In parti c ular , it will be show n th at V can be expressed as 

V = 2" sin a , 

where n is a unit vec tor givin g th e direction and th e chosen se nse of th e ax is of rotation , and a 
is th e a ngle of rotation whose sense of description abo ut th e ax is agrees with the handed ness of 
th e coordinate sys te m which is rotated by A. 

Although the derivations of eqs (12) and (13) from the second orthogo nality relation s are 
new, mos t of the res ults of those equations a re not new. In partic ular , the fact that the ratios of 
the compone nts of any vector which s pecifies the axis of a rigid rotation are identi cal to the ratio. 
of the co mponents of V , has been known for a long time [6 , 7]. Thi s result has unfortunately not 
bee n adequately stressed in th e literature. We would like to call attention to it here and to e m· 
phasize the sli ghtl y more ge ne ral conclusion that eqs (12) and (13) form a prescription for writing 
down !'eal eige nvec tors of a tran sformation matrix without in fac t solving the e igenvalue equation 
for th e matri x. The presc ripti on fa il s of course when V vani shes ide ntically. As can be seen from 
eq (12), thi s occurs whe never A is symme tric in addition to being orthogo nal. In paper II we shall 
see that a symme tri c A corres ponds to a rigid rotation of e ither 00 or 1800 for th e pro per rotation s 
(P' /p= 1), and to either a re fl ection in a plane or to an invers ion of the coo rdin a te sys te m with 
res pect to the ori gin , for the imprope r rotations (P' /p=-I). In s uch in s ta nces one mu s t solve the 
eigenvalu e equ a tion for A to find its real e igenvec tors. 

We have bee n refe rrin g to V as a vector s in ce it is a three·co mponent object. However , it is 
not a vecto r in the sense in which the physicist us ually unders tands that word. He wo uld think 
of a vector as a one-to-o ne correspondence between coordinate systems and se ts of three llumbers, 
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which under a transformation of coordinates obeys the transformation law of coordinate intervals. 3 

Strictly speaking, V has relevance to the transformation between two coordinate systems, rather 
than as an object germane to individual coordinate systems. For convenience, however, we will 
continue to refer to V as a vector, keeping in mind its limitations under the transformation defini­
tion. For want of a better name, we shall henceforth call V the intrinsic vector. 

The second consequence of eqs (9) that we shall derive is a new equation which connects 
the trace of A, tr A, with tr (At). To find it, we multiply eq (9a) by Eijll, and sum on i, j, and n. With 
the aid of the identities 4 

EijllEijk = 28"", 

we arrive at 

In trace notation this equation appears as 

Equation (15) can also be derived by similar operations on eq (9b). 
The trace of a transformation matrix is primarily important for rigid rotations, 

nishes the cosine of the angle a of rotation by means of the well known formula 

tr A = 1 + 2 cos a. 

(14a) 

(l4b) 

(15) 

where it fur-

(16) 

The standard derivation of this formula [5] makes use of the special form of a rotation matrix when 
the axis of rotation is one of the coordinate axes , say the z axis. By direct calculation of the under­
lying two-dimensional transformation, this matrix is seen to be 

cosa SIn a 

a cosa = R z(a). (17) 

o 0 

The trace of this matrix is given by eq (16). It is then noted that any rotation matrix may be put 
into the form (17) by an appropriate similarity transformation. The result (16) for an arbitrary rota­
tion matrix then follows from the fact that the trace of a matrix is invariant under a similarity 
transformation. i\ 

a I am indebted 10 Ruber! Rie htmeyer, from whom I first heard this particular wording of the transformation de finition of a vec tor. 
~ An elementary and very lucid introduction to the use of the Levi-Civita symbol can be found in ref. [81. This includes a d erivation of the identity (14a), frum which 

the identity (l4b) may be derived by further contraction. 
S In the language of gruup theory , real three-by.three orthogonal matrices belong to the vector representation, or the irreducible representation corresponding 

to ,= 1. of the rotation group. The characters of a representation are the traces of its matrices. Equation (l6) is true only for the characters of the vector representa­

tion. F,.r the matrices of the irreducible representation belonging to integral L ~ I the characters are given by 1+2 cos 0'+ . .. + 2 cos la , where a is the angle of 
rotation. 
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It is possible to derive the formula for the trace analytically from eq (IS) using only general 
prope rti es of rota tions, and without the need to consider special forms of the rotation matrix . 
The derivation is interesting because it shows that the formula (16) is a direct conseque nce of the 
alge braic pro perties of rotation matrices, and so gives an insight into the structure of that formula 
whic h one does not get from the standard derivation. The details of the derivation of eq (16) from 
eq (IS) will be presented in paper IV. 

As a third consequence of eqs (9) we deduce a transparent expression for the determinant of 
A , det A. We first note that the properti es of determinants furnish the identities 6 

(18a) 

(l8b) 

If we then multiply either eq (9a) by ASII or eq (9b) by All"' and sum on s then the left side of either 
of the resulting equations is, by eqs (18), equal to (det A) Eijs. The right sides eac h lead to (P' /p) 
Eijs, with the help of the first orthogonality conditions (7). Equating these two expressions we have 

detA = p'. 
p 

(19) 

This equation states in a concise form the result th at the determinant of a real three-by-three 
orthogonal tran sformation matrix is equal to + 1 when the transform ation does not cause a c hange 
in handedness, and equal to -1 whe n it does. This result is of course well known but does not 
e merge quite as concisely in the customary way of deriving it. The re, one uses the first orthogo­
nality conditions to a rrive at the result (de t AF = 1, from which it follows that det A = ± 1. One 
then argues that only for the proper rotations is A continuously connected to the identity matrix, 
for which the determinant is + 1. This leaves the value -1 of the determinant to account for the 
improper rotations. The second orthogonality conditions lead to these conclusions in a s in gle 
succinct equation. 

The final result of thi s section is a de ri vation of the secular equation for a transformation 
matrix , directly from the second orthogonality conditions. A word of clarification is in order. By 
the phrase "secular equation" of a matrix , one us ually means the polynomial equation obeyed by 
the eigenvalues of the matrix. The Cayley-Hamilton theore m [10] asserts that the matrix itself 
obeys its own polynomial equation. For thi s reason we refer to the polynomial equation sati sfi ed 
by a transformation matrix as its secular equation. It is in thi s form that the secular equation for 
A comes out of eqs (9)_ 

We multiply eq (9a) by EStll , and sum on n usi ng the ide ntity (l4a). This gives 

I 

AiSAjt-AitA js =E.... EijA·E sIIIA,,", . p (20) 

We now contract thi s equation on sand j. To evaluate the right side of the contracted equation 
we use the cyclic property (10) of E and the identity (14a). The result is 

(A~ );t- (trA)Ai/=P' [Ati- (trA)oit]. 
p 

The matrix form of thi s equation is 

A~ - ( trA)A = p l [A'- (tr A )I] , 
p 

(21 ) 

6 A de rivation of these ide ntit ies may be found in ref. [91. In the theory of Cart esian tensors. these identities constitute the proof that the Le vi·Civila symbol 
is a pse udote nsor ur the third rank . 
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where A is the transpose of A, and / is the identity matrix. Upon multiplying eq (2 1) by A , either 
from the left or from the right , and noting that AA = AA = / from the first orthogonality relations, 
we have 

(22) 

This is the secular eq uation for A . 
For the special case of rigid rotations, we can se t p' /p = 1, and use eq (16) for tr A, in eq (22). 

The secular equation for a rotation matrix is then 

A:l - (l + 2 cos a)A~ + (l + 2 cosa)A - / = O. (23) 

This may be written in the factored form 

(A - /)[A ~ - (2 cos a)A + /] = O. (24) 

If A in eq (23) (or eq (24» is replaced by a numerical variable representing the eigenvalues of 
A , then the solution of the resulting equation gives the usual result that the eigenvalues are 1, 
eic<, and r i c< . The fact that one of the e igenvalues is unity may be taken as yet another direct proof 
from eqs (9) of Euler's theorem. This proof has the advantage over th e one based on eqs (13) in 
that it remains valid eve n when the intrinsic vector vanishes. 

A more powerful use of eq (23) is in finding a closed-form expression for A as a function of 
the axis and angle of rotation. On the basis of very general properties of rotation matrices, the 
solution of eq (23) is 

A(a) ' =/-Nsina+N2 (l-cosa). (25) 

Here, N is a matrix which is formed from the components of n, the unit vector along the sense of 
the axis of rotation, by the prescription 

(26) 

In explicit matrix form, N appears as 

N =n3 0 (27) 

Equation (25) is probably more familiar in its exponential form. 7 

(28) 

Since eq (23) is inde pendent of the axis of rotation, it is to be expected that it has to be supplemented 
by a condition which introduces the axis. The appropriate condition is the eigenvalue equation 
for A corresponding to the eigenvalue + 1. 

The details of how eq (23) is solved to give eq (25) are interesting in their own right, and are 
given in paper IV. As with the solution of eq (15) to yield the trace formula, the process of solving 

7 The reader who is familiar wilh the d yad ic represent a tion of rotations will recog nize the simil a ri ty between eq (25) and the rotation dyadic [11]. The matrix N is 

re placed by the d yad ic - n X I, where I is the unit d yadic, the minus sign ente ring because a dyadic is gene rall y used to describe a n act ive transformation, whereas 

cq (25) is mea nt 10 describe a passive tra nsformation. The matrix N2 is replaced b y the d yadic 11 X (n X I) which is ju st (- n X I) (- II X I) = (- n X 1)2. One C'ln 

check that the matrix form of n X I is give n by the right side of eq (26). 
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eq (23) from ge neral properties of rotations shows the intimate connection between the result, 
eq (25), and the algebraic properties of rotation matrices. As will be seen in paper IV, the same 
ge neral properties of rotations are invoked to soJve both eqs (15) and (23). Th ese are the group 
properly, and the periodicity property. 

In all of the results derived in this section, it can be see n that the only way in whic h p and p ' 

occur is in the ratio p' (p. This is an expression of th e fact that only the relative hand ednes of 
two coordinate systems is of any significance. To emphas ize this fact we shall continue to write 
the ratio as p'(p, rather than define a new symbol for it. 

We have already indicated the conte nts of papers II and IV of this series. Paper III will be 
concerned with the proof of the theorem of co njugacy, from the second orthogonality conditions. 
This theorem makes statements about the axes and angles of rotation of two rotation matrices 
connected by an orthogonal similarity transformation . 

I would like to thank Monte A. Franklin, Kent R. John son, Nicholas M. Tomljanovich, and 
Peter C. Wate rman for critically read in g an earli er version of thi s paper, and for making a number 
of useful suggestions. I am grateful to Werner E. S ievers and William A. Whitc raft , Jr. for their 
encourageme nt during the course of thi s work. 
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